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ABSTRACT

Detailed hidden Markov models (HMMs) that capture the con-
straints implicit in a particular sound can be used to estimate ob-
scured or corrupted portions from partial observations, the situ-
ation encountered when trying to identify multiple, overlapping
sounds. However when the complexity and variability of the
sounds are high, as in a particular speaker’s voice, a detailed model
might require several thousand states to cover the full range of dif-
ferent short-term spectra with adequate resolution. To address the
tractability problems of such large models, we break the source
signals into multiple frequency bands, and build separate but cou-
pled HMMs for each band, requiring many fewer states per model.
Modeling each frequency band independently, as in multiband
speech models proposed by the ASR community, will result in
many non-natural full spectral states. To prevent this and to en-
force consistency within and between bands, at any given frame
the state in a particular band is determined by the previous state in
that band and the states in the adjacent bands. Coupling the bands
in this manner results in a grid like model for the full spectrum.
Since exact inference of such a model is intractable, we derive an
efficient approximation based on variational methods. Results in
source separation of combined signals modeled with this approach
outperform the separation obtained by full-band models.

1. INTRODUCTION

Detailed hidden Markov models (HMMs) of audio signals can be
used to separate acoustic mixtures between the sources by search-
ing for combinations of state sequences that give the greatest
agreement with combined observations. Good separation, how-
ever, requires detailed source models that might require several
thousand full spectra states. In [1], HMMs with 8000 states of di-
mension 513 are used, which constitute a total of 8000 x 513 =
41, 040, 000 spectral parameters in the model. Such a large num-
ber of parameters presents many challenges during both learning
and inference. If we break the full spectra representation in differ-
ent synchronized bands (fig. 1 a ), and then use separate HMMs
in each band with many fewer states, we could represent a large
number of full spectral configurations with substantially fewer pa-
rameters. For instance if we divide a 513 dimension full spectrum
into 19 equal bands of dimension 27, we can potentially represent
19%7 = 3.36e + 34 full spectrum states, using only 15,390 spec-
tral parameters. But if we train each band model independently
without any constraints between bands (as in the multiband speech
models used in [2] and [3]), we will obtain for many frames un-
natural combinations of subband states that are not representative
of the speaker. To prevent this and to enforce consistency within

and between bands, we couple adjacent bands in such a way that
the state in each band is determined by the previous states in that
band as well as the two adjacent bands. Coupling the bands in
this manner results in a grid-like model for the full spectrum. Ex-
act inference of such a model is intractable, but we have derived
an efficient approximation based on variational methods [4]. We
build speaker models using several arrangements of the proposed
structure, varying the number of bands and number of spectral co-
efficients per band, using both linear and perceptual (Bark or log-
arithmic) scales. We then use these models to separate mixtures
of signals of the the modeled speakers. Our approach outperforms
in time, efficiency, and separation quality, the performance in the
same task of full-spectrum HMMs trained on the same speakers.
The results also show the improvement in the separation results
obtained by the band coupling, when compared to the results ob-
tained with band models trained independently.

2. INFERENCE AND LEARNING IN THE MULTIBAND
MODEL

A Hidden Markov Model is represented as a graphical model in
fig. 2a, where the hidden variables S = (s1,s2,.., ST) repre-
sent the unknown states of the model at any given frame, and the
observed variables X = (z1,x2, ..., zT) represent the observed
feature vectors. The joint probability of the model is given by
P(X,8) =TI, p(se | se-1)p(ae | 50).

Inference and learning is performed by the EM algorithm
which reaches the local maximum of the log-likelihood of the
model, L(X,0), by iteratively optimizing a bound on the log-
likelihood £(X, @, #) with respect to an auxiliary function Q(.S)
and the model’s parameters 6 (the transition matrix, p; and C, for
p(ze | st = j) = N(z¢, pj, C) ). The bound in the log-likelihood
L(X,Q,0) is defined through the Jensen Inequality and for an
HMM has the form:
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It is well known that if Q(S) is found without any re-
strictions, the value that maximizes L£(X,Q,0) such that

L(X,Q,0) = L(X,0) is Q(S) = P(S | X) the poste-
rior of the hidden variables given the observations, which is
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Fig. 2. a) Standard HMM and b) Factorial HMM.

found for equations with the form of eqn. (2), by the well-
known forward/backward algorithm[5]. The proposed multi-
band model (fig. 1b), has in turn the hidden variables S =
(81,85, .., 54, 81,53, .., 8%, .65 sX .. s%) and the observation
variables X = (zi,z3,., 2%, 1,23, .., 2%, .af 2k, . %)
(not shown on the figure) where s; and x;, represent the state
and the observation at time ¢ at frequency band k.
The joint probability for this model is given by:

P(S,X) =[] p(si | si1, 520,50 [ [ par | s8) 3
k,t k,t

Its parameters are defined for each band k by the transition
probabilities p(sf | sf_1, sF=}, sF*1), the means 1 and variance
C, for p(zf | sF = j) = J\/'(xf,,uf,ck). For this model the

bound in the log-likelihood is given by:

L£(Q,0) =D Q(S) Y (log(p(st | st-1,s:-1,5:71))
S

k,t

+log(p(at | s7)) = D Q(S)log(Q(S)) )
S

Optimizing eqn. (4) with respect to Q(S) with § =
(81,83, .., 5%, 57,55, .., 55, .50, 55 .., %) is intractable due to
the large variable space. However, if we restrict the auxiliary
function to be of the form Q(S) = [[,(Q(S*)) where S* =
(s%, sk, .., sk) are the hidden variables in the HMM for the k¢,
band, the bound in the log-likelihood with this particular Q(S)
becomes:

£(Q.0) =33 Q(s") (tog(p(st | st -, 51, s51)
k Skt

+log(p(at | ) = D Q(SMIog(Q(SY) )

Sk .k

Since we are restricting the form that Q(.S) can take, we can
not perform any more exact inference, since P(S | X) could

never have the restricted form. However we could still do vari-
ational inference by optimizing eqn. (5) with respect to the Q(S k )
factors[6], which are now called variational parameters.

The restricted auxiliary function actually decouples the hidden
variables between different subband HMMs in the sense that we
can optimize the set of variational parameters Q(S*) for the k"
band without optimizing the variational parameters for the other
bands, treating them in fact as constant or “observed”. We will
see below, however, that the coupling between bands is actually
not lost. So for any given band (k) we can express £(Q,0) as
a the summation of two elements, £ (Q,6) which contains all
the variational and model parameters correspondent to the band &,
and £1(Q,0) which does not contains any parameters for that
band, and with £(Q, 6) = L1(Q,0) + L+(Q, 6). Optimizing the
L(Q,0) with respect to the parameters for band k is equivalent
to optimizing Lx(Q, 8) with respect of the same parameters. Ap-
proximating p(sf | sf_1,sF 71, s 1) by
p(st | sf_q, P70 p(sk | sf_q, s, we find that £(Q,6)
takes the form:

Li(Q,0) => > Q(S*)(log(p(st | st-1))
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where eqns. (7) and (8) are called the expected log-transition prob-
ability and the expected log-state likelihood given the “observed”
adjacent bands. (For the full mathematical derivation please re-
fer to [7].) In these terms is evident the actual coupling be-
tween adjacent bands models which prevents the formation of un-
natural combinations of subband states by enforcing consistency



within and between bands. The former term can be seen as the
“weighted” log-transition matrix for the HMM for the k** band.
While the latter is more similar to the observation log-likelihood
term (log(p(zf | sF))), here the likelihood of a given state s¥
on the k** band does not depend on the “observed” feature vec-
tor, but rather in the “observed” dynamic behavior on the adjacent
subbands on the same and previous frames.

Equation (6) resembles eqn. (2), the bound in the log-
likelihood for a single HMM, but with the addition of the term in
the bracket, which as we have mentioned is the state log-likelihood
given the “observed” adjacent bands. Then we can also apply the
forward/backward algorithm, using eqn. (7) as the transition ma-
trix and adding eqn. (8) to the observation likelihood. The param-
eters at each band are learned using standard M-Step [7]. Summa-
rizing, the bands are coupled through equations (7) and (8), and
then each band HMM is trained as in the case of a single isolated
HMM.

3. TRAINING OF THE MULTIBAND MODEL

Each band’s HMM is trained as a single HMM once eqns. (7) and
(8) have been calculated. To calculate these terms, however, we
need to know or have ‘observed’ the variational parameters of the
adjacent bands. For instance if we want to train the HMM of the
darkest nodes in fig. 1b, we need to know the variational param-
eters for the lightly-shaded nodes. Once we finish the training of
the dark band, we proceed up the model to train the next band up,
using the variational parameters of the just-trained band. We con-
tinue this procedure until we reach the highest band; a complete
pass from the lowest to the highest is called an iteration of the
multiband model. For the first iteration, all the variational param-
eters are uniformly initialized, meaning that the the upper band
(only) in each HMM training in the first iteration is being very
poorly approximated n as uniform. We continue this process un-
til the bound stops increasing. For pseudo code for this procedure
refer to ([7]).

4. SOURCE SEPARATION USING DETAILED
LOG-SPECTRA MODELS

Detailed log-spectral models of speech can be used to separate
combined speech signals using the “refiltering” and “log-max”
technique introduced in [1]. The idea behind this approach is
that when two clean speech signals are mixed additively in the
time domain, the log-spectrogram of the mixture is almost ex-
actly the maximum of the individual log-spectrograms [8], i.e.
given speech signals z1(¢) and z2(t) with log-spectra X and X2
respectively, and with z4(¢t) = z1(t) + x2(t) with log-spectrum
Xs &~ M-X1+4+ (1 — M) - X2 where M comes from the element-
wise maximum-indicator operator applied to the individual log
spectrograms, M = maxind(X1, X2), where

. 1 whena >b
mazind(a,b) = 0 otherwise ©

Refiltering recovery consists of estimating a mask M., from
the composed log-spectrogram, recovering the individual sources
from a composed audio signal by assigning a weight to each time-
frequency bin of the composed signal spectrogram, i.e. X, =
Mot - X5 and Xo = (1 — Mest) - Xs.

In [1], 8000 states HMMs were built for two different speak-
ers. To analyze an unseen composed signal, the speaker models
were composed into a factorial HMM (fig. 2b), in which com-
posed observations are formed from a combination of the individ-
ual states of each HMM. The emission probabilities are given by:

p(l‘t =Yy | Stl = 7:,8? :J) :N<x7mam(ﬂiauf)7c) (10)

where s% is the state of HMM 1, sf is the state of HMM 2, x is the
composed observation, and maz (-, -) represents an element-wise-
maximum operator.

Ideally, refiltering would be done by finding the factorial
Viterbi path for the composed signals, which consists at each frame
in the pair of states (one for each chain) that maximize the likeli-
hood of the entire composed sequence. Given the pair of states
st = i,s2 = j from the factorial Viterbi path at time frame
t, the mask m; is found by applying the bitwise maximum op-
erator to the means of the Viterbi states, m: = maxz (i, i15).
In practice, the true Viterbi path cannot be calculated due to the
combinatorial explosion in the size of the factorial state space
N?% = 8000% = 6.4 x 107. In [1], a limited set of factorial states
with the highest observation likelihood at each time frame are used
to perform Viterbi decoding on a limited grid. This approach does
not guarantee that the solution found has the highest likelihood
since it has a strong bias towards the observation probability.

We built multiband models for two speakers and combined
them into a factorial model to explain new composed signals. The
procedure is similar to the one discussed above, but using a full set
of factorial emission probabilities (10) since in each band our state
space is considerable smaller than when using a single ‘full spec-
trum’ HMM. This makes the combinatorial problem less daunt-
ing, and variational inference in the complete factorial state space
can be performed. Refiltering is done by estimating the mask for
band k as the maximum-indicator between the ‘expectations’ of
the state means for each chain under the variational parameters
taken as posteriors, i.e.:

MY = mazind (z QS — 1) 3 Qs — ) -ﬂ)
J J
(11)

The variational parameters are obtained in a iterative process that
may involve a few passes over the entire multiband model.

5. EXPERIMENTS AND RESULTS

Models for two books-on-tape speakers were trained using
150,000 frames of speech, or about 40 minutes each. We built
full-spectral HMMs with 1000 states to compare with multiband
models with varying numbers of bands and coefficients per band.
Subband models train much faster: Three EM iterations of the full-
spectral HMMs for each speaker took over two weeks using the
HTK software tools, whereas 20 iterations of the multiband model
took in average 3 to 4 days using Matlab. The speaker models were
tested in a refiltering source-separation task, where test samples of
the two speakers were added together, and state sequences for each
speaker were estimated via factorial HMM inference.

We quantify the degree of separation obtained by a given esti-
mated mask, Mes¢, by measuring the Signal-to-Noise Ratio (SNR)
of the resultant “separated” signals. The SNR for a given speaker
measures the ratio of the content of the desired speaker versus the
other speaker on the desired speaker “separated” output. When test
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coupled multiband systems, where the first bar in each pair corresponds to the independent model and the second to the proposed coupled

model.

signals are constructed by artificially summing individual source
signals, it is possible to identify the portions of the final filtered
mixture that properly originate in each source by passing the in-
dividual sources through the same time-varying filter. Using these
separately-filtered components, the signal-to-noise (SNR) ratio is
obtained by treating each reconstruction as a corrupt version of the
original target signal, i.e. for speaker 1:

Yo | X1
Dotk Mest - [ X512+ (1 = Mest) - [XT[?
12)
The noise denominator is obtained by direct subtraction of the
original source from the refiltered output. This penalizes both
inclusion of energy from the interference as well as deletion of
target energy. X7 can be either X (the log-spectra of z1(t)),
or Moyt - Xs, the log-spectra obtained from the optimal mask
Mope = mazind(X1, X2). We have observed that SNRs com-
puted with the latter have a higher correlation with the perceptual
quality of the separated signals. (Since M,p; is the best mask we
can achieve under the model, in the sense of giving the best SNR
against the original target, it also measures how close a given so-
lution is to the best possible solution.)

Fig. 3a depicts SINR; values for 19 bands with 27 coeffi-
cients per band and 30 states per band, the vertical axis corre-
sponds to the obtained SNR in dB, while the horizontal axis cor-
responds to the number of iterations performed on the factorial
multiband model. There are three traces, corresponding to the
SNR values obtained using speaker models trained for 5 (dashed
line), 10 (dotted-dashed line), or 20 (solid line) iterations. We ob-
tained a higher SNR when using parameters trained with more
iterations, showing the benefits of the coupling. Fig. 3b shows
four pairs of bars, each pair corresponds to a multiband model
with a different structure (8 bands/64 coefficients, 19/27, 27/19
and 19 Bark-spaced bands with between 6 and 128 bins). The
first bar in each couple corresponds to the SNR obtained when the
bands are trained independently, the second band corresponds to
the SNR obtained by the proposed model. The higher horizon-
tal black line (around 14 dB) corresponds to the SNR obtained by
the 1000-state full-spectrum model with a 100-state limited Viterbi
grid. The lower line (1.2 dB) show the SNR calculated for the
original mixture. We note that training the coupled models gives a
consistent SNR improvement of around 10 dB in all models, with
fewer, larger subbands (e.g. 8 bands of 64 bins) performing best.
The Bark-scaled bands, which more closely reflect the perceptual
information density of speech, are disappointing, but this may in-
dicate the limited perceptual relevance of our SNR performance
metric.

SNRi1 =10 -logio

6. SUMMARY AND CONCLUSION

We have presented a new grid-like multiband model for acous-
tic modeling that enforces consistency between bands by coupling
adjacent bands. The multiband models are capable of modeling
rich and highly variable acoustic signals such as a person’s speech
with a relatively small number of spectral parameters. At the same
time, the coupling between subbands preserves accuracy and con-
sistency in the resulting complete spectral representations. The
multiband model not only outperforms its full-spectral counterpart
on the degree of separation achieved, but is also several orders
of magnitude faster. We obtained interesting results for different
structures of the multiband model.
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