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ABSTRACT
Collecting and storing continuous personal archives has become
cheap and easy, but we are still far from creating a useful, ubiqui-
tous memory aid. We view the inconvenience to the user of being
‘instrumented’ as one of the key barriers to the broader develop-
ment and adoption of these technologies. Audio-only recordings,
however, can have minimal impact, requiring only that a device the
size and weight of a cellphone be carried somewhere on the person.

We have conducted some small-scale experiments on collect-
ing continuous personal recordings of this kind, and investigating
how they can be automatically analyzed and indexed, visualized,
and correlated with other minimal-impact, opportunistic data feeds
(such as online calendars and digital photo collections). We de-
scribe our unsupervised segmentation and clustering experiments
in which we can achieve good agreement with hand-marked envi-
ronment/situation labels.

We also discuss some of the broader issues raised by this kind of
work including privacy concerns, and describe our future plans to
address these and other questions.

Categories and Subject Descriptors: H.3.1 [Information Storage
and Retrieval]: Content Analysis and Indexing

General Terms: Algorithms

Keywords: Archives, Sound, Audio, Recording, Segmentation, Clus-
tering, Diary

1. INTRODUCTION
We make huge demands of our brains’ capacity to store and recall
disparate facts and impressions, and it is not uncommon to be let
down or frustrated by difficulty in recalling particular details; there
are also aspects of past events that we rarely even hope to recall,
for instance the number of hours spent in a particular location in a
particular week, which might sometimes be of interest. Artificial
memory aids, based on digital recordings, hold the promise of re-
moving these limitations, but there are many technical obstacles to
be overcome before this promise becomes reality.
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In this paper, we consider some practical aspects of such tech-
nologies, focusing on the idea of continuous audio recordings, and
other minimal- or zero-impact data collection techniques. In the
next section we consider the pros and cons of using only audio-
recordings (without images), as well as how this skeleton can be
enhanced with other data streams. Section 2 describes our prelimi-
nary experiments in collecting and analyzing such audio data, with
the goal of creating an automatic diary of locations and activities
at a broad timescale. Then, in section 3, we discuss some of the
issues that have arisen in this initial investigation, and give details
of some specific plans for future developments.

1.1 Audio-based archives
We have conducted some small-scale experiments to help clarify
and reveal the primary challenges in memory aid systems. We have
chosen to use audio recordings, instead of video, as the foundation
for our personal archive system. While the information captured
by audio and video recordings is clearly complementary, we see
several practical advantages to using audio only: Firstly, an omni-
directional microphone is far less sensitive to positioning or motion
than a camera. Secondly, because audio data rates are at least an
order of magnitude smaller than video, the recording devices can
be much smaller and consume far less energy – as quantified in
section 2.1. Thirdly, we note that in multimodal systems with both
audio and video available, the audio can be equally or more use-
ful than the video [13], if only because it presents a more tractable
machine learning problem as a consequence of the preceding two
observations.

Potentially, processing the content of an audio archive could pro-
vide a wide range of useful information:

• Location: Particular physical locations frequently have char-
acteristic acoustic ambiences that can be learned and recog-
nized, as proposed in [3]. The particular sound may even
reveal finer gradations than pure physical location (e.g. the
same restaurant empty vs. busy), although at the same time
it is vulnerable to different confusions (e.g. mistaking one
restaurant ambience for another).

• Activity: Different activities are in many cases easily distin-
guished by their sounds e.g. typing on a computer vs. having
a conversation vs. reading or staring into space.

• People: Speaker identification based on the acoustic proper-
ties of voice is a relatively mature and successful technology
[15]. An audio archive provides evidence to recognize the
identity of individuals with whom the user has any signifi-
cant verbal interaction.



• Words: The fantasy of a personal memory prosthesis is the
machine that can fulfill queries along the lines of: “This topic
came up in a discussion recently. What was that discussion
about?”, implying not only that the device has recognized
all the words of the earlier discussion, but that is can also
summarize the content and match it against related topics.
This seems ambitious, although similar applications are be-
ing pursued for recordings of meetings [11, 14]. Capturing
casual discussions also raises serious privacy concerns, to
which we return in section 3.1.

A more palatable and possibly more feasible approach is to
mimic the pioneering Forget-me-not system [10] in capturing
tightly-focused ‘encounters’ or events, such as the mention
of specific facts like telephone numbers, web addresses etc.
[7]. This could work as an automatic, ubiquitous version of
the memo recorders used by many professionals to capture
momentary ideas.

Taken together, this information can form a very rich ‘diary’ or
personal history – all without cumbersome or custom hardware.
Our vision, however is to use it as a skeleton framework into which
other sources of information, discussed below, can be inserted. The
guiding principle is that the data collection should have minimal
impact – both in practical terms such as the weight, physical intru-
sion, and battery life of collection devices, and in terms of mod-
ifications required of the user’s behavior to support being ‘instru-
mented’: Most users will be highly resistant to work patterns or
devices that are imposed, leading to unsuccessful and short-lived
products. Instead, we focus on exploiting data that is already avail-
able, or which the user can generate essentially transparently.

1.2 Scavenging other data sources
Given the minimal impact of collecting audio archives, we have
looked for other data sources to exploit. Since users are resistant to
changing their work patterns, including the software they use, our
goal was to find existing information streams that could be ‘scav-
enged’ to provide additional data for a personal history/diary. The
basic framework of a time-line provided by the audio recordings
can be augmented by annotations derived from any time-stamped
event record. This is the idea of “chronology as a storage model”
proposed in Lifestreams [8] as a method of organizing documents
that exploits human cognitive strengths. While our interest here is
more in recalling the moment rather than retrieving documents, the
activities are closely related.

Some of the time-stamped data we have identified includes:

• Online calendars: Many users keep maintain their calen-
dars on their computers, and this data can usually be ex-
tracted. The calendar is of course the most familiar interface
for accessing and browsing time-structured data extending
over long periods, and forms the basis of our preliminary
user interface.

• E-mail logs: E-mail interaction typically involves a large
amount of time-stamped information. We have extracted all
the dates from a user’s sent messages store to build a profile
of when (and to whom) email messages were being com-
posed.

• Other computer interactions: There are many other activ-
ities at the computer keyboard than can lead to useful time
logs. For instance, web browser histories constitute a rich,
easily reconstituted, record of the information seen by the

user. As a more specific example, the popular outliner Note-
Taker [1] is frequently used for real-time note taking, and
records a datestamp (down to one-second resolution) for each
line entered into the outline. Dense note-taking activity can
thus be extracted and presented on the calendar interface,
along with the titles of pages being modified, effortlessly
providing a topic description. Moreover, instead of using
the time-line to organize outline entries, the outline itself –
a hierarchic structuring of information created by the user –
can also be used, when available, as an alternative interface
to the recorded archive. Replaying the recording from im-
mediately prior to a particular entry being made in the out-
line would be a very useful enhancement to written notes
of talks and lectures, along the lines of the Audio Notebook
[18] – but without requiring users to acquire special hardware
or change their current practice, and involving only a small
amount of additional software to link the existing records.

• GPS TrackLogs: Inexpensive personal Global Positioning
System (GPS) receivers can keep a log of their positions,
synchronized to a highly-accurate clock, and with minimal
impact to the user as long as the device is carried (and pe-
riodically uploaded). We initially investigated this as a way
to collect ground-truth tags for the segmentation experiments
described in section 2, but since GPS does not work indoors
(and only intermittently on the streets of built-up cities), it
was not so useful. None the less, when available, GPS in-
formation giving exact location as well as motion data can
provide a rich input to an automatic diary.

• Phone records: Phone companies typically provide detailed
logs of every phone call placed (as well as calls received on
mobile phones), and this information is usually available in
electronic form via the web; such data can be parsed and
included in the timeline view.

• Digital photos: Cheap digital cameras have by now almost
completely eliminated analog formats, at least for casual pho-
tographers. Since these pictures are usually datestamped and
uploaded to the user’s personal computer, the information
about when pictures were taken – and thumbnails of the im-
ages themselves – can be added to the timeline.

The common theme, in addition to the temporally-based index-
ing, is that each of these data streams already exists and requires
only minimal additional processing to be incorporated. By the
same token, since the data is being opportunistically scavenged
rather than carefully collected expressly for the diary, it may offer
unreliable, partial coverage; users will take photographs or make
phone calls only sporadically. Even in our focused efforts to col-
lect baseline audio archives, the recorders will be used only for
a few hours each day, and certain files may become corrupted or
lost. These are realities of personal information, and practical ap-
plications and user interfaces should be built to accommodate them,
for instance by offering multiple, partially-redundant data streams,
rather than being useful only when everything ‘works as planned’.

2. UNSUPERVISED SEGMENTATION OF
PERSONAL AUDIO

For the past year we have been periodically collecting personal au-
dio recordings, experimenting with different equipment and tech-
niques. We have collected hundreds of hours of recordings, most
of which has never been replayed – underlining the inaccessibility



Figure 1. Data capture equipment. On the left is the Neuros hard-disk
recorder, shown with the Soundman in-ear microphones and interface
module. Middle is the mobiBLU flash-memory recorder. On the right is
a logging personal GPS unit.

of this raw data. In this section we describe our equipment setup
and data sets. We also give details of our first set of experiments,
which investigate unsupervised segmentation and clustering of the
recordings, at a coarse, one-minute timescale, in order to recover
the infrequently-changing location/activity states that can form the
first-level description in an automatic diary.

2.1 Recording Equipment
The explosion in personal audio playback devices fueled by MP3
soundfiles and typified by Apple’s iPod has resulted in a very wide
range of portable digital audio devices. While most of these are de-
signed for listening only, a number of them also include the ability
to record, generally presented as a way to record lectures and other
specific events for later review. We have experimented with two
such devices, shown in figure 1. Both devices feature built-in mi-
crophones and the memory and battery capacity to record for many
hours continuously onto files that can be directly uploaded via USB
connections, and both are small enough to be conveniently carried
e.g. clipped to a belt.

The larger device is a Neuros recorder, including a 20G hard
disk and a rechargeable battery, which retails for a few hundred
dollars [5]. This is a carefully designed and engineered audio pro-
cessor, able to directly encode MPEG-audio MP3 files, or alter-
natively write uncompressed WAV files directly to its disk. Since
20G represents 32 hours of full-rate uncompressed CD audio (and
at least ten times that when compressed to MP3), the recording ca-
pacity is limited by the battery life, which was a little over 8 hours
in our tests. Although the built-in microphone is mono (and picks
up some noise from the internal hard disk, which spins up and down
periodically), it has a high-quality stereo line input. While portable
mic preamps are rare and/or expensive, we found the Soundman
binaural mics (shown in the figure), with their supplied line-level
adapter, to work well [17]. These mics are designed to be worn in
the ears like mini headphones for high-realism binaural recordings;
while multichannel recordings can capture more information about
the acoustic environment, and offer the possibility of some signal
separation and enhancement, using such mics obviates many of the
minimal-impact advantages of audio archiving, and we have made
only a few of these recordings.

The smaller device in the figure is a mobiBLU flash-memory
recorder [9] with 256MB of internal memory and a slot for an

“SD” memory card (although it is only able to record to internal
memory). This very inexpensive device does not, in fact, encode to
MP3 but instead to the lower-quality IMA ADPCM 4 bits/sample
standard. Although it also has a line-in input, it cannot record in
stereo. When run at 16 kHz sampling rate, it can record for over
9 hours and gives acceptable results; its long battery life (about
20 hours from two AAA rechargeable batteries) and light weight
(a couple of ounces) make it an attractive alternative to the larger
Neuros.

2.2 Data set and task
Of the many recordings made, our experiments have been focused
on a particular dataset recorded over one week by author KL. This
constitutes some 62 hours of data, originally recorded as 64 Mbps
MP3, then downsampled to 16 kHz. The attraction of this data is
that it has been manually divided into 139 segments, each corre-
sponding to a distinct location or environment with an average seg-
ment duration of around 26 minutes. Each of these segments has
also been labeled, and assigned to one of 16 broad classes, chosen
to span the kinds of distinctions that would be useful in an auto-
matic diary (such as ‘street’, ‘restaurant’, ‘class’, ‘library’ etc.).

Similar to the audio-video analysis in [4], the goal of our initial
experiments was to see how well we could automatically recover
these boundaries and class labels from the original data. In the
absence of a larger quantity of annotated data, we chose an unsu-
pervised approach, seeking a feature representation in which the
boundaries between different episodes will be self-evident as sig-
nificant shifts in statistical properties. We can then evaluate this
system quantitatively by comparing it to our hand annotations, per-
mitting fine distinctions between alternate approaches.

2.3 Features
For the automatic diary application, temporal resolution on the or-
der of one minute is plenty: most of the events we wish to identify
are at least a quarter-hour long. We therefore constructed a sys-
tem where the temporal frame rate was one per minute, rather than
the 10 or 25 ms common in most audio recognition approaches.
25 ms is popular because even a dynamic signal like speech will
have some stationary characteristics (e.g. pitch, formant frequen-
cies) at that time scale. For characterizing acoustic environments,
however, it is the stationary properties at a much longer timescale
that concern us – the average level and degree of variation of en-
ergy at different frequency bands, measured over a window long
enough to smooth out short-term fluctuations. Thus, we proposed
a range of features applicable to one-minute frame rates, and eval-
uated their usefulness as a basis for unsupervised segmentation [6].

Of the features we considered, the most useful were log-domain
mean energy measured on a Bark-scaled frequency axis (designed
to match physiological and psychological measurements of the hu-
man ear), and the mean and variance over the frame of a ‘spectral
entropy’ measure that provided a little more detail on the structure
within each of the 21 broad auditory frequency channels. Specifi-
cally, starting from an initial short-time Fourier transform (STFT)
over 25 ms windows every 10 ms to give a time-frequency en-
ergy magnitude X[n, k] where n indexes time and k indexes the
frequency bins, our auditory spectrum is:

A[n, j] =
NFT /2+1∑

k=0

wjkX[n, k] (1)

where j indexes the 21 one-Bark auditory frequency bands, and
wjk specifies the weight matrix that maps STFT bins to auditory



bins; NFT is the size of the discrete Fourier transform (DFT). Then,
spectral entropy is defined as:

H[n, j] = −
NFT /2+1∑

k=0

wjkX[n, k]

A[n, j]
· log

(
wjkX[n, k]

A[n, j]

)
(2)

i.e. it is the ‘entropy’ (disorder) within each subband at a single
timeframe if the original weighted-DFT magnitudes are considered
as a probability distribution. The intuition here is that although the
auditory bands are wide, the entropy value will distinguish between
energy that is spread broadly across a subband (high entropy), ver-
sus one or two narrow energy peaks or sinusoids providing the bulk
of the energy in the band. Humans are of course very sensitive to
this distinction.

2.4 Segmentation

We used these features to identify segment boundaries in the data
using the Bayesian Information Criteria (BIC) procedure originally
proposed for speaker segmentation in broadcast news speech recog-
nition [2]. In this scheme, every possible boundary position in a
given window within an observation sequence is considered. New
boundaries are placed when the BIC score indicates a modeling ad-
vantage to representing the features on each side of the boundary
with separate statistical models instead of describing the entire win-
dow with a single model. If no acceptable boundary is found, the
window is widened by advancing its upper limit until the end of the
data is reached; when a new boundary is created, the lower limit
of the window is moved up to the new boundary, and the search
continues.

The key idea in BIC is to calculate the ‘modeling advantage’ as
a likelihood gain (which should always be achieved when using the
extra parameters of two models versus one) penalized by a term
proportional to the number of added parameters. Specifically, the
BIC score for a boundary at time t (within an N point window) is:

BIC(t) = log

( L(XN
1 |M0)

L(Xt
1|M1)L(XN

t+1|M2)

)
− λ

2
∆#(M) · log(N) (3)

where XN
1 represents the set of feature vectors over time steps 1..N

etc., L(X|M) is the likelihood of data set X under model M, and
∆#(M) is the difference in number of parameters between the sin-
gle model (M0) for the whole segment and the pair of models, M1

and M2, describing the two segments resulting from division. λ
is a tuning constant, theoretically one, that can be viewed as com-
pensating for ‘inefficient’ use of the extra parameters in the larger
model-set.

Using this procedure, any feature sequence can be segmented
into regions that have relatively stable characteristics, and where
the statistics of adjacent segments are significantly different. We
used single, full-covariance Gaussian models to describe the multi-
dimensional feature vectors formed from one or more of our basic
spectral feature sets. Varying λ controls the ‘readiness’ of the sys-
tem to generate new segments i.e. trading oversegmentation (inser-
tion of spurious segment boundaries) for undersegmentation (fail-
ure to place boundaries at ‘true’ changes in the underlying proper-
ties). To compare different systems, we tuned λ to achieve a fixed
false-accept rate of 2% (one spurious boundary per 50 one-minute
non-boundary frames, on average), and evaluated the correct-accept
rate (proportion of true boundaries marked, also called “sensitiv-
ity”) of the different systems, where we accepted a boundary placed
within 3 frames of the hand-marked position. Combining the two
best features achieved a sensitivity of 84% for this 42-dimensional

feature vector; using PCA to reduce the feature space dimensional-
ity to 3 coefficients for the average spectral energies and 4 for the
spectral entropies increased the sensitivity to 87.4%.

2.5 Clustering and Classification
Given a data stream divided into self-consistent segments, an au-
tomatic diary application needs to make some kind of labeling or
classification for each segment. These labels will not be meaningful
without some kind of supervision (human input), but even without
that information, the different sequential segments can be clustered
together to find recurrences of particular environments – something
which is very common in a continuous, daily archive.

The automatic segmentation scheme from the previous section
generated 186 segments in our 62 hour test set. We performed
unsupervised clustering on these segments to identify the sets of
segments that corresponded to similar situations, and which could
therefore all be assigned a common label (which can be obtained
from the user in a single interaction).

We used the spectral clustering algorithm [12]. First, a ma-
trix is created consisting of the distance between each pair of seg-
ments. We use the symmetrized Kullback-Leibler (KL) divergence
between single, diagonal-covariance Gaussian models fit to the fea-
ture frames within each segment. For Gaussians, the symmetrized
KL divergence is given by:

2DKLS (i, j) = (µi − µ j)
′(Σ−1

i +Σ
−1
j )(µi − µ j)+ tr(Σ−1

i Σ j +Σ
−1
j Σi − 2I)

(4)
where Σi is the unbiased estimate of the feature covariance within
segment i, µi is the vector of per-dimension means for that segment,
I is the identity matrix, and tr(·) is the trace of a matrix. DKLS is
zero when two segments have identical means and covariances, and
progressively larger as the distributions become more distinct.

These distances are then converted to an ‘affinity matrix’ con-
sisting of elements ai j which are close to 1 for similar segments
(that should be clustered together), and close to zero for segments
with distinct characteristics. ai j is formed as a Gaussian-weighted
distance i.e.

ai j = exp

(
−1

2
DKLS (i, j)2

σ2

)
(5)

where σ is a free parameter controlling the ‘radius’ in the distance
space over which points are considered similar; increasing σ leads
to fewer, larger clusters. In the results below, σ was tuned to give
the best results. Figure 2 shows the affinity matrix between the 186
automatic segments.

Clustering then consists in finding the eigenvectors of the affin-
ity matrix, which are the vectors whose outer products with them-
selves, scaled by the corresponding eigenvalues, sum up to give the
affinity matrix. When the affinity matrix indicates a clear cluster-
ing (most values close to zero or one), the eigenvectors will tend to
have binary values, with each vector contributing a block on the di-
agonal of the reconstructed affinity matrix whose rows and columns
have been reordered to make the similar segments adjacent; in the
simplest case, the nonzero elements in each of the top eigenvectors
indicate the dimensions belonging to each of the top clusters in the
original data.

Assigning the data to K clusters can then be achieved by fitting K
Gaussian components to the data using the standard EM estimation
for Gaussian mixture models. This fit is performed on a set of K-
dimensional points formed by the rows of the first K eigenvectors
(taken as columns). Similar segments will have similar projections
in this space – along each of the axes in the simplest case – and
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Figure 2. Affinity matrix for the 186 automatic segments. Segments are
ordered according to the dominant ground-truth label in each segment.

will cluster together. The choice of K, the desired number of clus-
ters, is always problematic: we considered each possible value of
K up to some limit, then evaluated the quality of each resulting
clustering using the BIC criterion introduced above, penalizing the
overall likelihood achieved by describing the data with K Gaussians
against the number of parameters involved.

This approach clustered the 186 automatically-generated seg-
ments into 15 clusters. We evaluate these clusters by comparing
them against the 16 labels used to describe the 139 ground-truth
segments. As discussed above, there is no a priori association be-
tween the automatically-generated segments and the hand-labeled
ones; we choose this association to equate the most similar clusters
in each set, subject to the constraint of a one-to-one mapping.

The results are presented in table 1. The fifteen automatic clus-
ters were mapped onto the sixteen manual clusters, leaving “sub-
way” with no automatic equivalent, although there were four other
clusters (“car”, “lecture 1”, “karaoke”, and “meeting”) for which
no frames were correctly labeled i.e. these correspondences are
arbitrary.

Since the automatic and ground-truth boundaries do not, in gen-
eral, align, there is no perfect assignment of ground-truth segment
labels to automatic segments. Instead, scoring was done at the
frame level i.e. each 1 minute frame in the data was assigned a
ground-truth label Overall, the labeling accuracy at the frame level
was 61.4% (which is also equal to the weighted average precision
and recall, since the total number of frames is constant). Figure 3
shows an overall confusion matrix for the labels.

One alternative to this segment-then-cluster procedure would be
to perform clustering directly on the one-minute frames to find
common patterns. This approach has the disadvantage of making
no effort to assign a single label to temporally-adjacent stretches
of frames. For comparison, however, we attempted this process.
Using spectral clustering, the affinity between each frame was cal-
culated by fitting a single Gaussian to the features from the 60
one-second subframes within each of one-minute frame. Measur-
ing similarity at this finer one-minute scale resulted in only two
clusters; scoring these using the same procedure as above gave a
frame-level accuracy of 42.7% – better than the a priori baseline of

Table 1. Automatic clustering results, compared to manual ground truth.
The first column gives the names assigned during manual annotation;
the next two columns give the total number of segments, and the total
number of frames (minutes) receiving this label in the ground truth. The
next two columns describe the automatic segments assigned to each
label based on maximum overlap. The final three columns give the raw
count of correct frames for each label, and this as a proportion of the true
frames (recall) and automatic frames (precision). Overall frame accuracy
is 61.4%.

Label Manual Auto Corr Rec Prec
min seg min seg min

Library 981 27 882 38 864 88% 98%
Campus 750 56 906 62 537 72% 59%
Restaurant 560 5 303 6 302 54% 99%
Bowling 244 2 473 13 152 62% 32%
Lecturer 1 234 4 104 5 0 0% 0%
Car/Taxi 165 7 38 4 0 0% 0%
Street 162 16 146 9 35 22% 24%
Billiards 157 1 158 5 114 73% 72%
Lecturer 2 157 2 176 9 152 97% 86%
Home 138 9 292 15 103 75% 35%
Karaoke 65 1 21 2 0 0% 0%
Class break 56 4 51 3 26 46% 51%
Barber 31 1 68 6 8 26% 12%
Meeting 25 1 38 4 0 0% 0%
Subway 15 1 0 0 0 0% -
Supermkt 13 2 97 5 10 77% 10%
total 3753 139 3753 186 2303 61.4% 61.4%

carlib lc2 brb frames
library

campus
restaurant

bowling
lecture1
car/taxi

street
billiard

lecture2
home
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break

barber
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Figure 3. Confusion matrix for the sixteen segment class labels, calcu-
lated over the 3753 one-minute frames in the test data.



Figure 4. Example of diary display. Red items are user-entered di-
ary events; purple regions show segments automatically extracted from
audio along with their assigned labels. Blue items are outgoing email
events scavenged from the user’s savebox. Audio was available only
between 13:41 and 16:40.

guessing all frames as a single class (which gives a frame accuracy
of 981/3753 or 26.1%), but far worse than the segmentation-based
approach.

2.6 Visualization
In our initial experiments, we have sought to adapt existing tools
for visualization and browsing, in preference to embarking on the
development of a complex, special-purpose user interface. Figure
4 shows one example, where the data from audio segmentation and
clustering are converted into calendar entries, tagged with the event
class name derived from earlier labeling, and displayed in a stan-
dard program. Also displayed are the user’s hand-entered appoint-
ments, and outgoing email messages identified from the “saved
mail” spool.

For access to the recorded audio, a more detailed timescale is re-
quired. Using the features described above, we have developed
alternatives to the conventional spectrogram display that convey
more of the information used in automatic segmentation [6]. An
example timeline display is shown in figure 5; audio can be re-
viewed by clicking the spectrogram in this display.

3. DISCUSSION AND FUTURE WORK
A major goal of our initial investigations was to gain familiarity
with this kind of data collection – what was easy and hard, what
possible uses might occur, and what kind of influence it would have
on us. This section discusses some resulting impressions, which
lead naturally to our planned future developments.

3.1 Speech and Privacy
Initially, our interest tended toward the nonspeech background am-
bience in the audio signals as we consider this a neglected topic in
audio analysis. However, after working with the data, it has be-
come clear that the speech content is the richest and most engaging

information in our recordings. Part of this is the manifest factual
content of some speech, but another part is more nebulous – there
can be a nostalgic pleasure in re-experiencing an earlier conversa-
tion, somewhat analogous to looking at snapshot photographs.

We are therefore focusing on speech in the immediate future.
We have an existing system that distinguishes segments of speech
from nonspeech by their characteristic properties at the output of a
speech recognizer’s acoustic model [20], which has the advantage
of being already trained on separate data but the disadvantage that
the speech it was trained on is mostly studio-quality broadcasts,
acoustically unlike the kind of speech recorded by our body-worn
devices. Better results will be obtained by training a classifier on
labeled data from our own data collection, the only drawback being
the obligation to perform more hand annotation. A support vector
machine classifier is an excellent match to this problem and we an-
ticipate high-accuracy results, particularly for the wearer’s speech.

Once the audio record has been divided into speech and back-
ground segments, we can perform different analyses on each part.
Excluding the speech segments from the ambience/location classi-
fication system described above should improve its accuracy since
their will be no need to learn separate clusters for “location X” and
“location X with speech in the foreground”.

The speech portions constitute a conventional speaker segmenta-
tion task, which can be clustered to form separate classes for com-
mon interlocutors, the most common being the user herself. Auto-
matic tags indicating who was involved in each conversation/meeting
will certainly enhance the automatic diary function.

This, however, brings us squarely into the domain of privacy con-
cerns. We have frequently encountered shock and resistance from
acquaintances when we describe our project to create continuous
audio archives. Traditionally, conversation is ephemeral, and it is
disconcerting when this deeply-ingrained assumption is overturned
by veridical records. These values have even been legally codi-
fied; although US Federal law permits recording of conversations
in which the person making the recording is a participant, some
states impose a higher standard – such as California, where it is al-
ways illegal to record a conversation without explicit permission of
all parties.

Thus, we must also interpret our goal of ‘minimal impact’ as
extending to having minimal negative impact on the privacy rights
of all people with an involvement in the data collected. This issue
was explicitly considered in the Forget-me-not system [10] which
included the concept of “revelation rules” to govern how much in-
formation could be retained about different events at a fine level of
detail. The goal of these rules was to mirror implicit assumptions
about what is recalled, for instance, it may be acceptable for the au-
tomatic diary to record that a certain person was present in a partic-
ular meeting (based on voice identification), but their speech should
only be retained when explicit permission has been obtained, both
globally and on a per-event basis.

Privacy concerns can rightly act as a major impediment to de-
velopment of these technologies, thus we also see it as a priority
to provide proactive, reliable technical solutions for these issues.
Given a reliable method for speech segment identification, we pro-
pose to have our system’s default behavior be to scramble such
segments to render the words unintelligible. One possible low-
complexity technique is to break the audio into windows of, say,
50 ms, then randomly permute and reverse these segments over a
1 s radius. A large overlap between adjacent frames would make
the process virtually impossible to undo. At the same time, the re-
sulting signal, while unintelligible, would have a short-time spec-
trum with statistical properties similar to the original speech, mean-
ing that speaker identification could still be applied.



Figure 5. Example of timeline display. The same time period as figure 4, but viewed in the custom timeline viewer. In addition to the automatic
segments, audio is rendered as a psuedo-spectrogram, with intensity depending on average energy and color based on spectral entropy.

Such scrambling could be suppressed for speakers for whom the
system has ‘permission’ to make a full record, for instance the
wearer. However, to err on the side of caution, we will want to tune
our speech detector to make very few false rejects (so that almost all
captured speech is correctly identified as such), and our identifica-
tion of specific speakers should make very few false accepts (so that
only speech that truly comes from ‘authorized’ speakers is retained
unscrambled). As a failsafe starting point, we could scramble the
entire audio signal and implement the scrambling within the signal
capture routine so that no unscrambled signal is ever stored.

However, for speech that is captured in intelligible form, auto-
matic speech recognition could provide valuable information for
future summarization and retrieval applications. Recent progress
in the recognition of natural meetings recorded with table-top mics
has addressed very similar problems; we are involved in such a
project and can investigate applying the same techniques [19].

3.2 Data capture
We are continuing our data collection activities – since, according
to the ‘minimal impact’ philosophy, it is easy to do so. We now
have duplicate capture systems in use by several people.

A major lesson of the work so far is the expense and value of
ground-truth data: anything that can be done to minimize or avoid
time spent making annotations on recorded data is of great inter-
est. As mentioned above, we have considered GPS position logs,
recorded at the same time as the audio, as one way to automatically
collect information on changes in location and activity. This data
usually turns out to be pretty coarse, however, since it tells us only
when the user was outside.

Other options we have considered include real-time annotation
via date-stamped notes collected on a PDA. While preferable to
offline annotation, this is intrusive and easily forgotten. A slightly
less cumbersome approach is to embed in-band marker signals with
some kind of ‘bleeper’.1 For instance, touch tones generated by a
cell phone or self-contained ‘blue box’ can be played close to the
recorder’s microphone, then automatically located in the recorded
signal, using DTMF detection routines modified to tolerate higher
levels of background noise. At the very least, these can be used to
quickly locate important regions during subsequent manual anno-
tation.

1Suggested by Harry Jackendoff.

3.3 Browsing and applications
We need a more sophisticated custom browser. The Snack audio
toolkit [16] provides convenient high-level tools for incorporating
sound and visual representations in graphical user interfaces, and
a common XML file format will allow us to integrate timestamped
event data scavenged from a wide range of other sources. Increas-
ingly sophisticated secondary analyses, such as segment classifi-
cations and speech detection, will be incorporated as they become
available.

One hope in beginning to grow archives of this kind is that pre-
viously unimaginable uses will become apparent; for us, however,
the ‘killer app’ remains elusive. One of the main arguments for
continuous data collection is that certain data will only become of
interest in retrospect, as distinct from scheduled events such as lec-
tures and important meetings that can be deliberately and explicitly
recorded. A possible area for this retrospective data analysis could
be health-related. For instance, if the user falls sick with a cold on
a particular day, it may be possible to analyze and extract a pattern
of infrequent sneezes that were actually early signs of the infec-
tion; once the pattern has been analyzed, automatic recognition of
these subliminal signs could alert the user, allowing her to promptly
medicate and reduce the impact of the disease.

Another use that does not merit an explicit data collection but
could be of interest if the data were available ‘for free’ is a kind of
weekly summary report, detailing how much time was spent in dif-
ferent activities such as meetings, handling email, travel etc. Track-
ing these indices over extended periods could help individuals re-
fine and diagnose their time management issues.

4. CONCLUSIONS
We have described our experiments with using low-cost commer-
cial portable audio technology to collect large-scale continuous per-
sonal recordings, and presented some initial results showing the
feasibility of analyzing this data to create an ‘automatic diary’ of
activities through the day. The main advantage of this approach
in comparison with audio-video recordings is its near-zero impact
on the behavior and practice of the user, while still capturing rich
information. Extending this idea to include other readily available
time-stamped data from sources such as email logs and phone bills
brings the vision of a comprehensive automatic diary much closer.

By the same token, success and progress in this area will require
sensitive consideration of the way in which these new technolo-



gies will influence existing social relations and practice. In particu-
lar, the idea of systematically recording hitherto evanescent casual
conversations is deeply disturbing to many people. Finding an ac-
ceptable solution to this problem is an urgent priority, and we have
proposed an approach of automatic scrambling of the short-term
structure of the speech that can retain most of the essential ambi-
ent information in the audio track without violating the intimate
privacy of conversations.
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