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Abstract
In tandem acoustic modeling, signal features are first processed
by a discriminantly-trained neural network, then the outputs of
this network are treated as the feature inputs to a conventional
distribution-modeling Gaussian-mixture model (GMM) speech
recognizer. This arrangement achieves relative error rate reduc-
tions of 30% or more on the Aurora task, as well as support-
ing feature stream combination at the posterior level, which can
eliminate more than 50% of the errors compared to the HTK
baseline. In this paper, we explore a number of variations on
the tandem structure to improve our understanding of its effec-
tiveness. We experiment with changing the subword units used
in each model (neural net and GMM), varying the data subsets
used to train each model, substituting the posterior calculations
in the neural net with a second GMM, and a variety of feature
condition such as deltas, normalization and PCA rank reduction
in the ‘tandem domain’ i.e. between the two models. All results
are reported on the Aurora-2000 noisy digits task.

1. Introduction
The 1999 ETSI Aurora evaluation of proposed features for dis-
tributed speech recognition stipulated the use of a specific Hid-
den Markov Model (HMM)-based recognizer within the HTK
software package, using GMM acoustic models [1]. We were
interested in using posterior-level feature combination which
had worked well in other tasks [2], but this approach requires
posterior phone probabilities. Such posteriors are typically gen-
erated by the neural networks that replace the GMMs as the
acoustic models in hybrid connectionist-HMM speech recog-
nizers [3]. This led us to experiment with taking the output of
the neural net classifier, suitably conditioned, as input features
for the HTK-based GMM-HMM recognizer. To our surprise,
this approach of using two acoustic models in tandem—neural
network and GMM—significantly outperformed other configu-
rations, affording a 35% relative error rate reduction compared
to the HTK baseline system, averaged over the 28 test condi-
tions, when using the same MFCC features as input [4]. Poste-
rior combination of multiple feature streams, as made possible
by this approach, achieved further improvements to reduce the
HTK error rate by over 60% relative [5].

The origins of the improvements are far from clear. In the
original configuration, there were several possible factors iden-
tified:

� The use of different subword units in each acoustic
model—context-independent phones for the neural net,
and whole-word substates for the GMM-HMM.

� The very different natures of the two models and their
training schemes, with the neural net being discrimi-
nantly trained to Viterbi targets, and the GMM making
independent distribution models for each state, based on
EM re-estimation.

� Peculiarities of the way that the posteriors were mod-
ified to make them more suitable as features for the
GMM. PCA orthogonalization of the net activations be-
fore the final nonlinearities gave more than 20% relative
improvement compared to raw posterior probabilities.

This paper reports our further investigations, based on the
revised Aurora-2000 noisy digits task, to establish the relative
roles of these factors, and also to see if the tandem result can be
improved even further.

The next section briefly reviews the baseline tandem sys-
tem. In section 3 we look at varying the training data used
for each model, then at the influence of the subword units used
in each model, then at the effect of simulating posterior cal-
culation via GMMs. Section 4 presents our investigation into
tandem-domain processing including normalization, deltas and
PCA rank reduction. We conclude with a brief discussion of our
current understanding of tandem acoustic modeling in light of
these results.

2. Baseline Tandem System
The baseline tandem system is illustrated in figure 1. In this
configuration, a single feature stream (13 PLP cepstra, along
with their deltas and double-deltas) is fed to a multi-layer-
perceptron (MLP) neural network, which has an input layer of
the 39 feature dimensions sampled for 9 adjacent frames pro-
viding temporal context. The single hidden layer has 480 units,
and the output layer 24 nodes, one for each TIMIT-style phone
class used in the digits task. The net has been Viterbi trained by
back propagation using a minimum-cross-entropy criterion to
estimate the posterior distribution across the phone classes for
the acoustic feature vector inputs. Conventionally, these pos-
teriors would be fed directly into an HMM decoder to find the
best-matching wordstring hypotheses [3].

To generate tandem features for the HTK system, the net’s
final ‘softmax’ exponentiation and normalization is omitted, re-
sulting in the more Gaussian-distributed linear output activa-
tion. These vectors are rotate by a square (full rank) PCA matrix
(derived from the training set) in order to remove correlation be-
tween the dimensions. The unmodified GMM-HMM model is
then trained on these inputs. In particular, the GMM-HMM is
unaware of the special interpretation of the pre-PCA posterior
features as having one particular element per phone.

The results for the tandem baseline system applied to the
Aurora-2000 data are shown in table 1. The format of this ta-
ble is repeated for all the results quoted in this paper, and re-
produces numbers from the standard Aurora spreadsheet. Only
multicondition training is used in the current work (i.e. train-
ing with noise-corrupted data). Test A is a ‘matched noise’
test; Test B’s examples have been corrupted with noises dif-
ferent from those in the training set, and Test C adds channel
mismatching. Improvement figures indicate performance rela-
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Figure 1: Block diagram of the baseline tandem recognition setup. The neural net is trained to estimate the posterior probability of
every possible phone, then the pre-nonlinearity activation for these estimates is decorrelated via PCA, and used as training data for a
conventional, EM-trained GMM-HMM system implemented in HTK.

Avg. WAc 20-0 Imp. rel. MFCC Avg.
A B C A B C imp.

Baseline 92.3 88.9 90.0 36.8 19.0 38.5 30.0

Table 1: Performance of the Tandem baseline system (PLP fea-
tures, 480 hidden unit network, standard HTK back-end). The
first three columns are the average word accuracy percentages
over SNRs 20 to 0 dB for each of the three test cases; the next
three columns are the corresponding percentages of improve-
ment (or deterioration if negative) relative to the MFCC HTK
standard; the final column is the weighted average percent im-
provement, as reported on the standard Aurora spreadsheet.

tive to the standard MFCC-based HTK system; an improvement
of +30.0 indicates the test system committed 30% fewer errors
than the standard.

Note at this stage how the tandem system shows much less
improvement relative to the GMM HTK baseline in test B than
in test A: The neural net is apparently learning specific char-
acteristics of the noise, and this limits the benefit of tandem at
higher noise levels; for test B, the average improvement across
the 10 dB SNR cases is 33.4%, but at 0 dB SNR (which domi-
nates the overall average figures) it is only 10.1%.

3. Experiments
This section presents three experiments conducted to test spe-
cific hypotheses about the tandem system. First we looked at
the effect of using the same or different data to train each model,
then we tried changing the subword units used in both the neural
net and the GMM system. Finally we substituted a distribution-
based GMM for the posterior-estimating neural net.

3.1. Training Data

Since the tandem arrangement involves separate training of two
acoustic models (net and GMM), there is a question of what data
to use to train each model. Ideally, each stage should be trained
on different data: if we train the neural network, then pass the
same training data through the network to generate features to
train the GMM, the GMM will learn the behavior of the net
on its training data, not on the kind of unseen data that will
be encountered in testing. However, in the situation of finite
training data, performance of each individual stage will be hurt
if we use less than the entire training set.

To investigate this issue, we divided the training set utter-
ances into two randomly-selected halves, T1 and T2. The effect
of using different training data for each model can be seen by
comparing the performance of a system with both the net and
the GMM trained on T1 against a system using T1 to train the

Avg. WAc 20-0 Imp. rel. MFCC Avg.
A B C A B C imp.

T1:T1 91.4 88.3 88.9 29.7 14.7 31.8 24.2
T1:T2 91.5 88.7 89.2 29.8 17.9 33.6 25.9

Table 2: Effect of dividing the training data in two halves, and
using same or different halves to train each model (net and
GMM). T1:T1 uses the same half for both trainings; T1:T2 uses
different halves.

net then T2 to train the GMM. Comparing these split systems to
the tandem baseline reveals the impact of reducing the amount
of training data for each stage. The results are shown in table 2.

We see a slight advantage to using separate training data
for each model (T1:T2 condition), but this does not appear to
be significant. It is certainly much smaller than the negative
impact of using only half the training data, as shown by the
overall reduction in average improvement from 30% to 25.9%.
We surmise that the separate model trainings are able to extract
different information from the same training data, and that the
difference in net performance on its training data and on unseen
data is not particularly important from the perspective of the
GMM classifier.

3.2. Subword Units

One notable difference between the two models in the original
tandem formulat is that the net is trained to context-independent
phone targets (imposing a prior and partially shared structure on
the digits lexicon), whereas the GMM-HMM system used fixed-
length whole-word models. This might have helped overall per-
formance, by focusing the two models on different aspects of
the data, or it might have hurt by making the net outputs only
indirectly relevant to the GMM’s classes.

To test this, we tried to equate the units used in both models.
There are two ways to do this: modify the HTK back-end to
use phone states, or modify the neural network to discriminate
between the subword units being used by the HTK back-end.
We tried both: For the all-phone system, we had only to change
the HTK setup, providing it with the same pronunciations that
had been used to train the net.

For the all-whole-word model, we had to train a new net-
work to targets matching the HTK subword units. To do this,
we made forced alignments for the entire training set to the 181
subword states employed by the HTK back-end (16 states for
each of the 11 word vocabulary, plus 5 states for the silence and
pause models), and trained a new net with 181 outputs. We then
orthogonalized these outputs through PCA and passed them to
the standard whole-word-modeling HTK back-end. However,
the large increase in dimensionality (181 dimensions compared



Avg. WAc 20-0 Imp. rel. MFCC Avg.
A B C A B C imp.

Ph 24:24 92.2 88.3 89.5 35.6 14.4 35.3 27.0
181:181 91.5 90.1 90.2 30.2 27.7 39.3 31.3
181:40 91.9 90.2 90.4 33.8 28.3 40.8 33.2

Table 3: Matching the subword states used in each model. “Ph
24-24” uses 24 phone states for both neural net and HTK back-
end. “181:181” uses a 181-output neural net, trained to the
whole-word state alignments from the tandem baseline HTK
system, and uses all 181 components from the PCA as GMM
input features. “181:40” uses only the top 40 PCA components,
to reduce GMM complexity.

to 24 for the phone-net) resulted in a back-end with very many
parameters relative to the training set size. Thus we also tried
restricting the HTK input to reduced-rank outputs from the PCA
orthogonalization; we report the case of taking the top 40 prin-
cipal components, which was by a small margin the best of the
cases tried. The results are shown in table 3.

Constraining the HTK back-end to use phones caused a
small decrease in performance, indicating that this arbitrary re-
striction on how words were modeled caused more harm than
the possible benefits of harmony between the two models. The
net trained to whole-word substates gave rise to systems per-
forming a little better than our baseline, particularly when the
feature vector size was limited to avoid an overparameterized
GMM. Note that this improvement is mainly due to improve-
ments on Test B; it appears that the whole-word state labels are
somehow improving the ability of the net to generalize across
different noise backgrounds.

We note that for a digits vocabulary, there are in fact rela-
tively few shared phonemes, and we can expect that the phone-
based net is in fact learning what amounts to word-specific sub-
word units (or perhaps the union of a couple of such units). Thus
it is not surprising that the differences in unit definition are not
so important in practice.

3.3. GMM-derived Posteriors

Our suspicion is that the complementarity of discriminant nets
and distribution-modeling GMMs is responsible for the im-
provements seen with tandem modeling. However, an alter-
native explanation could give credit to the process of using
two stages of model training, or perhaps some fortunate as-
pect of modeling the distribution of transformed posteriors. Us-
ing Bayes’ rule, we can derive posterior probabilities for each
phone class p(qjX) from the likelihoods p(Xjq) by multiplying
by the class prior and normalizing by the sum over all classes.
Thus, we can take the output of a first-stage GMM distribution
model, trained to model phone states, and convert it into poste-
riors that are an approximation to the neural net outputs. The
main difference of such a system from the tandem baseline is
that the discriminant training of the net in the latter should de-
ploy the ‘modeling power’ differently in order to focus on the
most critical boundary regions in feature space, whereas inde-
pendent modeling of each state’s distribution in the former is
effectively unaware of where these boundaries lie. Comparing
our tandem baseline to a tandem system based on posteriors
derived from a GMM should reveal just how much benefit is
derived from discriminant training in tandem systems.

We trained a phone-based GMM-HMM system directly on

Avg. WAc 20-0 Imp. rel. MFCC Avg.
A B C A B C imp.

PLP GM 79.4 67.1 75.7 -69 -140 -50 -93
GM:GM 74.8 74.5 75.9 -107 -86 -49 -85

Table 4: Tandem modeling on the output of a GMM first-stage
model. The top line, “PLP GM”, shows the performance of our
initial phone-based HTK system using PLP features, which is
making almost twice as many errors as the HTK baseline (93%
worse). Posteriors derived from the corresponding likelihoods
were used as the basis for tandem-style features for a standard
Aurora HTK back-end, resulting in the second line, “GM:GM”.
Neither system involves any neural net.

the PLP features, including deltas. We then calculated posterior
probabilities across the 24 phones based on the likelihood mod-
els from that training. The log of these posteriors was PCA-
orthogonalized, then used as feature inputs to a new GMM-
HMM training, using the standard Aurora HTK back-end. The
result is a tandem system in which both acoustic models are
GMMs. The results are shown in table 4.

The performance of the PLP feature, phone-modeling
GMM system is inexplicably poor, and we are continuing to
investigate this result. However, the tandem system based upon
these models performs only slightly better, in contrast to the
large improvements seen when using a GMM to model pro-
cessed outputs from a neural net. Thus, we take these results
to support our expectation that it is specifically the use of a neu-
ral net as the first acoustic model, followed by a GMM, that
furnishes the success of tandem modeling.

4. Tandem-Domain Processing
In our original development of tandem systems, we found that
conditioning of the outputs of the first model into a form bet-
ter suited to the second model—i.e. by removing the net’s final
nonlinearity and by decorrelating with PCA—made a signifi-
cant contribution to the overall system performance. We did
not, however, exhaust all possible modifications in this domain.
On the basis that there may be further improvements available
from this conditioning stage, we have experimented with some
additional processing.

Figure 2 illustrates the basic setup of these experiments. In
between the central stages of figure 1 are inserted several pos-
sible additional modifications. Firstly, delta calculation can be
introduced, either before or after the PCA orthogonalization.
Secondly, feature normalization can be applied, again before
or after PCA. (In our experiments we have used non-causal
per-utterance normalization, where every feature dimension is
normalized to zero mean and unit variance within every utter-
ance, but online normalization could be used instead.) Thirdly,
some of the higher-order elements from the PCA orthogonal-
ization may be dropped to achieve rank reduction i.e. a smaller
feature vector, as with the 181-output network in section 3.2.
The motivation for each of these modifications is that they are
frequently beneficial when used with conventional features, so
they are worth trying here.

We tried a wide range of possible configurations; only a
few representative results are given in table 5. Firstly we see
that even a small reduction in rank after the PCA transforma-
tion reduces performance. Delta calculation helps significantly,
as does normalization, and their effects are somewhat cumu-
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Figure 2: Options for processing in the ‘tandem domain’ i.e. between the two acoustic models.

Avg. WAc 20-0 Imp. rel. MFCC Avg.
A B C A B C imp.

P21 92.2 88.8 89.8 35.6 18.5 37.0 29.0
Pd 92.6 90.4 91.1 39.4 30.1 45.0 37.0
Pn 93.0 91.0 92.4 42.4 34.4 53.1 41.7
dPn 93.2 91.7 92.8 44.0 39.4 55.5 44.9

Table 5: Results of various kinds of tandem-domain process-
ing. “P21” uses only the top 21 PCA components (of 24). “Pd”
inserts delta calculation after the PCA (marginally better than
putting it before). “Pn” inserts normalization after PCA (much
better than putting it first). “dPn” applies delta calculation, then
takes PCA on the extended feature vector, then normalizes the
full-rank result—the best-performing arrangement in our exper-
iments.

lative when applied in the order shown, giving an overall aver-
age improvement that is one-and-a-half times that of the tandem
baseline (or a relative reduction of about 20% in absolute word
error rate). Improvements occur in all test cases, but are partic-
ularly marked in test B; it is is encouraging that fairly simple
normalization is able to improve the generalization of the tan-
dem approach to unseen noise types.

We also tried taking double-deltas which performed no bet-
ter than plain deltas. However, delta calculation increases the
dimension of the feature vectors being modeled by the GMM.
We have yet to try combining delta calculation with rank reduc-
tion, although the results with the 181 output net indicate this
might be beneficial.

4.1. Feature Combination

As explained in the introduction, one motivation for tandem
modeling was to find a way to apply multistream posterior com-
bination to the Aurora task. We have tried some simple ver-
sions of this on the Aurora-2 task, just to indicate the kind of
benefit that can be achieved. To the PLP features and network
we added modulation-filtered spectrogram features (MSG [6])
along with their own, separately-trained neural network. The
pre-nonlinearity activations of the corresponding output layer
nodes of the two nets were added together, which is the most
successful form of posterior combination for tandem systems.
Table 6 reports on two variants: baseline tandem processing ap-
plied to the combined net outputs, and the same system with
normalization after the PCA orthogonalization. Delta calcula-
tion offered no benefits for the combined feature system, per-
haps because of the slower temporal characteristics of MSG
features working through to the posteriors. Using multiple fea-
ture streams achieves further significant improvements in both
reported cases.

Avg. WAc 20-0 Imp. rel. MFCC Avg.
A B C A B C imp.

Cmb 93.2 91.4 91.9 44.4 37.1 50.0 42.8
CmbN 93.8 92.1 93.7 48.8 42.3 61.3 49.1

Table 6: PLP+MSG feature combinations. “Cmb” is baseline
combination, and “CmbN” adds normalization after PCA.

5. Conclusions
The tandem connection of neural net and Gaussian mixture
models continues to offer significant improvements over stan-
dard GMM systems, even in the mismatched test conditions of
Aurora-2000. We have investigated several facets of this ap-
proach, finding that it is better to use the same data to train both
models than to reduce training set size, that matching subword
units in the two models may help a little without being critical,
but that including a neural net apparently is critical. We have
also tried some variations on the conditioning applied between
the two models, which, added to a simple feature combination
scheme, can eliminate half the errors of the HTK standard.
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