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architecture, in conjunction with posterior-level feature stream
combination facilitated WER reductions of over 50%:
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features, bringing all results close together.

The tandem system consists of a neural « Posterior probabilities estimated * The output of the neural networks and post-processing
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* The first Speech In Noisy Environments task (SPINE1) was defined by + MLLR benefits tandem CD systems more than conventional features:
the Naval Research Laboratory (NRL). An evaluation was conducted in — — contextual information may be more variable (but still present) in tandem
August 2000. Training the classifier networks Traini ng features.

« The SPINEL1 task consists of dialogs between speakers in separate « Tandem modeling first trains a discriminant network,
booths engaged in a game of ‘Battleships’. Various pre-recorded o] (o ] __ﬂ ki then separately trains a GMM system on network outputs.
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