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ABSTRACT Speech features based on short 10-30 ms time frames
- ] frequently incorporate temporal information in some form
Current speech recognition systems uniformly employ ¢ g. through delta features. Hermansky and Morgan showed
short-time spectral analysi usially over windows of 10-  that relative spectral (RASTA) post-processing of critical-
30 ms, as the basis for their acoustic representations. Anyhang energy time trajectories using IIR bandpass filters in-
detail below this timescale is lost, and even temporal struc- creased robustness and removed inter-frame spectral analy-
ture above this level is usually only weakly represented in gjg grtifacts 3].
_the form of deltas etc. We address this Iimitation by_propos— We wmnsider systems that start by breaking the signal
ing a novel representation of themporal envelpe in differ-  jnq time frames are treating time as a secondary dimension.
gnt frequer_my bands by exploring _the_dual of conventional \yjg propose to alleviate this shortcoming with a new sig-
linear prediction (LPC) when applied in the transform do- 5| representation that treats time as the primary processing
main. With this technique of frequency-domain linear pre- gimension, without the distortion of an intermediate frame
diction (FDLP), the ‘poles’ of the model describe tempo- | 4ia
ral, rather than spectral, peakBy usirg analyss windows In the next section we present a generic model that ful-

on the order of huneds of millisecondshie procedure au- i1 oyr goals by capturing temporal information adaptively.
tomatically decides how to distribute poles to best model |, section 3 we show how we can extract features from our
the temporal structure within the window. While this ap- mqqe| that can be used successfully in ASR. Those features
proach offers many possibilities for novel speech features, ;¢ eyajuated in section 4 by using a standard HTK testbed.

we experiment with one particular form, an index describ- |, section 5 we discuss our findings and present our conclu-
ing the ‘dharpness’ of individual poles within a window, oNS

and show a large relative word error rate improvement from

4.97% to 3.81% in a recognizer trained on general conver-

saional telephone speech and tested on a small-vocabulary 2. TIME-ADAPTIVE MODEL

spontaneous numbers task. We analyze this improvementin

terms of the confusion matrices and suggest how the newly- The goal of our model is a parametric description of the

modeled fine temporal structure may be helping. temporal dynamics of speech. We want adaptively to cap-
ture fine temporal nuances with millisecond accuracy while

at the same time summarize the signal’s gross temporal evo-
1. INTRODUCTION lution in timescales of 500 ms or more.
The part of the model responsible for the time-adaptive
Contemporary analysis techniques for acoustic modeling in behavior is frequency-domainlinear prediction (FDLP). The
automatic speech recognition agectrum-based. Spectral discrete cosine transform (DCT) provides a frequency-domain
structures such as formants convey important linguistic in- representation that is real-valued on which we apply linear
formation. Neverthiess this is only a partial representation prediction. By duality with the way we model spectral en-

of speech signals. velopes using linear prediction in time, we can model tem-
We bdieve that temporal stieture in sub-10 ms tran-  poral envelopes using linear prediction in frequency.
sient segmentsontains important cues for both the percep- This model has several advantages. Fine time-adaptive

tion of natural sounds [1] as well the understanding of stop accuracy can be used to pin-point important moments in
bursts in speech. At the other extreme, the gross temporaltime such as those associated with transient events like stop
distribution of acoustic energy in windows of up to 1 sec bursts. At the same time, the long-timescale summariza-
has proven to be asuccessful domain for the recognition of tion power of the temporal envelopes gives us the ability to
complete phonemes and the description of their dynamicstrain recognizers on complete linguistic units lasting longer
[2]. than 10 ms and possibly even learning acoustically-feasible

Submitted toASRU-2003, Nov 30-Dec 04, 2003, &. Thomas USVI



phoneme sequences —a _step that has been traditionally le Spectrogram of x| Spectrogram of DCT{X[n]}
for the domain of sequential state models. ¥ § ; ;E i A o

Conceptually, oumethod is comprised of two parts.
The DCT is applied on long-time frames, then linear pre-
diction is carried out on the output of the DCT. A discussion
of some key properties of the DCT will provide insight and
build an intuition for the method.
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2.1. Discrete Cosine Transform (DCT)

The DCT enjoys wide use in the speech community in ap-

plications such as transform coding and, most prominently, Fig. 1. Time-frequency analysis of a 2 sec speech sample.
as an approximation to Karhunen-Loeve Transform (KLT) On the left the regular specigram and on the right the spec-
decorrelation. As part of the cepstral transformation, the trogram of the 2 sec DCT.

DCT appears as post-processing step in virtually all fea-

ture extractors for ASR. Foratly, the forward DCT of an

N point real sequence/n] can be defined as 2.2. Frequency-domain linear prediction (FDLP)

N1 As mentbned above, FDLP is the part of the model that pro-

x Kl — alk 2n+1) 7k vides the time adaptive behavior we want to achieve. FDLP

por[k] = alk] Z z[n] cos ON 1) is the frequacy-domain dual of the well-known time-domain
=0 linear prediction (TDLP). Inthe same way that TDLP es-
k=01,...,N-1 timates the power spectrurBDLP estimates the temporal

envelope of the signal, specifically the square of its Hilbert

where:
envelope,

a[k]={ 1@ :z?,z,.,.,N—l @ e<t>=f—1{/)?<o-)?<<—f>dc} @)

A less well-known property of the DCT is its ability to ap- je. the inverse Fourier transform of the autocorrelation of
proximate the envelope of the discrete Fourier transform the single sided (posite frequency) spectrunf((f). We
(DFT). Denoting asX p pr[k] the DFT ofa length2N zero-  yse the autocortation of the spectral coefficients to predict
padded version af[n], it has teen shown [4] that the enve-  the temporal envepe of the signal.
lope of the DCT is bounded by the envelope of the zero-  Although FDLP is applied in the spectral domain it still
padded DFT and in fact they are exactly related by has the same peak-hugging properties as TDLP, only the
peaks are in the temporal, not spectral, envelope. FDLP
Xperlk] = a[k] | Xppr[k]| cos <9[k] — 77_k> model order selection is guided by the temporal structure of
2N ) (3) speech the same way TDLP model order is dictated by for-
k=0,1,....N -1 mant structure. The difference here is that we can choose an
arbitrarily long temporal window on which to apply FDLP
where| X prr[k]| andd[k] are the magnitude and phase of so we reed to define a ‘pole rate’, i.e. the number of model
the zero-padded DFT respectively. poles used per time unit.

The above mentioned property helps us understand fig-  To illustrate, figure 2 shows a 256 ms long speech seg-
ure 1. On the left we see the spectrogram of a 2 sec speeciment at 8 kHz sampling rate. After taking the 2048 point
sample and o the right we see the spectrogram of a DCT DCT of the whole sample we fit a single FDLP polynomial
transform of he whole sample (treating the DCT output and extract the temporal envelope of the segment. Notice
sgjuence as a sequence in time). One can notice that thehe tradeoffs involved in model order selection: In the case
DCT spectrogram looks like a mirror image of the regular of 10 poles the envelope is too smooth and gives only a loose
spectrogram over the axigme = frequency. Itis im- approximation. In the case of 40 poles, the envelope is start-
portant to realize that the two figures are not exact mirrors, ing to fit the pitch pulses—something we wish to avoid (for
due to the cosine modulating term in equation 3. (To listen English-language ASR applications anyway). The case of
to these DCT waveforms, please visitt p: / / www. ee. 20 poles strikes a good balance, capturing both the gross
col unbi a. edu/ “mari os/ proj ects/dct _|istening/.) varidion as well & the sbp burst transients in the begin-
Having introduced DCT and its relevant properties we are ning of the sample. This combination defines a pole rate of
now ready to proceed with the discussion of FDLP. 20/256 ms= 0.1 pole/ms. Note, however, that the poles are



distributedadaptively within the 256 ms window. This flex-
ibility in deploying its modeling power is a key strength of
the model. )

A semnd example is displayed on figure 3. In this case
we use he same 256 ms long sample but this time we apply 003 F
FDLP on 4 logarithmically-dit octave bands, namely O- 002y
0.5,0.5-1, 1-2 and 2-4 kHz. We use the same pole rate of 2( |
poles per 256 ms for each band as in our previous example
Notice that he high frequency band is resolving the tran- |
sient while the low frequency band is capturing the gross oo |
spectral variation. We call this method “subband FDLP”.

FDLP is in fact a repurposing of a system first intro- o3[
duced by Herre and Johnston [5]. Dubbed temporal noise o.02
shaping (TNS), its principal application was in the elimina- 001 |
tion of pre-echo artifacts assatéd with transients in per- 0,55 01 015 sz
ceptual audio coders. Using D*PCM coding of the frequency-
domain coefficients, the authors showed that coding noise
could be shaped to lie under the temporal envelope of the
transient.

In their original paper, Herre and Johnston presented
a case where FDLP was applied on four separate spectrat

hands modeling four independent temporal envelopes, es'poles that it resolves individual pitch pulses. The middle

sqw'[ciially WEat we cgll Slébband FDLPH But becausg trlsﬂeptlizrréez panel using 20 poles for 256 ms captures the transient and
windows they onsidered were very short (as used in the gross envelope while aiding the pitch pulses.

AAC) and because they were mly concerned with time-
localized transients whichdve a nearly flat spctrum, they

concluded that the temporal envelopes in different bandsy, eq for use in current speech recognizers; the approach de-
were hghly correlated and wrtua!ly identical. The power of  ¢.ihed belowcan only be regarded as a first foray. One can
our method comes from extending subband FDLP 10 con-jqentity two families of parameters that can be extracted.

sider long time windows. By transforming longer, 256 MS g4y e can us the terporal envelopes directly: The en-
blocks of signal (extensible to seconds or more), we captureve|Opes in figure 2 are sampled DFTs of the impulse re-

enough variation to manifest itself as significantly different sponses (IR) of the all-pole filters that have been fit to the

temporal evelopes between bands. frequency domain. The basic LP representation may be suit-
To tie this back to the property of the DCT that we pre- ape for direct transformatiomio temporal-based features

sented irequation 3 and in figure 1, consider being handed g, as modulation spectra, and relationships such as the

the signal that led to the rigtitand spectrogram of figure 1, girect transformation from pdiction coefficients to cepstra

without knowing that it was the result of a DCT. If we were g1 can give us decorrelated features describing the temporal
to model this one-dimensionatgquence using our standard  ahavior in different subbands.

frame-based LPC techniques, we would be finding approx-
imations to the vertical (spectjatructure in vertical slices
(short-time windows) of the spectrogram. But because of
the spectrogram-domain refition effected by the DCT, the
envelopes we recover in fact describe tivaporal structure
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Fig. 2. Bracketing the pole rate. Original 256 ms speech

segment ad temporal envelopes fit using 10, 20 and 40

poles respectively. Notice that the first envelope captures
he gross variation but doesn’t give us any information about

he transient burst. The theird envelopeuses so many

The second approach seeks to derive features from each
individual pole in the model i.e. the roots of the predictor
polynomial. The angle of the pole on theplane corre-
sponds to very accurate timing information, and the magni-

N . - tude can provide knowledge about the energy of the signal,
of “short-frequency” regions of the spectrum of the original keeping in mind that this is a smoothed approximation to

(pre—rI]D_CT) sEndaI,_Le. subbands. ‘ hi hthe ‘true’ Hilbert envelope. fie sharpness of the pole (i.e.
This method gives us a new parameter space from whic how closdy it approaches the unit circle) relates to the dy-

we can extract novel features for use in ASR. We will NoW o ies of the envelope: a sharper pole indicates more rapid
present our initial feature extraction approach. variation of the envelope at that time

In our initial experiments, our goal was to extract fea-
3. FEATURE EXTRACTION tures at a 10 ms frame-rate so that we could concatenate
them with standard PLP features as enhancements to a base-
There are many ways in which the temporal envelope in- line recognition system. In that sense we have not fully ex-
formation mod&d in FDLP could be converted into fea- ploited the richness of the FDLP representation, but merely
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Fig. 3. Subband FDLP. The same speech segment as in fig-Fig. 4. Feature extraction process. The top pane shows the

ure 2 using 20 poles but this time with FDLP performed sep- original 256 ms segment of speech. The middle pane shows

arately on 4 logarithmic bands. The splitis 0-0.5, 0.5-1, 1-2 the envebpe modeled by FDLP, and the sharpness indices

and 2-4 kHz. Notice that the highest frequency band (bandfor the 10 positive-time poles. The bottom pane shows the

4) clearly captures the transiemhile band 1, reflecting the  effect of the time-localizing @ussian window; features are

lowest frequencies, capturesmoother energy variation. calculated as the maximum of these values per band per
frame.

tested its usefulness in a conventional recognition system.
Adopting the second, pole-based approach, we examine 4. EVALUATION
an index of sharpness of the FDLP pofes} defined by
We used a conventional HTK recognizer related to the sys-
1 tems desched in [7] and 8]. We traired GMM-HMM
pi = 1 — |pi (5) models on a mixture of conversational and read speech, us-
ing acombination of Switchboard, Callhome, and Macro-
Thus, as pole magnitudes grow from zero to approach thephone databases. To explore generalizability and to sim-
unit circle, p; grows from 1 to an unbounded large positive plify the testing procedure, we tested on OGI-Numbers95,
value. a35-word task consisting of spontaneous numbers extracted
For each analysis frame in time we take the full DCT from prompted telephone interactions.
and perform FDLP on 4 log bands using 20 poles per band.  Table 1shows our recognition Word Error Rate (WER)
The choice of a 256 ms analysis window (2048 samples atresults. The first line, “PLP12”", is our baseline system em-
8 kHz) is, without loss of generality, dictated by compu- ploying 12th order PLP features (plus deltas and double
tational considerations. Subbands are formed by breakingdeltas). Subsequent systems augment these features with
up the DCT into subranges that are exact powers of two, FDLP sharpness features various guises. “FDLP-4log”
e.g. 256, 256, 512 and 1024 points for a 4-way split. After adds four elements to each feature vector, derived from 4,
modeling with 20 poles per band per frame we calculate ourlogarithmically-spaced octave subbands (0-500 Hz, 500 Hz-
sharpnessidex of equation 5. We then scale ths using 1 kHz, 1-2 kHz, and 2-4 kHz). We found that perform-
a Gawssian window taachieve a finer time resolution than ing a final DCT decorrelation on each frame of FDLP fea-
the 256 ms window, as illustrated in figure 4, and keep the tures impoved recognition, shown in the “FDLP-Xlog+dct”
maximum value in each band in each frame. The purpose oflines. We tried using between 2 and 5 octave bands (where
the window is to localize the sharpness values in the vicinity 2 ‘octaves’is simply 0-2 kHz and 2-4 kHz, and 5 bands
of the center of the frame. Figure 5 visually compares thesegoes down to 0-250 Hz) to find the best compromise be-
pole sharpness features with direct measures of the subbantiveen signal detail and model accuracy (since narrow fre-
energy. After examining the distributions of the sharpness quency bands contain fewer frequency samples with which
parameters, we added a logarithmic transform to make theto estimate the LP parameters). We also tried dividing the
distributions closer to Gaussian, and thus a better match tdfrequency axis on a Bark scale; this allowed us to use more
our statisical models. bands (since Bark bands do not get narrow so quickly in the




. Features raw 20k | pad 85k
2 PLP12 4.97% | 2.75%
o FDLP-4log 4.08% | 2.90%
FDLP-2log+dct 2.82%
. 0 FDLP-3lbog+dct 2.61%
z 2 - FDLP-4log+dct | 3.81% | 2.63%
g 43 FDLP-5log+dct 2.69%
= 62 FDLP-8bark+dct| 4.38%
24 ill | B i 11 1L 5 Table 1. Recognition WER results. “PLP12” is the 12th or-
12 ﬂ | ,‘ | ‘ * ] 4 der PLP cepstrum baseline, whose features are augmented
051 I| ] il N E with FDLP features from between 2 and 8 subbands in the
0-05 MDA 11 | , || AE other lines. “log” indicatedog-spaced (octave) subbands,
025 05 0.75 1 15 175

125 15 175 fime/sec which “bark” is for Bark-spaced subbands. “+dct” indicates
DCT decorrelation applied to the small FDLP vector. The

Fig. 5. Feature examples. The top pane shows a con-"“raw 20k” column gives results from the smaller, initial sys-

ventional spectrogram of the speech sample. The middletem, and “pad 85k” results come from the improved training

pane shows the per-frame maximum of the temporal en-and testing sets.

velopes extracted in each band by FDLP, using 256 ms

frames steppedybl0 ms. Note tk similarity to the energy

in the spectrogram. The bottom pane plots the sharpness in-

dex features, calculated as debed in the text. Notice that _

they pick the the important moments in time, like transient 2ck of any advantage from using more, Bark-spaced bands

stop bursts, while almost completely ignoring high-energy (‘FDLP-8bark+dct”) was also clearly shown.

but stable prts of the signal such as vowels. ] )
With the larger, better-performing “pad 85k” system, the

improvements due to FDLP are smaller, with the best im-

low frequencies) but it was not beneficial. provement of 2.75% baseline WER to 2.61% for 3 subband

We report results for two systems. Our initial experi- decorrelated features (“FDLP-3log+dct”) constituting a 5%
ments were done with a system, “raw 20k”, trained on ap- relative improvement. We are, however, getting to the lim-
proximately 16 hours of speech (20,000 utterances), andits of this test set at this level of performance: With only
were tested using thew Numbers95 utterances. Training 4757 words in the test set, a simple binomial significance
features were mean- and variance-normalized within all thetestrequires an absolute word error rate difference of about
utterances identified as belonging to a single speaker, but thd.8% for significance at the 5% level. Thus, although the
test set normalization was performed only within utterance. improvement from FDLP in the “raw 20k” system is statis-

For our later experiments we sought to improve the base-tically significant, none of the “pad 85k” results are signif-
line, so the training set was increased to 64 hours (85,000 uticantly different from each other by this measure. In future
terances, “pad 85k”). We found that padding each end of ourexperiments we will be using &rger test set, as well as
test utterances with 100 ms of artificial ‘background noise’ a more diffialt task, to provide greater insight into perfor-
silence wadeneficial (common practice for the Numbers95 mance differences.
corpus). We also normalized across all test set utterances
marked as coming from the same speaker. These changes Some error analysis of these results is revealing, how-
together effected a relaBvWER impovementof almost ever. Fgure 6 compares the word-level confusion matrices
45% in our PLP baseline, from 4.97% to 2.75%. for the baseline “raw 20k” PLP system, and for the best-
performing “FDLP-4log+dct” system. Looking at the ab-
sdute differences in error counts (middle pane), we see the
greatest differences in for the words “four” (fewer confu-
For the “raw 20k” system, we see that any kind of FDLP- sions with “forty”), “eight” and “dx” (fewer deletions), and
derived information improved word error rate, with the great- “five” (fewer confusions with “nine”). We note that most
est improvement coming from augmenting the PLP featuresof these main differencesvaolve gops (/t/ in“eight” and
with decorrelated 4 octave-subband FDLP sharpness fea*forty”, and /k/ is “six”); this is consistent with our initial
tures (“FDLP-4bg+dct”). The WER change from 4.97% motivation for the FDLP sharpness features, of capturing in-
to 3.81% represents a 23.3% relative improvement. The ad-formation about short-duration transients in the speech sig-
vantage of usig DCT decorrelation was quite clear, and the nal.

4.1. FDLPresults



Confusion matrix: Baseline PLP (5.0%) (rownorm) Difference (Baseline - combo) (unnorm, N=4757) Confusion matrix: PLP+FDLP4dct (3.8%) (rownorm)

zero TTT zero TTT
oh I oh [
one [ [ one [] |
two [ ] two [
three [ 7] three [ ]
four four
five five
SiX SiX
seven seven
eight [T T T[] EEEEEEEEEEE N eight [T 1111 NN
nine nine
en en
eleven t7 eleven H:
twelve twelve
thirteen thirteen
fourteen 8 fourteen
fifteen fifteen [ |
sixteen z 6 sixteen
seventeen 3 seventeen
eighteen 3 4 eighteen
ineteen = nineteen
twenty I 2 twenty
thirty o thirty
forty c 0 forty
fifty > fifty
SIXty | 1] 8 2 SIXtY |
seventy | c seventy ]
eighty [ I eighty |
ninety I L ninety I
hundred I 51 1° hundred I
Ins I 11 8 Ins INEEEE | W]
zoottffssentettffssenttffssenhD zoottffssentettffssenttffssenhD zoottffssentettffssenttffssenhD

Fig. 6. Word-level confusion matrices for the “raw 20k” system. Left: for the baseline system (each row is normalized by
the prior of that word ). Right: for the best FDLP-augmented system. Middle: difference between the raw confusion counts
in the two matrices. Improvements appear as lighter celthénleading diagonal (more correct recognitions) and darker
off-diagonal cells (reduced confusions).
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