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ABSTRACT

Record reviews provide a unique and focused source of
linguistic data that can be related to musical recordings,
to provide a basis for computational music understanding
systems with applications in similarity, recommendation
and classification. We analyze a large testbed of music
and a corpus of reviews for each work to uncover pat-
terns and develop mechanisms for removing reviewer bias
and extraneous non-musical discussion. By building upon
work in grounding free text against audio signals we in-
vent an “automatic record review” system that labels new
music audio with maximal semantic value for future re-
trieval tasks. In effect, we grow an unbiased music editor
trained from the consensus of the online reviews we have
gathered.

Keywords: cultural factors, language, machine learn-
ing, audio features, reviews

1. INTRODUCTION

Spread throughout the music review pages of newspapers,
magazines and the internet lie the answers to music re-
trieval’s hardest problems of audio understanding: thou-
sands of trained musical experts, known otherwise as re-
viewers, distill the hundreds of megabytes of audio data
from each album into a few kilobytes of semantic classi-
fication. Instead of the crude and suspect genre tags and
artist names that so often serve as semantic ground truth,
we can get detailed descriptions of the audio content (in-
strumentation, beat, song structure), cultural position (re-
lationships to other groups, buzz, history) and individual
preference (the author’s opinion of the work). There is
tremendous value waiting to be extracted from this data,
as the ostensible purpose of a record review is to provide
all the necessary categorical and descriptive information
for a human judge to ‘understand’ the recording without
hearing it. If we would like to build music intelligences
that automatically classify, recommend and even synthe-
size music for listeners, we could start by analyzing the
connection between music (or music-derived audio fea-
tures) and a listener’s reaction as detailed in a review.
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Figure 1. Predicting and analyzing ratings. Top left: cor-
relation of AMG (1-9 scale) to Pitchfork (0-100 scale)
ratings, correlation coefficientr = 0.264. Top right:
Pitchfork ratings to randomly selected AMG ratings,r =
0.017. Bottom left: predicting AMG ratings from audio
features,r = 0.147. Bottom right, predicting Pitchfork
ratings from audio,r = 0.127.

A system for “review understanding” is useful even to
text-only retrieval systems: Consider a site that encour-
ages on-line reviews of its stock; user-submitted text can
be used in place of a sales-based collaborative filtering
recommendation agent, and such systems prove to work
well as “buzz” or opinion tracking models[1]. However,
in our case we are fortunate to have the subject of the re-
views – the music audio itself – simultaneously available,
and our work concentrates on the link between description
and perception. We believe an audio model of ‘romantic
interludes’ can be far more expressive, informative, and
statistically valid than a model of ‘Rock’ – and given the
prospect of scaling our models to hundreds of thousands
of terms and phrases applicable to every kind of music,
we envision a bias-free computational model of music de-
scription that has learned everything it knows by reading
reviews and listening to the targets.

Of course, reviews have their problems. By their na-
ture they are hardly objective – the author’s own back-
ground and musical knowledge color each review. As
Figure 2 illustrates, music reviews can often be cluttered
with ‘outside-world’ information, such as personal rela-
tionships and celebrity trivia. While these non-musical



For the majority of Americans, it's a given: summer is the best season of the year. Or so you'd think, judging from the 
anonymous TV ad men and women who proclaim, "Summer is here! Get your [insert iced drink here] now!"-- whereas in 
the winter, they regret to inform us that it's time to brace ourselves with a new Burlington coat. And TV is just an 
exaggerated reflection of ourselves; the hordes of convertibles making the weekend pilgrimage to the nearest beach
are proof enough. Vitamin D overdoses abound. If my tone isn't suggestive enough, then I'll say it flat out: I hate the

Beginning with "Caring Is Creepy," which opens this album with a psychedelic flourish that would not be out of place on a 
late-1960s Moody Blues, Beach Boys, or Love release, the Shins present a collection of retro pop nuggets that distill the 
finer aspects of classic acid rock with surrealistic lyrics, independently melodic bass lines, jangly guitars, echo laden 
vocals, minimalist keyboard motifs, and a myriad of cosmic sound effects. With only two of the cuts clocking in at over 
four minutes, Oh Inverted World avoids the penchant for self-indulgence that befalls most outfits who worship at the 

Figure 2. The first few lines of two separate reviews of the same album (The Shins’ “Oh Inverted Word.”) Top: Ryan
Kearney, Pitchforkmedia.com. Bottom: Tom Semioli, All Music Guide.

tidbits are entertaining for the reader and sometimes (if
obliquely) give a larger picture of the music in question,
our current purpose would be best served by more concise
reviews that concentrated on the contents of the album so
that our models of music understanding and similarity are
dealing with purely content-related features.

In this paper we study a large corpus of music audio
and corresponding reviews as an exploratory work into
the utility of music reviews for retrieval tasks. We are
specifically interested in the problems of similarity and
recommendation, and view the review parsing and term
grounding work in this paper as a necessary step to gath-
ering the knowledge required to approximate human mu-
sical intelligence. For example, by limiting reviews to
‘musically salient’ terms grounded by our learning sys-
tem, a community-opinion model of similarity, based only
on text, can be built with high accuracy.

We first present a computational representation of pars-
ing for descriptive text and an audio representation that
captures different levels of musical structure. We then
show methods for linking the two together, first to create
models for each term that can be evaluated, but also to cull
non-musical and biased information from reviews. We
also show results in classifying the author’s overall opin-
ion of the work, as expressed in symbolic “star-rating”
attributes provided by the review, by learning the relation-
ship between the music and its fitness score. Putting these
approaches together opens the door to an on-line “auto-
matic record review” that can classify new music with nu-
merous human-readable and understandable labels. These
labels can be used directly in an interface or used as inputs
to subsequent similarity, classification or recommendation
systems.

2. BACKGROUND

Our work has concentrated on extracting meaning from
music, using language processing and data mining tech-
niques to uncover connections between the perception (au-
dio stream) and description. Many interesting results have
arisen from this work, including models of metadata de-
rived from musical communities [2], a “query by descrip-

tion” system that allows users a natural interface for music
retrieval [3], and a new method ofsemantic rank reduction
where the observations are de-correlated based on mean-
ing rather than purely statistics [4]. By associating listener
reactions to music (observed through many mechanisms
from player logs through to published reviews) with anal-
yses of the audio signal, we can automatically infer novel
relations on new, “unheard” music. This paper ties some
of these threads together for a an approach to extracting
reliable, consensus information from disparate online re-
views.

2.1. Related Work

2.1.1. Music Analysis

Systems can understand music enough to classify it by
genre, style, or nationality, as long as the systems are
trained with hand-labeled data e.g. [5, 6]. The link be-
tween musical content and generalized descriptive language
is not as prominent, although [7] shows that certain style-
related terms such as ‘lyrical’ or ‘frantic’ can be learned
from the score level.

2.1.2. Grounding

In the domain of general audio, recent work has linked
sound samples to description using the labeled descrip-
tions on the sample sets [8]. In the visual domain, some
work has been undertaken attempting to learn a link be-
tween language and multimedia. The lexicon-learning as-
pects in [9] study a set of fixed words applied to an image
database and use a method similar to EM (expectation-
maximization) to discover where in the image the terms
(nouns) appear; [10] outlines similar work. Regier has
studied the visual grounding of spatial terms across lan-
guages, finding subtle effects that depend on the relative
shape, size, and orientation of objects [11]. Work on mo-
tion verb semantics include both procedural (action) based
representations building on Petri Net formalisms [12, 13]
and encodings of salient perceptual features [14]. In [15],
aspects of learning shape and color terms were explored



along with some of the first steps in perceptually-grounded
grammar acquisition.

We consider a word to be “grounded” if we are able to
determine reliable perceptual or procedural associations
of the word that agree with normal usage. However, en-
coding single terms in isolation is only a first step in sensory-
motor grounding. Lexicographers have traditionally stud-
ied lexical semantics in terms of lexical relations such as
opposition, hyponymy, and meronymy [16]. Our first ap-
proach to this problem was in [3], in which we learned the
descriptions of music by a combination of automated web
crawls for artist description and analysis of the spectral
content of their music.

3. THE “MIT AUDIO+AUDIENCE” TESTBED

The set of music used in this article and elsewhere is based
on the Minnowmatch testbed [17] extended with a larger
variety of music (instead of just pop) by removing the
popularity constraint. (Minnowmatch’s music was culled
from the top 1,000 albums on a peer-to-peer network.)
We have also added a regularized set of cultural meta-
data for each artist, album, and song. In this paper we
report results on a set of 600 albums from roughly 500
artists. Each artist has concordant community metadata
vectors [2] and each album has at least two reviews, one
from the metadata provider All Music Guide [18] (AMG)
and one from the popular record review and music culture
web site Pitchfork Media [19] (Pitchfork). Most records
also have tagged community reviews from other sources,
such as on-line record stores. Other sources of community
information in this testbed include usage data and artist
similarity results from the Musicseer [20] survey.

4. READING THE REVIEWS

There are innumerable ways of representing textual in-
formation for machine understanding, and in our work
we choose the simplest and most proven method of fre-
quency counting. Reviews are in general short (one to
three paragraphs), are always connected to the topic (al-
though not always directly) and do not require special
parsing or domain-specific tools to encode. In our re-
cent work we used a very general model ofcommunity
metadata[2] which creates a machine understandable rep-
resentation of artist description by searching the Internet
for the artist name and performing natural language pro-
cessing on the retrieved pages. Since those results were
naturally noisier (all text on a web page vs. a succinct
set of three paragraphs) we needed various post-crawling
processing tricks to clean up the data. In this experiment
we borrow tools and ideas from the community metadata
crawler but mostly rely on simple information retrieval
techniques.

The reviews were downloaded using a specialized crawler
and added to the Audio+Audience testbed. We chose 600
albums, two reviews for each (AMG and Pitchfork) to

use later in interrater studies and as an agreement mea-
sure. All markup was removed and each review is split
into plaintext sentences. We decompose the reviews into
n-grams (terms of word lengthn), adjective sets (using
a part-of-speech tagger [21]) and noun phrases (using a
lexical chunker [22]). We compute the term frequency of
each term as it occurs in a review i.e. if there were 50 ad-
jectives in a review of an album, andloud appeared five
times,loud’s tf is 0.1.We then compute global document
frequencies (ifloud occurred in 30 of the 600 reviews, its
df would be 0.05).

Each pair{review, term} retrieved is given an asso-
ciated salience weight, which indicates the relative impor-
tance ofterm as associated to thereview. These saliences
are computed using the TF-IDF measure; simplytf/df .
The intuition behind TF-IDF is to reward words that oc-
cur frequently in a topic but not overall. For example, the
term guitars might have a hightf for a rock review but
also has a highdf in general; this downweights it. But
electric banjohas a hightf for particular reviews and a
low df , which causes it to have a high salience weight.
We limit the{review, term} pairs to terms that occur in
at least three reviews so that our machine learning task is
not overwhelmed with negative bias. See Table 1 for ex-
ample top-scoring salience terms. We make use of these
TF-IDF salience scores as a metric to only allow certain
terms to be considered by the machine learning systems
that learn the relationship between terms and audio. We
limit terms by theirdf overall and then limit ‘learnable’
terms by their specific TF-IDF per album review. Previous
work [3] directly used the TF-IDF scores as a regression
target in the learning system; we found this to lessen ac-
curacy as TF-IDF does not have good normalizing metric.

We also parse the explicit ratings of each album in our
collection. Pitchfork rates each record on a (0..10) scale
with decimals (for 100 steps), while AMG uses a star sys-
tem that has 9 distinct granulations.

Our choice of AMG and Pitchfork as our review sources
was not accidental: we selected them as two opposite poles
in the music criticism space. AMG is a heavily edited
metadata source whose reviews are consistently concise,
short and informational. Pitchfork’s content is geared to-
wards a younger audience and more ‘buzz-friendly’ mu-
sic, acting as more of a news site than a review library.
The tone of the latter is very informal and not very consis-
tent. This makes Pitchfork our self-selected ‘worst case
scenario’ for ground truth as our results later show– the
ratings and reviews have little representation in the audio
itself. Likewise, AMG acts as a best case and our systems
have an easier time linking their descriptions and ratings
to music. Nonetheless the two sources serve to comple-
ment each other. There is much to music outside the sig-
nal, and the culture and buzz extracted from Pitchfork’s
reviews could be extracted and represented for other pur-
poses.



Hrvatski noun phrases adjectives Richard Davies noun phrases adjectives Hefner noun phrases adjectives
swarm & dither processed telegraph creatively hefner disenchanted
hrvatksi feedback richard davies unsuccessful the indie rock trio contemptuous
synth patch composed eric matthews and cardinal instrumentalistsuch a distant memory fashionable
baroque symphonies glitch the moles australian an emo band beloved
old-fashioned human emotion psychotic poetic lyrics quieter guitars and pianos puzzling
polyrhythmic pandemonium cheerful the kinks surface terrific some humor nasal
his breaks fascination crazed his most impressive record reflective singer darren hayman ugly

Table 1. Selected top-scoring noun phrase and adjective terms (TFIDF) from three combined record reviews.
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Figure 3. The “Penny” cepstral features for generalized
semantic analysis of audio. Six levels of structure are de-
coded for this song (“A Journey to Reedham” by Square-
pusher), corresponding to different ranges of modulation
frequencies.

5. LISTENING TO THE MUSIC

5.1. The “Penny” Cepstral Features

A number of subproblems arise when attempting to dis-
cover arbitrary lexical relations between words and mu-
sic. The foremost problem is one of scale: any lexical unit
attached to music can agree with the entire artist (long-
term scale), just an album, just a song or piece, or per-
haps a small part of the song. Even lower-level are re-
lations between descriptions and instruments, or filters or
tones (“This sound is dark,” or “these guitars are grating.”)
The problems are further exacerbated when most machine
learning systems treat observations as unordered frames.

We are looking for a model of auditory perception that
attempts to simultaneously capture many levels of struc-
ture within a musical segment, but does so without experi-
menter bias or supervision guidance. A common downfall
of many heuristically musical feature encodings is their
reliance on the observation being “cleanly musical” – for
example, a pitch and beat based feature encoding does not
generalize well to non-tonal music or freeform pieces. We
would also like our learning algorithm to be able to handle
generalized sound.

Our previous work [3] uses a very low-level feature
of audio, the power spectral density (PSD) at 512 points.

Roughly, a PSD is the mean of STFT bins over some pe-
riod of time (we used 4 seconds in our work). While our
results were encouraging, we ran up against problems of
scale in trying to increase our generalization power. As
well, we were not capturing time-dependent information
such as “faster” or “driving.” We also attempted to use
the MPEG-7 time-aware state path representation of audio
proposed in [23] which gave us perceptibly more “musi-
cal” results but still did not allow for varying levels of
musical structure.

Our new feature space, nicknamed “Penny” is based
on the well known Mel-frequency Cepstral Coefficients
(MFCCs) from speech recognition. We take MFCCs at
a 100 Hz sample rate, returning a vector of 13 bins per
audio frame. We then stack successive time samples for
each MFCC bin into 64 point vectors and take a second
Fourier transform on these per-dimension temporal en-
ergy envelopes. We aggregate these results into 6 octave
wide bins to create a “modulation spectrum” showing the
dominant scales of energy variation for each cepstral com-
ponent over a range of 1.5 Hz to 50 Hz. The result is
six matrices (one for each modulation spectrum octave)
each containing 13 bins of cepstral information, sampled
at, for instance, 10 Hz (to give roughly 70% overlap be-
tween successive modulation spectral frames). The first
matrix gives information about slow variations in the cep-
stral magnitudes, indicating things like song structure or
large changes in the piece, and each subsequent matrix
concentrates on higher frequencies of modulation for each
cepstral coefficient. An example set of six matrices from
the Penny analysis can be seen in Figure 3.

6. LEARNING THE LANGUAGE

In this section we discuss the machinery to learn the rela-
tion between the audio features and review text. The ap-
proach we use is related to our previous work, where we
pose the problem as a multi-class classification problem.
In training, each audio feature is associated with some
salience weight of each of the 5,000 possible terms that
our review crawler discovered. Many of these classes are
unimportant (as in the case of terms such as ‘talented’ or
‘cool’– meaningless to the audio domain). We next show
our attempt at solving these sorts of problems using a clas-
sifier technique based on support vector machines [24].



6.1. Regularized Least-Squares Classification

Regularized Least-Squares Classification [25] requires solv-
ing a single system of linear equations after embedding the
data in a kernel space. Recent work [26, 25] has shown
that the accuracy of RLSC is essentially identical to that
of the closely related support vector machines, but at a
fraction of the computational cost. We arrange our au-
dio observations in a kernel-space gram matrixK, where
Kij ≡ Kf (xi, xj) where thekernel functionKf (x1, x2)
is a generalized dot product betweenxi and xj . Thus,
if the generalized dot product is considered a similarity
function, the gram matrix compares each point against ev-
ery other in the example space. We usually use the Gaus-
sian kernel,

Kf (x1, x2) = e−
(|x1−x2|)

2

σ2 (1)

where|x − y| is the conventional Euclidean distance be-
tween two points, andσ is a parameter we keep at 0.5.

Training an RLSC system consists of solving the sys-
tem of linear equations

(K +
I

C
)c = y, (2)

whereK is the kernel matrix,c is a classifier ‘machine,’y
is the truth value, andC is a user-suppliedregularization
constantwhich we keep at 10.1 The crucial property of
RLSC for this task is that if we store the inverse matrix
(K + I

C )−1, then for a new right-hand sidey (i.e. a new
set of truth term values we are trying to predict), we can
compute the new classifierc via a simple matrix multipli-
cation. Thus, RLSC is very well-suited to problems of this
scale with a fixed set of training observations and a large
number of target classes, some of which might be defined
after the initial analysis of the training points.

To compute a set of term classifiers for audio observa-
tions (i.e. given an audio frame, which terms are associ-
ated and with what magnitude?) we form a kernel-space
gram matrix from our Penny features, add the regulariza-
tion constant, and invert. We then multiply the resultant
matrix by a set of ‘term truth vectors’ derived from the
training data. These are vectors with one value for each
of the examples in the training kernel matrix, representing
the salience (from the TF-IDF computation) of that term
to that audio frame.2 This multiplication creates a ‘ma-
chine’ c which can then be applied to the test examples
for evaluation.

7. EXPERIMENTS

We conducted a set of experiments, first testing our feature
extraction and learning algorithms’ capability to general-

1 We arrived at 0.5 forσ and 10 forC after experimenting with the
Penny features’ performance on an artist identification task, a similar
music-IR problem with better ground truth.

2 We treat all audio frames derived from an album the same in this
manner. If a review claims that “The third track is slow and plodding”
this causes every frame of audio derived from that album to be consid-
ered slow and plodding.

ize a review for a new piece of music, then using the pre-
cision of each term model to cull non-musical (unground-
able) phrases and sentences from reviews, and lastly try-
ing to learn the relationship between audio and review rat-
ing. Each task runs up against the problem of ground
truth: our models are trained to predict very subjective
information described only through our own data. We
discuss each experiment below with directions into future
work.

7.1. Learning Results

To generate reviews automatically from audio we must
first learn a model of the audio-to-term relations. We ex-
tract textual features from reviews for noun phrase and
adjective types as above and then compute the Penny fea-
ture space on our set of 600 albums, choosing four songs
at random from each. (We start with MP3 audio and con-
vert to mono and downsample to 11 kHz.) We use the
lowest two modulation frequency bins of the Penny fea-
ture across all cepstra for a feature dimension of 26. We
use a 10 Hz feature framerate that is then downsampled to
1 Hz. We split the albums into testing and training, with
half of the albums in each. Using the RLSC method de-
scribed above we compute the gram matrix on the training
data and then invert, creating a newc for each term in our
review corpus.

7.2. Evaluation of Predicted Terms

To evaluate the models on new albums we compute the
testing gram matrix and check each learnedc against each
audio frame in the test set.

We used two separate evaluation techniques to show
the strength of our term predictions. One metric is to mea-
sure classifier performance with the recall productP (a):
if P (ap) is the overall positive accuracy (i.e. given an
audio frame, the probability that a positive association
to a term is predicted) andP (an) indicates overall nega-
tive accuracy,P (a) is defined asP (ap)P (an). This mea-
sure gives us a tangible feeling for how our term mod-
els are working against the held out test set and is use-
ful for grounded term prediction and the review trimming
experiment below. However, to rigorously evaluate our
term model’s performance in a review generation task, we
note that this value has an undesirable dependence on the
prior probability of each label and rewards term classi-
fiers with a very high naturaldf , often by chance. Instead,
for this task we use a model of relative entropy, using the
Kullback-Leibler (K-L) distance to a random-guess prob-
ability distribution.

We use the K-L distance in a two-class problem de-
scribed by the four trial counts in a confusion matrix:

“funky” “not funky”
funky a b
not funky c d



a indicates the number of frames in which a term classi-
fier positively agrees with the truth value (both classifier
and truth say a frame is ‘funky,’ for example).b indicates
the number of frames in which the term classifier indi-
cates a negative term association but the truth value indi-
cates a positive association (the classifier says a frame is
not ‘funky,’ but truth says it is). The valuec is the amount
of frames the term classifier predicts a positive association
but the truth is negative, and the value ofd is the amount of
frames the term classifier and truth agree to be a negative
association. We wish to maximizea andd as correct clas-
sifications; by contrast, random guessing by the classifier
would give the same ratio of classifier labels regardless of
ground truth i.e.a/b ≈ c/d. With N = a + b + c + d, the
K-L distance between the observed distribution and such
random guessing is:

KL =
a

N
log

(
N a

(a + b) (a + c)

)
+

b

N
log

(
N b

(a + b) (b + d)

)
+

c

N
log

(
N c

(a + c) (c + d)

)
+

d

N
log

(
N d

(b + d) (c + d)

)
(3)

This measures the distance of the classifier away from a
degenerate distribution; we note that it is also the mu-
tual information (in bits, if the logs are taken in base 2)
between the classifier outputs and the ground truth labels
they attempt to predict.

Table 2 gives a selected list of well-performing term
models. Given the difficulty of the task we are encour-
aged by the results. Not only do the results give us term
models for audio, they also give us insight into which
terms and description work better for music understand-
ing. These terms give us high semantic leverage without
experimenter bias: the terms and performance were cho-
sen automatically instead of from a list of genres.

7.3. Automatic review generation

The multiplication of the term modelc against the testing
gram matrix returns a single value indicating that term’s
relevance to each time frame. This can be used in re-
view generation as a confidence metric, perhaps setting a
threshold to only allow high confidence terms. The vector
of term and confidence values for a piece of audio can also
be fed into other similarity and learning tasks, or even a
natural language generation system: one unexplored pos-
sibility for review generation is to borrow fully-formed
sentences from actual reviews that use some amount of
terms predicted by the term models and form coherent
paragraphs of reviews from this generic source data. Work
in language generation and summarization is outside the
scope of this article but the results for the term prediction

adj Term K-L bits np Term K-L bits
aggressive 0.0034 reverb 0.0064
softer 0.0030 the noise 0.0051
synthetic 0.0029 new wave 0.0039
punk 0.0024 elvis costello 0.0036
sleepy 0.0022 the mud 0.0032
funky 0.0020 his guitar 0.0029
noisy 0.0020 guitar bass and drums 0.0027
angular 0.0016 instrumentals 0.0021
acoustic 0.0015 melancholy 0.0020
romantic 0.0014 three chords 0.0019

Table 2. Selected top-performing models of adjective and
noun phrase terms used to predict new reviews of music
with their corresponding bits of information from the K-L
distance measure.

task and the below review trimming task are promising for
these future directions.

One major caveat of our review learning model is its
time insensitivity. Although the feature space embeds time
at different levels, there is no model of intra-song changes
of term description (a loud song getting soft, for example)
and each frame in an album is labeled the same during
training. We are currently working on better models of
time representation in the learning task. Unfortunately,
the ground truth in the task is only at the album level and
we are also considering techniques to learn finer-grained
models from a large set of broad ones.

7.4. Review Regularization

Many problems of non-musical text and opinion or per-
sonal terms get in the way of full review understanding. A
similarity measure trained on the frequencies of terms in a
user-submitted review would likely be tripped up by obvi-
ously biased statements like “This record is awful” or “My
mother loves this album.” We look to the success of our
grounded term models for insights into themusicalityof
description and develop a ‘review trimming’ system that
summarizes reviews and retains only the most descriptive
content. The trimmed reviews can then be fed into fur-
ther textual understanding systems or read directly by the
listener.

To trim a review we create a grounding sum term oper-
ated on a sentences of word lengthn,

g(s) =
∑n

i=0 P (ai)
n

(4)

where a perfectly grounded sentence (in which the predic-
tive qualities of each term on new music has 100% preci-
sion) is 100%. This upper bound is virtually impossible
in a grammatically correct sentence, and we usually see
g(s) of {0.1% .. 10%}. The user sets a threshold and
the system simply removes sentences under the threshold.
See Table 3 for example sentences and theirg(s). We see
that the rate of sentence retrieval (how much of the review
is kept) varies widely between the two review sources;
AMG’s reviews have naturally more musical content. See
Figure 4 for recall rates at different thresholds ofg(s).



Sentence g(s)
The drums that kick in midway are also decidedly more similar to Air’s previous work. 3.170%
But at first, it’s all Beck: a harmonica solo, folky acoustic strumming, Beck’s distinctive, marble-mouthed vocals, and tolls ringing in
the background.

2.257%

But with lines such as, ”We need to use envelope filters/ To say how we feel,” the track is also an oddly beautiful lament. 2.186%
The beat, meanwhile, is cut from the exact same mold as The Virgin Suicides– from the dark, ambling pace all the way down to the
angelic voices coalescing in the background.

1.361%

After listing off his feelings, the male computerized voice receives an abrupt retort from a female computerized voice: ”Well, I really
think you should quit smoking.”

0.584%

I wouldn’t say she was a lost cause, but my girlfriend needed a music doctor like I needed, well, a girlfriend. 0.449%
She’s taken to the Pixies, and I’ve taken to, um, lots of sex. 0.304%
Needless to say, we became well acquainted with the album, which both of us were already fond of to begin with. 0.298%

Table 3. Selected sentences and theirg(s) in a review trimming experiment. From Pitchfork’s review of Air’s “10,000
Hz Legend.”
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Figure 4. Review recall rates at differentg(s) thresholds.

7.5. Rating Regression

Lastly we consider the explicit rating categories provided
in the review to see if they can be related directly to the
audio, or indeed to each other. Our first intuition is that
learning a numerical rating from audio is a fruitless task as
the ratings frequently reflect more information from out-
side the signal than anything observable in the waveforms.
The public’s perception of music will change, and as a re-
sult reviews of a record made only a few months apart
might wildly differ. In Figure 1 we see that correlation of
ratings between AMG and Pitchfork is generally low with
a correlation coefficient ofr = 0.264 (where a random
pairing of ratings gives us a coefficient of0.017).

Although we assume there is no single overall set of
record ratings that would satisfy both communities, we do
believe AMG and Pitchfork represent two distinct sets of
“collective opinion” that might be successfully modeled
one at a time. A user model might indicate which com-
munity they ‘trust’ more, and significance could then be
extracted only from that community. The experiment then
becomes a test to learn each reviewing community’s rat-
ings, and to see if each site maintains consistency in their
scores.

We use our Penny features again computed on frames

of audio derived from the albums in the same manner as
our review learning experiment. We treat the problem as a
multi-dimensional regression model, and we use a support
vector machine classifier to perform the regression. We
use the same album split for testing and training as above,
and train each frame of audio against the rating (scaled to
0..1). We then evaluate the model against the test set and
compute the rating delta averaged over all albums. The
AMG model did well with a correlation coefficient ofr =
0.147; the baseline for this task (randomly permuting the
audio-derived ratings) givesr = 0.019. The Pitchfork
model did not fare as well withr = 0.127 (baseline of
r = 0.001.) Figure 1 shows the scatter plot/histograms
for each experiment; we see that the audio predictions are
mainly bunched around the mean and have a much smaller
variance than the ground truth.

While our results in the rating regression experiment
were less than excellent we consider better community
modeling part of future work. Within a community of
music listeners the correlation of opinions of albums will
be higher and we could identify and tune models to each
community.

8. CONCLUSIONS

We are using reviews and general text descriptions, much
as human listeners do, to move beyond the impoverished
labels of genres and styles which are ill-defined and not
generalizable. Human description is a far richer source of
target classes and clusters than marketing tags which can
have almost no relationship to audio content. By identi-
fying communities of music preference and then learning
the language of music we hope to build scalable models
of music understanding. Review analysis represents one
source of information for such systems, and in this article
we have shown analysis frameworks and results on learn-
ing the crucial relation between review texts and the music
they describe.
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