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ABSTRACT

Melodies provide an important conceptual summarization
of polyphonic audio. The extraction of melodic content
has practical applications ranging from content-based au-
dio retrieval to the analysis of musical structure. In con-
trast to previous transcription systems based on a model of
the harmonic (or periodic) structure of musical pitches, we
present a classification-based system for performing au-
tomatic melody transcription that makes no assumptions
beyond what is learned from its training data. We evalu-
ate the success of our algorithm by predicting the melody
of the ISMIR 2004 Melody Competition evaluation set
and on newly-generated test data. We show that a Sup-
port Vector Machine melodic classifier produces results
comparable to state of the art model-based transcription
systems.
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1 INTRODUCTION

Melody provides a concise and natural description of mu-
sic. Even for complex, polyphonic signals, the perceived
predominant melody is the most convenient and memo-
rable description, and can be used as an intuitive basis
for communication and retrieval e.g. through query-by-
humming. However, to deploy large-scale music organi-
zation and retrieval systems based on melody, we need
mechanisms to automatically extract this melody from
recorded music audio. Such transcription also has value in
musicological analysis and various potential signal trans-
formation applications. As a result, a significant amount
of research has recently taken place in the area of predom-
inant melody detection (Goto, 2004; Eggink and Brown,
2004; Marolt, 2004; Paiva et al., 2004; Li and Wang,
2005).

Previous methods, however, all rely on a core of
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rule-based analysis that assumes a specific audio struc-
ture, namely that a musical pitch is realized as a set of
harmonics of a particular fundamental. This assump-
tion is strongly grounded in musical acoustics, but it is
not strictly necessary: in many fields (such as automatic
speech recognition) it is possible to build classifiers for
particular events without any prior knowledge of how they
are represented in the features.

In this paper, we pursue this insight by investigating
a machine learning system to generate automatic melody
transcriptions. We propose a system that learns to infer the
correct melody label based only on training with labeled
examples. Our algorithm performs dominant melodic
note classification via a Support Vector Machine classi-
fier trained directly from audio feature data. As a result,
the proposed system may be easily generalized to learn
many melodic structures or trained specifically for a given
genre.

2 SYSTEM DESCRIPTION

The basic flow of our transcription system is as follows:
First, the input audio waveform is transformed into a fea-
ture representation as some kind of normalized short-time
magnitude spectrum. A Support Vector Machine (SVM)
trained on real multi-instrument recordings and synthe-
sized MIDI audio classifies each frame as having a partic-
ular dominant pitch, quantized to the semitone level. Each
of these steps is described in more detail below:

2.1 Acoustic Features

The original music recordings are combined to one chan-
nel (mono) and downsampled to 8 kHz. This wave-
form x[n] is converted to the short-time Fourier transform
(STFT),

XSTFT [k, n] =
N−1∑
m=0

x[n−m] ∗w[m] ∗ e−j2πkm/N (1)

using anN = 1024 point Discrete Fourier Transforms
(i.e. 128 ms), anN -point Hanning windoww[n], and a
944 point overlap of adjacent windows (for a 10 ms grid).
In most cases, only the bins corresponding to frequencies
below 2 kHz (i.e. the first 256 bins) were used. To im-
prove generalization across different instrument timbres



and contexts, a variety of normalizations were applied to
the STFT, as described in section 3.

2.2 Support Vector Machines

Labeled audio feature vectors are used to train an SVM
with a class label for each note distinguished by the sys-
tem. The SVM is a supervised classification system that
uses a hypothesis space of linear functions in a high di-
mensional feature space in order to learn separating hy-
perplanes that are maximally distant from all training pat-
terns. As such, SVM classification attempts to generalize
an optimal decision boundary between classes. Labeled
training data in a given space are separated by a maxi-
mum margin hyperplane through SVM classification. In
the case of N-way multi-class discrimination, a majority
vote is taken from the output ofN(N − 1)/2 pairwise
discriminant functions. In order to classify the dominant
melodic note for each frame, we assume the melody note
at a given instant to be solely dependent on the normal-
ized frequency data below 2 kHz. We further assume each
frame to be independent of all other frames.

2.3 Training Data

A supervised classifier requires a corpus of pairs of fea-
ture vectors along with their ground truth labels in order
to be trained. In general, greater amounts and variety
of training data will give rise to more accurate and suc-
cessful classifiers. In the classification-based approach to
transcription, then, the biggest problem becomes collect-
ing suitable training data. Although the number of digital
scores aligned to real audio is very limited, there are a few
directions that facilitate the generation of labeled audio.
In this experiment, we investigate multi-track recordings
and MIDI audio files as sources of training data.

2.3.1 Multi-track Recordings

Popular music recordings are usually created by layering a
number of independently-recorded audio tracks. In some
cases, artists (or their record companies) may make avail-
able separate vocal and instrumental tracks as part of a CD
or 12” vinyl single release. The ‘acapella’ vocal record-
ings can be used as a source for ground truth in the full
ensemble music since they will generally be amenable to
pitch tracking with standard tools. As long as we can
keep track of what times within the vocal recording corre-
spond to what times in the complete (vocal plus accompa-
niment) music, we can automatically provide the ground
truth. Note that the acapella recordings are only used to
generate ground truth; the classifier is not trained on iso-
lated voices (since we do not expect to use it on such data).

A set of 30 multi-track recordings was obtained from
genres such as jazz, pop, R&B, and rock. The digital
recordings were read from CD, then downsampled into
mono files at a sampling rate of 8 kHz. The 12” vinyl
recordings were converted from analog to digital mono
files at a sampling rate of 8 kHz.

For each song, the fundamental frequency of the
melody track was estimated using the YIN fundamen-
tal frequency estimator (de Cheveigne and Kawahara,

2002). Fundamental frequency predictions were calcu-
lated at 10 ms steps and limited to the range of 100 to
1000 Hz. YIN defines a periodicity measure,

Periodicity =
PPERIODIC

PTOT
(2)

wherePPERIODIC is the energy accounted for by the
harmonics of the detected periodicity, andPTOT is the
total energy of a frame; Only frames with periodicity of at
least 95% (corresponding to clearly-pitched voiced notes)
were used as training examples.

To align the acapella recordings to the full ensemble
recordings, we performed Dynamic Time Warp (DTW)
alignment between STFT representations of each signal,
along the lines of the procedure described in Turetsky
and Ellis (2003). This time alignment was smoothed and
linearly interpolated to achieve a frame-by-frame corre-
spondence. The alignments were manually verified and
corrected in order to ensure the integrity of the training
data. Target labels were assigned by calculating the clos-
est MIDI note number to the monophonic prediction at the
times corresponding to the STFT frames.

2.3.2 MIDI Files

The MIDI medium enables users to synthesize audio and
create a digital music score simultaneously. Extensive col-
lections of MIDI files exist consisting of numerous ren-
ditions from eclectic genres. Our MIDI training data is
composed of 30 frequently downloaded pop songs from
www.findmidis.com.

The training files were converted from the standard
MIDI file format to mono audio files (.WAV) with a sam-
pling rate of 8 kHz using the MIDI synthesizer in Apple’s
iTunes.

To find the corresponding ground truth, the MIDI files
were parsed into data structures containing the relevant
audio information (i.e. tracks, channels numbers, note
events, etc). The melody was isolated and extracted by ex-
ploiting MIDI conventions for representing the lead voice.
Commonly, the lead voice in pop MIDI files is represented
by a monophonic track on an isolated channel. In the
case of multiple simultaneous notes in the lead track, the
melody was assumed to be the highest note present. Target
labels were determined by sampling the MIDI transcript at
the precise times corresponding to each STFT frame in the
analysis of the synthesized audio.

2.3.3 Resampled Audio

In the case when the availability of a representative train-
ing set is limited, the quantity and diversity of the train-
ing data may be extended by re-sampling the recordings
to effect a global pitch shift. The multi-track and MIDI
recordings were re-sampled at rates corresponding to sym-
metric, semitone frequency shifts over the chromatic scale
(i.e.±1, 2, . . . 6 semitones). The ground truth labels were
scaled accordingly and linearly interpolated in order to ad-
just for time alignment. This approach created a more
Gaussian training distribution and reduced bias toward
specific keys present in the training set.
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Figure 1: Variation of classifier frame error rate as a function of the amount of training data used, for training on real
recordings (left) and MIDI syntheses (right). 100% of the training data corresponds to 30,000 frames or 300 s of audio.
Curves show the accuracy on the training and test sets, as well as on the separate ISMIR 2004 set (see text).

3 EXPERIMENTS

The WEKA implementation of Platt’s Polynomial Se-
quential Minimal Optimization (SMO) SVM algorithm
was used to map the frequency domain audio features to
the MIDI note-number classes (Witten and Frank, 2000;
Platt, 1998). The default learning parameter values (C =
1, epsilon =10−12, tolerance parameter =103) were used
to train the classifiers. Each audio frame was represented
by a 256-element input vector, with sixty potential output
classes spanning the five-octave range from G2 to F#7 for
N-way classification, and twelve potential output classes
representing a one octave chroma scale for N-binary clas-
sification. Thirty multi-track recordings and thirty MIDI
files with a clearly defined dominant melody were selected
for our experiments; for each file, 1000 frames in which
the dominant melody was present (10 s of audio data)
were randomly selected to be used as training frames. Ten
multi-track recordings and ten MIDI files were designated
as the test set, and the ISMIR 2004 Melody Competi-
tion test set was used as a validation set (Gomez et al.,
2004). This was an international evaluation for predomi-
nant melody extraction, the first of its kind, conducted in
the summer of 2004. The evaluation data (which has now
been released) consisted of 20 excerpts, four from each
of 5 styles, covering a wide range of musical genres, and
each consisting of about 30 s of audio. Following the con-
ventions of that evaluation, to calculate accuracy we quan-
tize the ground-truth frequencies for every pitched frame
to the nearest semitone (i.e. to its MIDI number), and
count an error for each frame where our classifier predicts
a different note (or in some cases a different chroma i.e.
forgiving octave errors). We do not, in this work, consider
the problem of detecting frames that do not contain any
‘foreground’ melody and thus for which no note should
be transcribed.

3.1 N-way Classification

We trained separate N-way SVM classifiers using seven
different audio feature normalizations. Three normaliza-
tions use the STFT, and four normalizations use Mel-
frequency cepstral coefficients (MFCCs). In the first case,
we simply used the magnitude of the STFT normalized
such that the maximum energy frame in each song had
a value equal to one. For the second case, the magni-
tude of the STFT is normalized within each time frame
to achieve zero mean and unit variance over a 51-frame
local frequency window, the idea being to remove some
of the influence due to different instrument timbres and
contexts in train and test data. The third normalization
scheme applied cube-root compression to the STFT mag-
nitude, to make larger spectral magnitudes appear more
similar; cube-root compression is commonly used as an
approximation to the loudness sensitivity of the ear.

A fourth feature configuration calculated the autocor-
relation of the audio signal calculated by taking the in-
verse Fourier transform (IFT) of the magnitude of the
STFT. Taking the IFT of the log-STFT-magnitude gives
the cepstrum, which comprised our fifth feature type. Be-
cause overall gain and broad spectral shape are contained
in the first few cepstral bins, whereas periodicity appears
at higher indexes, this feature also performs a kind of
timbral normalization. We also tried normalizing these
autocorrelation-based features by local mean and vari-
ance equalization as applied to the spectra, and by lif-
tering (scaling the higher-order cepstra by an exponential
weight).

For all normalization schemes, we compared SVM
classifiers trained on the multi-track training set, MIDI
training set, and both sets combined. An example learn-
ing curve (based on the locally-normalized spectral data)
is shown in figure 1. The classification error data was gen-
erated by training on randomly selected portions of the
training set for cross validation, testing, and validation.
The classification error for the testing and validation sets
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Figure 2: Variation in transcription frame accuracy across
the 20 excerpts of the ISMIR 2004 evaluation set. Solid
line shows the classification-based transcriber; dashed line
shows the results of the best-performing system from the
2004 evaluation. Top pane is raw pitch accuracy; bottom
pane folds all results to a single octave of 12 chroma bins,
to ignore octave errors.

reaches an asymptote after approximately 100 seconds of
randomly-selected training audio. Although the classifier
trained on MIDI data alone generalizes well to the IS-
MIR validation set, the variance within the MIDI files is
so great the classifier generalizes poorly to the MIDI test
set.

Table 1 compares the accuracy of classifiers trained
on each of the different normalization schemes. Here we
show separate results for the classifiers trained on multi-
track audio alone, MIDI syntheses alone, or both data
sources combined. The frame accuracy results are for the
ISMIR 2004 melody evaluation set and correspond to f0
transcription to the nearest semitone.

A weakness of any classification based approach is
that the classifier will perform unpredictably on test data
that does not resemble the training data, and a particu-
lar weakness of our approach of deliberately ignoring our
prior knowledge of the relationship between spectra and
notes is that our system cannot generalize from the notes
it has seen to different pitches. For example, the highestf0

values for the female opera samples in the ISMIR test set

Table 1: Frame accuracy percentages on the ISMIR 2004
set for each of the normalization schemes considered,
trained on either multi-track audio alone, MIDI syntheses
alone, or both data sets combined.

Normalization Multi-track MIDI ALL
STFT 54.5 45.8 59.0
51-pt norm 52.7 51.3 62.7
Cube root 55.1 47.1 62.4
Autocorr 53.6 51.9 59.0
Cepstrum 48.5 44.7 52.1
NormAutoco 40.8 38.5 44.6
LiftCeps 53.4 48.6 60.3
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Figure 3: Effect of including transposed versions of the
training data. As the training data is duplicated at all
semitone transpositions out to±6 semitones, transposi-
tion frame accuracy improves by about 5% absolute for
raw transcripts, and about 2% absolute for the chroma
(octave-equivalent) transcription.

exceed the maximum pitch in all our training data. In ad-
dition, the ISMIR set contains stylistic genre differences
(such as opera) that do not match our pop music corpora.
However, if the desired output states are mapped into the
range of one octave, a significant number of these errors
are reduced. Neglecting octave errors yields an average
pitched frame accuracy in excess of 70% on the ISMIR
test set.

We trained six additional classifiers in order to dis-
play the effects of re-sampled audio on classification suc-
cess rate. All of the multi-track and MIDI files were re-
sampled to plus and minus one to six semitones, and ad-
ditional classifiers trained on the resampled audio were
tested on the ISMIR 2004 test set using the best perform-
ing normalization scheme. Figure 3 displays the classifi-
cation success rate as the amount of re-sampled training
data is varied from±1 . . . 6 semitones.

The inclusion of the re-sampled training data improves
classification accuracy over 5%. In Figure 2, the pitched
frame transcription success rates are displayed for the
SVM classifier trained using the resampled audio com-
pared with best-performing system from the 20 test sam-
ples from the 2004 evaluation, where the pitch estimates
have been time shifted in order to maximize transcription
accuracy (Paiva et al., 2004).

3.2 N Binary Classifiers

In addition to the N-way melody classification, we trained
12 binary SVM classifiers representing one octave of the
notes of a western scale (the ‘chroma’ classes). The classi-
fiers were trained on all occurrences of the given chroma
and an equal number of randomly selected negative in-
stances. We took the distance-to-classifier-boundary hy-
perplane margins as a rough equivalent to a log-posterior
probability for each of these classes; Figure 4 shows an
example ‘posteriorgram’, showing the variation in the ac-
tivation of these 12 different classifiers as a function of
time for two examples; the ground truth labels are over-
laid on top. For the simple melody in the top pane, we
can see that the system is performing well; for the female
opera example in the lower pane, our system’s unfamiliar-
ity with the data is very apparent.
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Figure 4: ‘Posteriorgram’ showing the temporal variation in distance-to-classifier boundary for 12 classifiers trained on
the different notes of the octave. Ground-truth labels are plotted with dots. Top pane is a well-performing simple melody
example. Bottom pane is a poorly-performing female opera excerpt.

4 DISCUSSION AND CONCLUSIONS

Looking first at table 1, the most obvious result is that
all the features, with the exception of ‘NormAutoco’, per-
form much the same, with a slight edge for the 51-point
across-frequency local-mean-and-variance normalization.
In a sense this is not surprising since they all contain
largely equivalent information, but it also raises the ques-
tion as to how effective our normalization (and hence
the system generalization) has been (although note that
the biggest difference between ‘Multi-Track’ and ‘MIDI’
data, which is some measure of generalization failure, oc-
curs for the first row, the STFT features normalized only
by global maximum). It may be that a better normalization
scheme remains to be discovered.

Looking across the columns in the table, we see that
the more realistic multi-track data does form a better train-
ing set than the MIDI syntheses, which have much lower
acoustic similarity to most of the evaluation excerpts. Us-
ing both, and hence a more diverse training set, always
gives a significant accuracy boost – up to 10% absolute
improvement, seen for the best-performing 51-point nor-
malized features. We can assume that training on addi-
tional diverse data (particularly, say, opera) would further

improve performance on this evaluation set.
As shown in figure 2, our classifier-based system is

competitive with the best-performing system from the
2004 evaluation, and is a few percent better on average.
This result must also be considered in light of the fact that
there is no post-processing applied in this system. Instead,
the performance represents scoring the raw, independent
classification of each audio frame. Various smoothing,
cleaning-up, and outlier removal techniques, ranging from
simple median filtering through to sophisticated models
of musical expectancy, are typically employed to improve
upon raw pitch estimates from the underlying acoustic
model.

This is the basis for our interest in the multiple par-
allel classifiers as illustrated in figure 4. By representing
the outcome of the acoustic model as a probabilistic dis-
tribution across different notes, this front end can be ef-
ficiently integrated with a back-end based on probabilis-
tic inference. In particular, we are investigating trained
models of likely note sequences, starting from melodies
extracted from the plentiful MIDI files mentioned above.
We are further interested in hidden-mode models that can,
for instance, learn and recognize the importance of latent



constraints such as the local key or ‘mode’ implied by the
melody, and automatically incorporate these constraints
into melody, just as is done explicitly in Ryynänen and
Klapuri (2004).

We note that our worst performance was on the
“opera” samples, particularly the female opera, where,
as noted above, some of the notes were outside the
range covered by our training set (and thus could never
be reported by our classifier). While this highlights a
strength of model-based transcription in comparison with
our example-based classifier (since they directly general-
ize across pitch), there is a natural compromise possible:
by resampling our training audio by factors correspond-
ing to plus or minus a few semitones, and using these
‘transposed’ versions as additional training data (with the
ground-truth labels suitably offset), we can ‘teach’ our
classifier that a simple spectral shift of a single spectrum
corresponds to a note change, just as is implicit in model-
based systems.

By the same token, we may ask what the trained clas-
sifier might learn beyond what a model-based system al-
ready knows, as it were. By training on all examples of
a particular notein situ, the classifier transcriber can ob-
serve not only the prominent harmonics in the spectrum
(or autocorrelation) corresponding to the target pitch, but
any statistical regularities in the accompaniment (such as
the most likely accompanying notes). Looking at figure 4,
for example at the final note of the top pane, we see that al-
though the actual note was a B, the classifier is confusing
it with a G – presumably because there were a number of
training instances where a melody G included strong har-
monics from an accompanying B, which could in some
circumstances be a useful regularity to have learned. In-
deed, noting that our current classifiers seem to saturate
with only a few seconds of training material, we might
consider a way to train a more complex classifier by in-
cluding richer conditioning inputs; the inferred ‘mode’
hidden state suggested above is an obvious contender.

The full melody competition involved not only decid-
ing the note of frames where the main melody was deemed
to be active, but also discriminating between melody and
non-melody (accompaniment) frames, on the face of it a
very difficult problem. It is, however, a natural fit for a
classifier: once we have our labeled ground truth, we can
train a separate classifier (or a new output in our existing
classifier) to indicate when background is detected and no
melody note should be emitted; different features (includ-
ing overall energy) and different normalization schemes
are appropriate for this decision.

In summary, we have shown that the novel approach
to melody transcription in which essentially everything
is left to the learning algorithm and no substantial prior
knowledge of the structure of musical pitch is hard-coded
in, is feasible, competitive, and straightforward to imple-
ment. The biggest challenge is obtaining the training data,
although in our configuration the amount of data required
was not excessive. We stress that this is only the first stage
of a more complete music transcription system, one that
we aim to build at each level on the principle of learning
from examples of music rather than through coded-in ex-
pert knowledge.
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