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ABSTRACT

Combinirg anumbe of diverse featue streans has provento bea
velry flexible and beneficidtechnique in speeb recognition In the
conext of hybrid connectionist-HNM recognition featue streams
can be combinel at severd points In this work, we compae two
forms of combination at the input to the acoustt model| by con-
catenatig the featue streans into a single vecta (featue com-
bination or FC), and at the outpu of the acoustt mode| by av-
eragirg the logs of the estimate posteria probabilities of each
subwod unit (posterie combinatio or PC). Basel on four fea-
ture streans with varying degrees of mutud dependencewe find
tha the beg combinatia strakgy is a combinatia of featue and
posterio combinationwith streans that are more independentas
measurd by an approximatia to conditiona mutud information,
showing more beneft from posteri@ combination.

1. INTRODUCTION

As the first stage in any speeb recognition system the features
are critical to the overal systen performance The ided features
refled the ‘important information in the speeab signd (e.g the
phonetc variation) in a consistehand well-distinguishe fashion,
while minimizing or eliminatirg ‘irrelevant information (suc as
speakeidentity or backgroud conditions) Thes goak are very
difficult to achieve, and consequenyl a wide variely features has
been proposd ard employed ead with differert strengtts and
weaknesses.

Strean combinatio is a technige which seels to capitalize
upan the practica difference betwea featue streans by using
severd at once Thebast argumert istha if the recognitian errors
of systens using the individud streans occu at differert points,
ther is at leag a chane tha a combinal systen will be able to
correc sone of the errors by referene to the othe streamsAn
extreme exampk of thisapproadb is the Rover systen which com-
bines final hypothese of complee speeb recognitil systems,
ard which was ableto show 30% relatve errar rate reductiors over
the bed systen in arecert NIST BroadcasNews evaluatian [1].

A range of othe approachewas describé in [2]. In this pa-
per, we compae the two simples of these Concatenatig the fea-
ture vectoss from differert extraction algorithns to creat asingle,
highe-dimensiona spae for modeling is the defaut approach,
here termal Featue Combinatia (FC), foll owing the terminology
of [3]. Thisiscontrastd with combinirg the streans at the outputs
of theacoustt models In the hybrid connectionist-hiddeMarkov
modd speeb recognition approab [4], the acoustt modé is a
neurd netwok estimatirg posterio probabilities acros a com-
plete se of conext-independenphones Thes posterios can be
combinel in severd ways but simple averagirg of the log prob-
abilities from the differert estimatos for ead phore has consis-
tently performel as well as or bette than more compkx schemes

[5, 6, 7, 8]; we will cal this Posterio Combinatian (PC). Poste-
rior combinatim is close to the formally corred¢ approadt if the
featue streans are conditionally independengiven the phone but
its main suppot comes from empirical nat theoretical considera-
tions.

Aninterpretatio of the succesof PCisprovidedin[5]. When
confrontel with dat outsice its doman of expertise ead model
may terd to emit relatvely ‘flat’ (high entropy posteriorswhich
will have aneutrd impad on therelatve probabilities of othe dis-
tributions with which they are averaged Thus if one posterior
estimato is relaively confiden of the corred classificatio (low
entropy) and the remainde are equvocal the confider estimate
will dominate This, however, would be true of mog if not all sim-
ple combinatia rules the pre-eminene of log-doman averaging
remairs somethiig of amystey to us.

1.1 Feature combination versus probability combination

In previous experiments PC has been shown to outperfom FC
for combining distina featue streams This can be explainad by
the following argument Conside two featue streans with dif-
ferert properties and ‘domairs of expertise! The training se will
presumabyt contan a numbe of conditiors in which ead of the
streansis providing usefd information when the othessare not. A
classifig trained on the combinel featue spae of FC will learn
abou those specift case representa in the training set but will
have difficulty generalizig to other situatiorswhere one strean is
giving ‘good’ information but the othe streans are in pathologi-
cd conditiors differert from those representgin the training set.
In PC, by contrast the separa modek leam the specift regions
of ‘good information for ead stream individually; at the point of
combinationthe fact tha the differert states of the featue streams
may not have been obseved in training is no longe relevart — the
log probabilities can be averagel togethe regardless.

Thus the multiple, smalle featue space of PC achieve afac-
toring of the possibé signd conditiors by the specialtis of each
classifie (ard can generalieto previously-unsea conjunctiors of
thosefactors) whereathe combinel spae of FC requirestraining
on an enumeratia of all possibé factar combinations.

Thisadvantag of PC mug havelimits, however, for if takento
extremes we might be tempteal to subdvide the featuevecta from
a single strean betwea multiple classifiers In fact, thisis simi-
lar to the approab adoptel in multi-bard recognition [9], which,
while advantageos in certan situations is often inferior to full-
bard recognitian on well-matchel tests In particula, as the infor-
matian containel in eat subban isreducedleadirg to classifiers
which are rarely able to make unequvocd decisions the subse-
quert PC stage has more ard more difficulty recovering the latent
information distributed amory the classifie outpus — even when
they are combinal by a second trained classifie rathe than by
simple averagirg [7]. We can imagire tha if particula featue di-



mensions are significantly co-dependent given the particular phoneby backpropagation, using a minimum-cross-entropy criterion, to
class, it will be desirable to build a classifier that can model their hard targets derived from a previous forced-alignment of the train-
joint distributions via FC. It is only when the feature streams are ing material. A pilot experiment showed that doubling the hidden
relatively independent that PC is the more appropriate choice. layer size for a two-stream net improved performance by only 3%
This paper describes a set of experiments designed to investi+elative, indicating that this is not a serious limit to system per-
gate and verify these intuitions. In particular, we wanted to see if formance. The final posterior estimates were converted into word
we could come up with a practical way to predict the relative mer- hypotheses by the standard hidden Markov model decoder we use
its of FC and PC for a pair of feature streams by looking at some [12].
measure of the statistical dependence between the streams. The
next set_:tion describes the experimental setup we used_,_in terms, 3 giream dependence
of the different feature streams and the speech recognition task.
Section 3 presents the results of these experiments, which we thelfo measure the statistical dependence between feature streams,
discuss in the conclusion. we draw upon [13], which investigated the selection of individ-
ual feature elements based on mutual information criteria. The
argument in the introduction implied that FC should be prefer-
able to PC when elements in the different streams have structure
in their joint distributions relevant to the classification problem.
This corresponds to a relatively large conditional mutual informa-

To explore the differences between FC and PC, we experimentedion (CMI) between the streams — that is, given the correct class,
with four feature streams, organized as two relatively independentknowledge of one stream reduces our ignorance of another stream
pairs of more closely related streams. The first pair was stan-PY & certain number of bits; equivalently, itimposes constraints on
dard 12th-order PLP cepstral coefficients (first stream, “plp12”, the 'dIS.'[I’Ib.UtIOI’] of the second stream. By contrast, the conditional
13 elements per feature vector) and their deltas (second streamStatistical independence between streams suggested by the averag-
“dplp12”, 13 elements). The second pair consisted of the novel INg of log posteriors in PC would correspond to an inter-stream
modulation-filtered spectrogram features (MSG) recently devel- conditional mutual information of zero.

oped in our group [10], which also split into two banks, covering Estimating the conditional mutual information is typically
roughly the 0-8 Hz modulation frequencies (stream 3, “msg3a”) both complex and data-intensive. Here we make a series of ap-
and 8-16 Hz (stream 4, “msg3b”). plp12 and dplp12 are most of- Proximations: Firstly, we discard conditioning and assume that
ten modeled by a single classifier i.e. combined with FC, as are CMI will vary as the unconditioned mutual information (MI) be-

msg3a and msg3b. The two feature stream pairs have previouslyjween the streams. Secondly, we approximate the Ml between two
been combined with PC [5, 10]. streams (vectors) by taking the average, for each element within

A single classifier may be trained on any number of concate- & Stream, of the maximum MI across all elements in the second

nated streams, corresponding to what we are terming FC. Anystream. (This makes certain assumptions about the M_I withip
number of such classifiers can then have their outputs combinedStream elements, so we decorrelate the msg features with a dis-
via PC to form a complete system. Four streams gives us 15 pOS_cre’[e cosine transform in an effort to balance the two stream-pairs
sible FC classifiers (4 with one input stream, 6 with two, 4 with N this regard. Also, because this measure is asymmetric, we take
three and one with all four), which then offer 2%°-1 or 32767 the average of the measure in both directions.) Having reduced
possible PC configurations. However, most of these use the saméhe problem to the calculation of MI between pairs of feature el-
feature stream multiple times, grossly violating our independence @Mments, we again follow [13] in building 5-component Gaussian
assumptions. If we limit ourselves to systems in which each streamMixture models of the joint distribution between the elements, then
is used exactly once, and impose the further condition that all clas-€stimating the Ml of this distribution numerically.

sifiers in a given system should have the same number of input

streams, there are just five configurations to consider: pure FC, 3. RESULTS

where all streams go into a single classifier; pure PC, combining

four separate per-stream classifiers; and the three possible arrangerhe Aurora task defines 28 different test conditions, varying noise

ments of streams to build a pair of two-stream FC classifiers which type and SNR. To provide a single figure-of-merit for each system,
are then combined by PC. These five alternatives for Combining theWe calculate the ratio of the word error rate (WER) of the test

2. EXPERIMENTAL SETUP

2.1. Feature streams

four streams are the main focus of the results section. system to the standard HTK baseline provided with Aurora, and
average this across all conditions to get a mean improvement on
2.2. Task and recognizer the baseline. These are the figures presented in table 1.

The first two blocks in table 1 correspond to the pairs of re-
The experiments were conducted on the Aurora noisy digits tasklated basic feature streams. Individual feature streams all perform
[11]. This consists of continuous digit strings mixed with four a little worse than the baseline, varying from 5.9% more errors for
kinds of background noise at several different signal-to-noise ra- the direct plp12 features to a 41.6% error increase for the msg3b
tios (SNRs). Both the training and test data consist of a mix of bank. (The baseline employs deltas and double deltas, so it is for-
noise conditions, making this a ‘matched multicondition’ task. givable for these individual streams to do worse). When we com-
In every case, the classifiers were multilayer perceptron neuralbine within these basic pairs by FC (denoteth the table) — i.e.
networks, trained with 480 hidden units and 24 output units for the the way they are most commonly used — we see dramatic improve-
24 phones used in the vocabulary. Each network took a contextments; there is a 15% improvement over the better of the two plp
window of nine consecutive feature vectors to give input layers streams, and a 25% improvement for the msg streams. Combin-
varying between 117 and 486 units. The networks were traineding the pairs by PC instead (denoted @Y is far worse in both



| Feature combination | Parametery Baseline %)| plpl2 | dplpl2 | msg3a| msg3b
p|p12 68k 105.9 p|p12 - 0.04 0.21 0.10
dplp12 (deltas) 68k 125.6 dplp12 - 0.08 | 0.06
plp12@ dplp12 136k 97.6 msg3a - 0.22
plp120 dplp12 124k 89.6 msg3b -
msg3a (0-8 Hz) 73k 112.7
msg3b (8-16 Hz) 73k 141.6 . .
msg3a® msg3b 145k 101.1 'I_'able 2: Average maximum elemer_n-tc_)-element _mu_tual_lnforma-
msg3a msg3b 133k 858 tlon_(MI) between feature streams (in bits), as an indication of the
pip12@ msg3a 141K 883 statistical dependence of the streams. Independent streams would
plp12& msg3b 141k 86.3 have an Ml of zero.
dplp12® msg3a 141k 89.7
S%E%iismgsgagb Eét ggj gnd on thfe two msg-based streams..At.6.3% of baseline errors, this
plp120 msg3b 129K 78.1 isa Iar_ge |mprovement onany qfthg individual streams or common
dplp120 msg3a 129K 875 FC pairs. Itis also a 15% relative improvement over the pL_Jre-FC
dplp126 msg3b 129k 826 four-stream system, which forms a kl_no_l of bgsellne for using all
pIp12@ dplp126 msg3a® msg3b 581K 76.5 four stre_ams. This result at least is inline with our expectations
plp120 dplp12e msg3a msg3b 245K 741 f[hat FC is most useful for related streams, and PC better for more
plp12o msg3bd dplpl2o msg3a | 257k 70.1 independent streams. _ -
plp120 msg3ad dplpl2o msg3b 257k 68.1 To check that our assumptions gbout the relatlvg mdependence
plp120 dplp126 msg3a msg3b 257k 63.0 of the streams are correct, table 2 gives the mutual information val-

ues calculated as described above pairwise for each stream. These
results are not quite as expected: the plp deltas (dplp12) share

Table 1: Parameter counts and average per-condition ratios ofather little mutual information with any of the other streams, and
word error rates (WERS) to the baseline system for different com- " fact the smallest M is betweer} the plp deltas anq the}r direct
binations of the four feature streams plp12, dplpl2, msg3a andfeatures, even though a context window of 5 successive direct fea-
msg3b. All features were normalized within each utterance. In the {U7€S would completely determine the deltas — the mutual infor-
feature descriptions; indicates streams combined by FC, and mation, however, compares only simultaneous frames, probably a

o : ; : key weakness in this measure. The 0-8Hz MSG bank (msg3a) is
dicat t bined by Rind tightly thamp.
ndicates sysiems combined by ncs more tightly thap comparatively highly informative with both the direct plp12 fea-

tures and the second msg3b bank. MI between plp12 and msg3b

I . . is intermediate.
cases, yielding system pe_rfo'f”?a“"es approximately m_|dway be- Comparing these MI values with the performance of the 2-
tween the better o'f the two |nd|v_|du_a_l streams and FC. (Since t.hesestream systems in table 1, we fail to see the predicted correlation
PC systems consist of the two individual nets, they have premselybetween large Mis and the advantage of FC. While the largest sin-
double the parameter count of the individual stream systems. FC )

uses slightly fewer parameters because the two streams share the le MI between msg3a and msg3b corresponds to the pair show-
; gntly P g the biggest gain of FC over PC, the next most informative pair,
hidden-to-output layer.)

. Ip12 and 3a, showed tkenallestgain i itching to FC.
The next two blocks show the four remaining 2-stream sys- pp-e anc Msg=a, shiowec taema’iesigain in switching to

ible with th . bined b hen b Other results are similarly scattered.
E(r:n S\NpeoflzlteEt)hvg’lttthteseesgét;eztrzfﬁsnr\?vth?ghmallmeierfo?/mp\?ert ?mi-y The four-stream combination systems in table 1 are more
Iarl&/ are much better than eit);]er thelwithin-plp Ic))r within-mgg PC closely in line with our original hypothesis: The pest-performing
' P . : ; ? system is the one that uses FC for the most highly-informative
systems. This is in line with our experience that, in choosing a

L A . , stream pair, msg3amsg3b, followed by the system including FC
Eigond stream for PC, it is better to choose the ‘most different for the next highest MI pair, plp1@ msg3a. However, the second

H . . f the diff b FC and pairings in each of these systems corresponds to very low Ml val-
riowever, our interpretation of the difference between and es: it's not clear how we would expect this to affect the overall
PC is confounded by the results for the crossed FC systems, which,

i ) . stem.
outperform PC in every case; the two systems involving msg3a y
are marginally better, with the two msg3b systems showing 10%

relative improvements. At 78.1% of the baseline WER, the FC 4. DISCUSSION
combination of plp12 and msg3b is particularly good, even though
msg3b was by far the worst performing individual stream. Our basic thesis, that FC should be preferable to PC for streams

The final block presents the five alternative structures for com- that have higher mutual dependence, is only weakly supported by
bining all four streams, as described in the previous section. Theseour results. In part this may reflect shortcomings of our method for
are ordered by overall performance, with pure PC bringing up the evaluating stream dependence via the average maximum elemen-
rear, barely better than the best 2-stream system. Pure FC, in whichwise estimated mutual information. But even if we had access
all four streams are fed to a single network, is a slight improve- to the ‘true’ conditional mutual information values between each
ment. The best schemes, however, combine pairs of streams wittstream, that still wouldn’t be all the relevant information for pre-
FC and the resulting posterior estimates with PC, with the very dicting the best combination strategies: there is also the influence
best configuration being to use FC on the two plp-based streamsof the underlying utility of the stream to the basic speech recog-



nition task. For instance, if a new feature stream has a relatively information. This work was supported by the European Union
high CMI with some baseline stream, but is also a rather weak under the ESPRIT LTR project Respite (28149).

basis for phone classification (perhaps because it is a useful pre-
dictor of the phonetically irrelevant information remaining in the
baseline stream), we may well end luprting the performance of

our system by introducing the new stream in combination.

This paper has focussed on the question of how to combine [1]
feature streams. The wider questionndfetherit will be advanta-
geous to make a combination, which of several streams should
be added, has not been addressed, although our results do pro-
vide some relevant information. As shown by the well-performing 2]
plpl2¢ msg3b system, it is not necessarily the best-performing or
most (or least) mutually-informative streams that make the best
combinations. What matters, rather, is the complementarity of
the conditions under which each stream performs better or worse, (3
something that is hard to measure with such global statistics.

It seems important to make some discussion of the statistical
significance of the results presented; for instance, is the baseline [4]
WER ratio of the four-stream, pure-FC system at 76.5% signif-
icantly worse than the 74.1% achieved by the pure-PC variant?
For individual test conditions, statistical significance can be eval- |5
uated (for instance, in comparison to a simple binomial model of
word errors). However, because the baseline error rate varies enor-
mously over the 28 test conditions, this test cannot be applied to
the aggregate baseline ratio. As a substitute, we report our infor- (6]
mal observation that repeated versions of supposedly equivalent
tests (for instance, with slightly different network configurations
or starting conditions) yielded results that agreed within 3-5% ab-
solute in the baseline ratio figure; differences within this range are [7]
probably not significant.

5. CONCLUSIONS (8]

We have compared two techniques for frame-level combination of
feature streams, either by feeding the streams into a single neural- [9]
network classifier (FC, feature combination), or by using separate
classifiers for each stream then averaging the per-class log poste-
rior probability estimates they emit (posterior combination or PC).
By investigating a number of alternative combinations of four fea-
ture streams, we demonstrated that different combination strate-[ ]
gies can have quite varied success, with the optimal combination
dependent on the particular properties of the streams concerned.
We argued that PC was most appropriate for streams that are sta-
tistically independent (given the class), whereas highly correlated [11]
stream should be more advantageously combined with FC. We at-
tempted to measure this dependence with an approximation to the
conditional mutual information between streams, but the observed|1 )
pattern of results was only partially explained by these figures.
Combining multiple feature streams is clearly highly benefi-
cial, giving relative WER reductions of 25-40% in our task. Al-
though we have presented some explanation and interpretation o
this benefit, the practical questions of when and how to combine
feature streams remain predominantly empirical and in need of
considerable further investigation.

[13]
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