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Abstract
Subjective similarity between musical pieces and artists is an elusive concept, but one that must be

pursued in support of applications to provide automatic organization of large music collections. In this
paper, we examine both Acoustic and Subjective approaches for calculating similarity between artists,
comparing their performance on a common database of 400 popular artists. Specifically, we evaluate
acoustic techniques based on Mel-frequency cepstral coefficients and an intermediate ‘anchor space’ of
genre classification, and subjective techniques which use data from The All Music Guide, from a survey,
and from playlists and personal collections.

We find the following: (1) Acoustic-based measures, when carefully constructed, can achieve high
agreement with subjective measures. We report significant differences between superficially similar dis-
tribution modeling and comparison techniques. (2) Subjective measures from diverse sources also show
reasonable agreement, with the measure derived from co-occurrence in personal music collections being
the most reliable overall. (3) Our methodology for large-scale multi-site music similarity evaluations is
practical and convenient, yielding directly comparable numbers for different approaches. In particular,
we hope that our information-retrieval-based approach to scoring similarity measures, our paradigm of
sharing common feature representations, and even our particular dataset of features for 400 artists, will
be useful to other researchers.
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1 Introduction

Techniques to automatically determine music similarity have attracted much attention in recent years [8, 7,
12, 10, 1, 6]. Similarity is at the core of the classification and ranking algorithms needed to organize and
recommend music. Such algorithms will be used in future systems to index vast audio repositories, and thus
must rely on automatic analysis.

However, for the researcher or system builder looking to use similarity techniques, it is difficult to decide
which is best suited for the task at hand. Few authors perform comparisons across multiple techniques, not
least because there is no agreed-upon database for the community. Furthermore, even if a common database
were available, it would still be a challenge to establish an associated ground truth, given the intrinsically
subjective nature of music similarity. Our previous work was a first attempt at establishing ground truth
for such a database [6].

In this paper, we describe a multi-site evaluation comparing a number of similarity techniques on a large
common database. We focus on the problem of artist similarity, rather than considering individual songs
or other units. Our aim is threefold. First, we wish to develop and verify good techniques for computing
artist similarity. A basic question is whether similarity measures that are computed from the audio signal
are comparable with measures derived from sources of subjective human opinion such as surveys, experts,
playlists, user collections, and written documents. Acoustic-based measures are attractive because they
can be computed for new or unpublicized music. However, music understanding is an extremely complex
problem, so subjective data sources are likely to uncover relationships not easily discerned by machine.

Second, we continue our work toward developing an evaluation methodology for music similarity research.
We propose a way to use subjective judgments about music similarity mined from the Internet as a collective
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soft ground truth. Similarity matrices derived from different sources will give different results, but the
experimental measure which agrees most often with these varied sources can, in some sense, be claimed as
the best measure.

Finally, we believe our work represents not only one of the largest evaluations of its kind but also one
of the first cross-group music similarity evaluations in which several research groups have evaluated their
systems on the same data. Although this approach is common in other fields, it is less so in our community.
One outcome of this work is a common database which can be shared between groups as well as an evaluation
methodology for using it. Our hope is that this paper inspires other groups to use the same approach and
also to create and contribute their own equivalent databases.

This paper is organized as follows. First we review prior work in music similarity. We then describe
the various algorithms and data sources used in this paper. Next we describe our database and evaluation
methodologies in detail. In Section 6 we discuss our experiments and results. Finally we present conclusions
and suggestions for future directions.

2 Prior Work

Prior work in music similarity has focused on one of three areas: symbolic representations, acoustic properties,
and subjective or ‘cultural’ information. We describe each of these below noting in particular their suitability
for automatic systems.

Many researchers have studied the music similarity problem by analyzing symbolic representations such as
MIDI music data, musical scores, and the like. A related technique is to use pitch-tracking to find a ‘melody
contour’ for each piece of music. String matching techniques are then used to compare the transcriptions
for each song (e.g. [8]). However, techniques based on MIDI or scores are limited to music for which this
data exists in electronic form, since only limited success has been achieved for pitch-tracking of arbitrary
polyphonic music.

Acoustic approaches analyze the music content directly and thus can be applied to any music for which one
has the audio. Blum et al. present an indexing system based on matching features such as pitch, loudness
or Mel-frequency cepstral coefficients (MFCCs) [3]. Foote has designed a music indexing system based
on histograms of MFCC features derived from a discriminatively trained vector quantizer [7]. Tzanetakis
extracts a variety of features representing the spectrum, rhythm and chord changes and concatenates them
into a single vector to determine similarity [12]. Logan [10] and Aucouturier [1] model songs using local
clustering of MFCC features, determining similarity by comparing the models. Berenzweig [2] uses a suite of
pattern classifiers to map MFCCs into an “anchor space”, in which probability models are fit and compared.

With the growth of the Web, techniques based on publicly-available data have emerged [5, 6]. These use
text analysis and collaborative filtering techniques to combine data from many users to determine similarity.
Since they are based on human opinion, these approaches capture many cultural and other intangible factors
that are unlikely to be obtained from audio. The disadvantage of these techniques however is that they
are only applicable to music for which a reasonable amount of reliable Web data is available. For new or
undiscovered artists, an audio-based technique may be more suitable.

3 Acoustic Similarity

To determine similarity based solely on the audio content of the music, we use our previous techniques which
fit a parametric probability model to points in an audio-derived input space [10]. We then compute similarity
using a measure that compares the models for two artists. The results of each measure are summarized in a
similarity matrix, a square matrix where each entry gives the similarity between a particular pair of artists.
The leading diagonal is, by definition, 1, which is the largest value.

The techniques studied are characterized by the features, models and distance measures used.

3.1 Feature Spaces

The feature space should compactly represent the audio, distilling musically important information and
throwing away irrelevant noise. Although many features have been proposed, in this paper we concentrate
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on features derived from Mel-frequency cepstral coefficients (MFCCs). These features have been shown to
give good performance for a variety of audio classification tasks and are favored by a number of groups
working on audio similarity [3, 7, 12, 9, 10, 1, 2].

Mel-cepstra capture the short-time spectral shape, which carries important information about the music’s
instrumentation and its timbres, the quality of a singer’s voice, and production effects. However, as a purely
local feature calculated over a window of tens of milliseconds, they do not capture information about melody,
rhythm or long-term song structure.

We also examine features in an ‘anchor space’ derived from MFCC features. The anchor space technique
is inspired by a folk-wisdom approach to music similarity in which people describe artists by statements such
as, “Jeff Buckley sounds like Van Morrison meets Led Zeppelin, but more folky”. Here, musically-meaningful
categories and well-known anchor artists serve as convenient reference points for describing salient features
of the music. This approach is mirrored in the anchor space technique with classifiers trained to recognize
musically-meaningful categories. Music is “described” in terms of these categories by running the audio
through each classifier, with the outputs forming the activation or likelihood of the category.

For this paper, we used neural networks as anchor model pattern classifiers. Specifically, we trained a 12-
class network to discriminate between 12 genres and two two-class networks to recognize these supplemental
classes: Male/Female (gender of the vocalist), and Lo/Hi fidelity. Further details about the choice of anchors
and the training technique are available in [?]. An important point to note is that the input to the classifiers
is a large vector consisting of 5 frames of MFCC vectors plus deltas. This gives the network some time-
dependent information from which it can learn about rhythm and tempo, at least on the scale of a few
hundred milliseconds.

3.2 Modeling and Comparing Distributions

Because feature vectors are computed from short segments of audio, an entire song induces a cloud of points
in feature space. The cloud can be thought of as samples from a distribution that characterizes the song,
and we can model that distribution using statistical techniques. Extending this idea, we can conceive of a
distribution in feature space that characterizes the entire repertoire of each artist.

We use Gaussian Mixture Models (GMMs) to model these distributions, similar to previous work [10].
Two methods of training the models were used: (1) the standard Expectation Maximization (EM) algorithm
for the GMM and (2) K-means clustering. Although unconventional, the use of K-means to train GMMs
was discovered to be useful to measure song-level similarity in previous work [10].

Having fit models to the data, we calculate similarity by comparing the models. The Kullback-Leibler di-
vergence or relative entropy is the natural way to define distance between probability distributions. However,
for GMMs, no closed form for the KL-divergence is known. We explore several alternatives and approxima-
tions: the “centroid distance” (Euclidean distance between the overall means), the Earth-Mover’s distance
(EMD)[11], and the Asymptotic Likelihood Approximation (ALA) to the KL-divergence between GMMs [13].
Another possibility would be to compute the likelihood of one model given points sampled from the second
[1], but as this is very computationally expensive for large datasets it was not attempted. Computationally,
the centroid distance is the cheapest of our methods and the EMD the most expensive.

4 Subjective similarity measures

Another approach to music similarity is to use sources of human opinion mined from the Web. Although
these methods cannot easily be used on new music because they require observations of humans interacting
with the music, they can uncover subtle relationships that may be difficult to detect from the audio signal.
Subjective similarity measures are also represented in a similarity matrix, where the values in each row give
the relative similarity between every artist and one target.

4.1 Survey

The most straightforward way to gather human similarity judgments is to explicitly ask for it in a survey.
We have previously constructed a website, musicseer.com, to conduct such a survey [6]. We defined a set of
some 400 popular artists (described in section 5.3 below), then presented subjects with a list of 10 artists

3



(a1, ..a10), and a single target artist at, and asked “Which of these artists is most similar to the target
artist?” We interpret each response to mean that the chosen artist ac is more similar to the target artist at
than any of the other artists in the list if those artists are known to the subject, which we infer by seeing if
the subject has ever selected the artists in any context.

Ideally, the survey would provide enough data to derive a full similarity matrix, for example by counting
how many times users selected artist ai being most similar to artist aj . However, even with the 10,000
responses collected, the coverage of our modest artist set is relatively sparse.

4.2 Expert Opinion

Rather than surveying the masses, we can ask a few experts. Several music-related online services contain
music taxonomies and articles containing similarity data. The All Music Guide (www.allmusic.com) is such
a service in which professional editors write brief descriptions of a large number of popular musical artists,
often including a list of similar artists. We extracted the similar artist lists from the All Music Guide for the
same 400 artists in our set, discarding any artists from outside the set, resulting in an average of 5.4 similar
artists per list.

As in [6], we convert these descriptions of the immediate neighborhood of each artist into a similarity
matrix by computing the path length between each artist in the graph where nodes are artists and there is
an edge between two artists if the All Music editors consider them similar. Our construction is symmetric,
since links between artists were treated as nondirectional.

4.3 Playlist Co-occurrence

Another source of human opinion about music similarity is human-authored playlists. We assume that such
playlists contain similar music, which is certainly an oversimplification, but as we will see it proves useful.

The Web is a rich source for such playlists. In particular, we gathered over 29,000 playlists from “The Art
of the Mix” (www.artofthemix.org), a website that serves as a repository and community center for playlist
hobbyists. We would like to compute the playlist co-occurrence matrix, where entry (i, j) represents the joint
probability that artist ai and aj occur in the same playlist. However, this joint probability is influenced by
overall artist popularity which should not effect a similarity measure. Therefore, we compute a normalized
conditional probability matrix instead: Entry (i, j) of the normalized conditional probability matrix C is the
conditional probability p(ai|aj) divided by the prior probability p(ai). Since

cij =
p(ai|aj)
p(ai)

=
p(ai, aj)

p(ai)p(aj)
, (1)

this is an appropriate normalization of the joint probability. Note that the expected log of this measure is
the mutual information I(ai; aj) between artist ai and aj .

Using the 29,000 playlists gathered from Art of the Mix, we constructed a similarity matrix with 51%
coverage for our artist set (i.e. more than half of the matrix cells were nonzero).

4.4 User Collections

Similar to user-authored playlists, individual music collections are another source of music similarity often
available on the Web. Mirroring the ideas that underly collaborative filtering, we assume that artists co-
occurring in someone’s collection are more similar than randomly-chosen artists.

We retrieved user collection data from OpenNap, a popular music sharing service, although we were
careful not download any audio files. After discarding artists not in our data set, we were left with about
400,000 user-to-song relations from about 3,700 user collections. To turn this data into a similarity matrix,
we use the same normalized conditional probability technique as for playlists as described above.

4.5 Webtext

A rich source of information resides in text documents that describe or discuss music. Using techniques from
the Information Retrieval (IR) community, we derive artist similarity measures from documents returned
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from Web searches [14]. The best-performing similarity matrix from that study, derived from bigram phrases,
is used here.

5 Evaluation Methods

In this section, we describe our evaluation methodology. A crucial decision here is the choice of ground
truth. We expect the subjective measures described above to be a good source of ground truth since they
are derived from human choices. In this section we present several ways to use this data to evaluate our
acoustic-based models, although the techniques can be applied to any similarity matrix. The first technique
is a general method by which one can use one similarity matrix as a reference to evaluate any other. We
also present several other techniques that are specific to our survey data.

5.1 Evaluation against a reference similarity matrix

If we can establish one similarity metric as ground truth, how can we calculate the agreement achieved by
other similarity matrices? We use an approach inspired by practice in text information retrieval [4]: Each
matrix row is sorted into decreasing similarity, and treated as the results of a query for the corresponding
target artist. The top N ‘hits’ from the reference matrix define the ground truth, with exponentially-
decaying weights so that the top hit has weight 1, the second hit has weight αr, the next α2

r etc. The
candidate matrix ‘query’ is scored by summing the weights of the hits by another exponentially-decaying
factor, so that a ground-truth hit placed at rank r is scaled by αr−1

c . Thus the score si for row i is

si =

N∑

r=1

αr−1
r αkr−1

c

where kr is the ranking according to the candidate measure of the rth-ranked hit under the ground truth. αc
and αr govern how sensitive the metric is to ordering under the candidate and reference measures respectively.
With N = 10, αr = 0.51/3 and αc = α2

r (the values we used, biased to emphasize when the top few ground-
truth hits appear somewhere near the top of the candidate response), the best possible score of 2.0 is achieved
when the top 10 ground truth hits are returned in the same order by the candidate matrix. Finally, the overall
score for the experimental similarity measure is the average of the normalized row scores S = 1

N

∑N
i si/smax,

where smax is the best possible score. Thus a larger rank agreement score is better, with 1.0 indicating perfect
agreement.

5.2 Evaluating against survey data

The similarity data collected using our Web-based survey can be argued to be a good independent measure of
ground truth artist similarity since users were explicitly asked to indicate similarity. However, the coverage
of the similarity matrix derived from the survey data is only around 5%. Therefore, it is unclear whether
this sparse matrix should be used as a ground truth reference as described in Section 5.1 above. Instead, we
can compare the survey user judgments directly to the similarity metric that we wish to evaluate. That is,
we ask the similarity metric the same questions that we asked the users and compute an average agreement
score.

We used two variants of this idea. The first, “average rank agreement”, determines the average rank
of the artists chosen from the list of 10 presented in the survey according to the experimental metric. For
example, if the experimental metric agrees perfectly with the human subject, then the ranking of the chosen
artist will be 1 in every case, while a random ordering of the artists would produce an average ranking of 5.5.
In practice, the ideal score of 1.0 is not possible because users do not always agree about artist similarity;
therefore, a ceiling exists corresponding to the single, consistent metric that best matches the survey data.
For our data, this was estimated to be 1.98.

The second approach is to view each user judgment as several 3-way sub-judgments that the chosen artist
ac is more similar to the target at than each unchosen artist au in the list. That is

S(ac, at) ≥ S(au, at)
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where S(·, ·) is the similarity metric. The second evaluation score is computed by counting the fraction of
such ordered “triples” for which the experimental metric gives the same ordering.

5.3 Evaluation database

In order to conduct experiments we have compiled a large dataset from audio and Web sources. The dataset
covers 400 artists chosen to have the maximal overlap of the OpenNap and Art of the Mix data. We had
previously purchased audio corresponding to the most popular OpenNap artists and had also used these
artists to construct the survey data. For each artist then, our database contains audio, survey responses,
expert opinions from All Muisc Guide, playlist information, OpenNap collection data and webtext data.

The audio data consists of 8827 songs with an average of 22 songs per artist. We conducted audio
experiments at several sites, enforcing a level of discipline when setting up the data. We shared MFCC
features rather than raw audio, both to save bandwidth and to avoid copyright problems. This had the added
advantage of ensuring both sites started with the same features when conducting experiments. We believe
that this technique of establishing common feature calculation tools, then sharing common feature sets, could
be useful for future cross-group collaborations and should be seriously considered by those proposing audio
music evaluations.

6 Experiments and Results

A number of experiments were conducted to answer the following questions about acoustic- and subjective-
based similarity measures: (1) Which method of modeling and comparing feature distributions is best? (2)
Is anchor space better for measuring similarity than MFCC space? (3) Which subjective similarity measure
provides the best ground truth, that is, which agrees best on average with the other measures?

Although it seems circular to define the best ground truth as the measure which agrees best with the
others, we argue that since the various measures are constructed from such diverse data sets and methods,
any correlation between them should reflect a true underlying consensus among the people who generated
the data. A measure consistent with all these sources must reflect the ‘real’ ground truth.

6.1 Acoustic similarity measures

We first compare the acoustic-based similiarty measures, examining artist models trained on MFCC and
anchor space features. Each model is trained using features calculated from the available audio for that
artist. Our MFCC features are 20-dimensional and are computed using 32ms frames overlapped by 16ms.
The anchor space features are of dimension 14 where each dimension represents the posterior probability of
a pre-learned acoustic class given the observed audio as described in Section 3.1.

In a preliminary experiment, we performed dimensionality reduction on the MFCC space to reduce it to
14 dimensions and compared results with the original 20-dimensional MFCC space. There was no appreciable
difference in results confirming that any difference between the anchor-based and MFCC-based models is
not due to the difference in dimensionality.

Table 1 shows results for similarity measures based on MFCC space. We show the average response rank
and triples agreement score for MFCC features modeled by GMMs trained using standard EM and K-means
modeling, and compared using various between-model distance measures. Results are shown for various
numbers of mixture components, using pooled and non-pooled covariance matrices, and using or ignoring
the first cepstral feature c0.

From this table, we see that the different training techniques for GMMs give comparable performance
and that more mixture components help up to a point. Pooling the data to train the covariance matrices is
useful as has been shown in speech recognition since it allows for more robustly trained covariance param-
eters. Omitting the first cepstral coefficient gives better results, possibly because similarity is more related
to spectral shape than overall signal energy, although this improvement is less pronounced when pooled
covariances are used. The best system is one which uses pooled covariances and ignores c0. Also, since the
K-means models are much cheaper to train than those trained using full EM without incurring an accuracy
loss, they are preferable.
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Non-Pooled Pooled
#mix c0? ALA EMD ALA Cntrd EMD

Ideal - - 1.98/0.00
EM 8 y 4.76/0.42 4.46/0.39 4.72/0.41 4.66/0.41 4.30/0.37

8 - - 4.37/0.37 - - 4.23/0.36
16 - - 4.37/0.37 - - 4.21/0.36

K-mn 8 y - 4.64/0.37 - - 4.30/0.37
8 - 4.70/0.41 4.30/0.37 4.76/0.42 4.37/0.38 4.28/0.37
16 y - 4.75/0.42 - - 4.25/0.36
16 - 4.58/0.40 4.25/0.36 4.75/0.41 4.37/0.38 4.20/0.36
32 - - - 4.73/0.41 4.37/0.38 4.15/0.35
64 - - - 4.73/0.41 4.37/0.38 4.14/0.35

Table 1: Selected survey evaluation metrics for various similarity measures
based on MFCC features. Metrics are: average response rank/triples error
rate. Lower numbers indicate better similarity measures.

MFCC Anchor
#mix EMD ALA

8 4.28/0.37 4.25/0.36
16 4.20/0.36 4.19/0.36
32 4.15/0.35 -

Table 2: Best-in-class comparison
of anchor vs. MFCC-based mea-
sures. Survey evaluation metrics
for MFCC (kmeans, pooled diag
cov, no c0) and anchor (EM, un-
pooled full cov, c0).

A similar table was constructed for anchor-space-based methods, which revealed that full, unpooled
covariance using all 14 dimensions was the best-performing method. Curiously, while the ALA distance
measure performed poorly on MFCC-based models, it performed competitively with EMD on anchor space
models. We are still investigating the cause; perhaps it is because the assumptions behind the asymptotic
likelihood approximation do not hold in MFCC space.

The comparison of the best-performing MFCC and anchor space models is shown in Table 2. We see that
both have similar performance under these metrics, despite the prior information encoded in the anchors.

6.2 Cross-reference evaluation

Now we turn to a comparison of the acoustic and subjective measures. We take the best-performing measures
in each feature space class (MFCC and anchor space) and evaluate them against each of the subjective
measures. At the same time, we evaluate each of the subjective measures against each other. The results
are presented in Table 3. Rows represent similarity measures being evaluated, and the columns give results
treating each of our five subjective similarity metrics as ground truth. Scores are computed as described
in section 5.1. For this scoring method, a random matrix scores 0.07 and the ceiling, representing perfect
agreement with the reference, is 1.0.

Note the very high agreement between playlist and collection-based metrics: One is based on user-
authored playlists, and the other on complete user collections. It is unsurprising that the two agree. The
moderate agreement between the survey and expert measures is also understandable, since in both cases
humans are explicitly judging artist similarity. Finally, note that the performance of the acoustic measures
is quite respectable, particularly when compared to the expert metric.

The mean down each row and column, excluding the self-reference diagonal, are also shown. We consider
the row means to be an overall summary of the experimental metrics, and the column means to be a measure
of how well each measure approaches as ground truth by agreeing with all the data.

7 Conclusions and Future Work

Returning to the three questions posed in the previous section, based on the results just shown, we conclude:
(1) K-means training is comparable to EM training. Using pooled, diagonal covariance matrices is beneficial
for MFCC space. The best model comparison method depends on which feature space is being modeled. (2)
MFCC and anchor space achieve comparable results on the survey data. (3) The measure derived from All
Music Guide expert opinion is the best ground truth.

The work covered by this paper suggests many directions for future research. Although the acoustic
measures achieved respectable performance there is still room for improvement, for instance by using a
richer feature set with a longer temporal perspective. Also, we are excited by the promise of databases and
evaluation methodologies that can be shared across groups, and we will work to develop this idea.
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survey expert playlist collctn webtext mean*
Anchor 0.11 0.16 0.05 0.03 0.04 0.08
MFCC 0.13 0.16 0.06 0.04 0.05 0.09
survey - 0.40 0.11 0.10 0.12 0.18
expert 0.27 - 0.09 0.07 0.07 0.13
playlst 0.19 0.23 - 0.58 0.09 0.27
collctn 0.14 0.16 0.59 - 0.08 0.24

webtext 0.15 0.14 0.07 0.07 - 0.11
mean* 0.17 0.21 0.16 0.15 0.08 0.15

Table 3: Agreement scores for acoustic and subjec-
tive similarity measures with respect to each sub-
jective measure as ground truth. “mean*” is the
mean of the row or column, excluding the shaded
“cheating” diagonal. A random ordering scores
0.07.
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Figure 1: Table 3 plotted as a matrix.
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