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Introduction

Summary: Alarms sounds (telephone rings, sirens etc.) carry important information.  Automatic systems to detect them in high-noise conditions would be
useful for hearing prostheses and intelligent machines.  We characterize alarm sounds in general, and compare two approaches to recognition.

• Alarm sounds (bells, phones, buzzers etc.) are important to listeners
→ Automatic recognizers would have many applications

• Listeners can recognize ‘new’ sounds as alarms
→ Are there some general characteristics common to all alarms?

• There is no existing standard task for alarm sounds

→ Collect a corpus consisting of different alarm sounds

+ Inspect examples to find common characteristics

+ Try a baseline recognizer using standard pattern recognition

+ Compare to a source-separation approach that tries to isolate 
alarms from background noise

Alarm sound corpus
• A set of 50 short alarm sound examples was collected

... from the web, and by making recordings at home and in the office 

• Examples include: Car horns, emergency sirens, fire alarms, 
doorbells, mechanical and electronic telephones, smoke alarms etc.

• Browsing the data suggests several candidate alarm characteristics:

- Alarm sounds often have a strong and stable pitch.  This appears 
as pronounced horizontal harmonic structure in spectrograms.

- Alarms start abruptly and sustain at a constant level for hundreds 
of milliseconds.  (Natural sounds more often decay away.)

- There is often a significant energy component around 3-4 kHz, 
the peak of human sensitivity.

- Some classes of alarm – e.g. phone rings – have characteristic 
amplitude modulation in the 8-30 Hz range.  
This is visible in the summary modulation spectrograms above.

- Alarm sounds often repeat at a 0.5-4 Hz period.

• Can these characteristics be used to build a general alarm detector?

Baseline pattern-recognition neural-net system
• Recognizing acoustic patterns is addressed in speech recognition.   

A simple starting point for alarm detection is to adapt those 
techniques.

• We trained a multi-layer perceptron neural net acoustic model (as  
used in our connectionist speech recognition approach) to estimate 
the posterior probability of an alarm being present.

• The output probability was smoothed with a median filter over a 
100 ms window.  A filtered probability above 0.5 was taken as a 
detected alarm event.

• The net was trained by back-propagation on alarm examples 
artificially mixed with a range of background noises.

• An alarm detector must work in high levels of ambient noise.  Thus the 
alarm amplitudes were adjusted for an overall SNR of 0 dB.

Sinusoid model source-separation system Evaluation & Results

Car horn - hrn08

0 0.2 0.4

Klaxon - klx03

0 0.5 1 1.5 time / sec

fr
eq

 / 
kH

z
m

od
.fr

eq
 / 

H
z

1

2

3

4

0

10

20

Electronic phone - eph01

0 0.5 1 1.5

-40

-20

0

dB

fr
eq

 / 
kH

z

0

1

2

3

4

fr
eq

 / 
kH

z

0

1

2

3

4

bph04 hrn02

Music + alarms (snr 0 ns 8 al 5)

Alarms (al 5)

Neural network output

bph01

0 5 10 15 20 25 30time/sec

Sound 
mixture

Detected
alarms

Feature
extraction

Neural net
acoustic
classifier

Median
filtering

PLP
cepstra

Alarm
probability

Neural-net system

• In this example, 3 
randomly-chosen alarm 
sounds (top panel) are 
mixed with restaurant 
noise giving the middle 
panel.

• The network correctly 
locates all 3 alarms, but 
inserts many extra 
false alarms.

• Three different alarms 
are added to a pop 
music background.

• The third alarm is not 
detected, and there are 
once again numerous 
falsely detected 
insertions.

• A major weakness in speech recognition is that pattern recognition is 
applied to global signal characteristics – there is normally no way to 
separate target from other sounds (background noise). 

• For alarm detection, we are particularly interested in spotting the alarm 
sounds regardless of background, and at poor signal-to-noise ratios.

• We therefore experimented with an alternative approach based on 
sinusoid modeling and object grouping, borrowed from Computational 
Auditory Scene Analysis (CASA).

• The fifty example alarm sounds were divided into two sets of 25 for 
training and test respectively.  Each set was mixed with four 
background noises, with different noises used for training and test.

• The results of both systems tested on all 100 examples (in 20 groups 
of 5) are shown below:

• Due to the large number of false-alarms (insertion errors) committed 
by both systems, the overall error rate is close to 200% in both cases!

• The neural net system makes many insertions on noises 2 and 3, 
presumably because they did not resemble the noises used in 
training.  This is a major weakness of the global-features pattern-
recognition approach.

• The sine model system makes the vast majority of its errors on the 
music example, where instrument notes are mistaken for alarms.  It 
should be possible to improve the “group classification” stage using the 
training data to discriminate between true alarms and music notes.

• Looking only at deletions (false rejections), the neural net system 
makes fewer than half the errors made by the sine model system.  
However, many alarms (such as sirens) were actually rejected by the 
“group classification”.  We will pursue correcting these errors.

• Other future work will include investigating the variation of error rate 
with SNR, and differentiating between specific alarms. 

• Spectral enhancement filters the spectrogram to emphasize the 
horizontal structures that are characteristic of alarms.

• Sinusoid modeling represents prominent, spectral energy in the 
signal as a set of individual sinusoids with slowly-varying amplitudes 
and frequencies.  This stage ignores unstructured background noise.

• Object formation groups together sine tracks that appear to come 
from a single source on the basis of synchronous onset and similar 
durations. 

• Group classification calculates various statistics for each sine-track 
group and decides whether to label it as an alarm, on the basis of 
training examples.  This stage should remove pitched non-alarm 
background elements.

• Useful statistics include spectral moment (a measure of how widely 
spaced and discrete the spectrum is) and duration-normalized 
frequency variation (which detects the long, stable harmonics of 
alarms).  

• Against the restaurant noise, the 
sine model does well, although 
the horn is rejected as a non-
alarm object.

• The pop music background results 
in many false alarms as the 
instrument harmonics are 
mistaken for alarms.
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Index Training set noise Test set noise

1 Aurora station ambience Aurora airport ambience

2 Aurora babble Aurora restaurant

3 Speech fragments Different speech

4 Pop music excerpt Different pop music

Noise
Neural net system          Sinusoid model system

Del Ins Tot Del Ins Tot

1 (amb) 7 / 25 2 36% 14 / 25 1          60%

2 (bab) 5 / 25 63 272% 15 / 25 2          68%

3 (spe) 2 / 25 68 280% 12 / 25 9          84%

4 (mus) 8 / 25 37 180%      9 / 25 135 576%

Overall  22 / 100    170       192%    50 / 100     147       197%


