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ABSTRACT .

As part of a project into speech recognition in meeting environ-
ments, we have collected a corpus of multi-channel meeting
recordings. We expected the identification of speaker activity to
be straightforward given that the participants had individual
microphones, but simple approaches yielded unacceptably errone-
ous labelings, mainly due to crosstalk between nearby speakef's
and wide variations in channel characteristics. Therefore, we have
developed a more sophisticated approach for multichannel speech
activity detection using a simple hidden Markov model (HMM).

A baseline HMM speech activity detector has been extended to
use mixtures of Gaussians to achieve robustness for different

Crosstalk In the meeting scenario, with participants sitting
close together, it is common to get significant levels of voices
other than that of the microphone-wearing person on each
channel. This is particularly true for the lapel mics, which
pick up close neighbors almost as efficiently as the wearer
(however, users prefer not to wear headsets).

Breath noise Meeting participants are often not experienced
in microphone technique, and in many instances the head-
worn microphones pick up breath noises, or other contact
noises, at a level as strong or stronger than the voice.
Channel variation The range of microphones and micro-
phone techniques between and within meetings means that

speakers under different conditions. Feature normalization and ~the absolute speech level, and the relative level of background

crosscorrelation processing are used to increase the channel inde- 10iSe, vary widely over the corpus.

pendence and to detect crosstalk. The use of both energy normalhe multiparty spontaneous speech recorded on multiple separate
ization and crosscorrelation based postprocessing results in a 35microphones for this project is not represented in any standard
relative reduction of the frame error rate. task or database, and many of these problems have attracted little

Speech recognition experiments show that it is beneficial in thi" NC Previous attention. For these reasons, we found it necessary

multispeaker setting to use the output of the speech activity deted? develop a more sophisticated system to detect the activity of

tor for presegmenting the recognizer input, achieving word errofndividual speakers.
rates within 10% of those achieved with manual turn labeling. ~ The remainder of this paper is organized as follows. In Section 2
we present both the architecture of the S/INS detector and the fea-
1. INTRODUCTION tures used in the multichannel setting. Section 3 describes our

The Meeting Recorder project at ICSI aims at processing (trangpproach to correcting crosstalk pickup via crosscorrelation. Sec-

scription, query, search, and structural representation) of audion 4 presents experimental results with the new S/NS detector,

recorded from informal, natural, and even impromptu meetings.SeCt'on 5 presents a discussion, and Section 6 gives conclusions.

Details about the challenges to be met, the data collection, and

human and automatic transcription efforts undertaken in this 2. HMM-BASED S/NS DETECTION

project can be found in [1]. Each meeting in our corpus is recordes 1 Baseline architecture

with close-talking microphones for each participant (a mix of . . .

headset and lapel mics), as well as several ambient (tabletop) mics) "€ S/NS detection module is based on a hidden Markov model
. . . HMM) S/NS detector designed for automatic speech recognition

In this paper we focus on the task of automatically segmenting th

S e ) : ) ’ ~"on close-talking microphone data of a single speaker [2]. The
individual participants’ channels into portions where that partici-y,qejine detector is similar to the one used in [3], and consists of
pant is speaking or silent. We cast this as segmentation intq

r > ; " ; : —' " "an ergodic HMM with two main states — “speech” and “non-
spe_ec_:h (S) and_ nc_mspeech (NS) portions. Our interest in th'S’speech” —and a number of intermediate state pairs to impose time
preliminary labeling is threefold:

constraints on transitions between the two main states. Both main

+  Accurately pre-marking speech segments greatly improves and intermediate states use the same multivariate Gaussian den-
the speed of manual transcription, particularly when certain sity, i.e., one Gaussian for “speech” and one Gaussian for “non-
channels contain only a few words. speech”.

< Knowing the regions of active speech helps reduce errors an . . .
computation time for speech recognition experiments. For %_2 Modifications for the Meeting Recorder project

instance, speaker adaptation techniques assume segments 2.2.1 HMM with Gaussian mixtures

contain data of one spga}ker only. Crosstalk makes the distribution of features in the “nonspeech”
*  Patterns of speech activity and overlap are valuable data forgiate much more complex than in relatively static background

discourse analysis, and may not be extracted with the desiregyoise. Therefore, a mixture of Gaussians are used for the “non-

accuracy by manual transcription. speech” state. A mixture is used also for the “speech” state, moti-
The obvious approach to this problem, energy thresholding orvated by the fact that the S/NS detector for meeting data should be
each close-mic’d channel, turns out to give poor results. Our invesehannel independent, i.e., cope with different speakers and differ-
tigation revealed the following problems: ent microphones without the need for retraining.
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D—farﬂeld microphone Figure 1: Architecture of the multichannel S/NS detector

2.2.2 Features for S/NS detection 3. CROSSCORRELATION ANALYSIS

The wide variability of channel characteristics and signal level hasThe peak normalized short-time crosscorrelation,
considerable influence on the features used to model distributions

within the HMM states. To avoid dependence on absolute level, E z (x[n] Bx;[n+1]) %
we use a set of “normalized” features. The complete feature vector  py; = max 0 0 2
comprises 25 dimensions and is calculated over a 16 ms Hamming 0 12 120
: . . . S %[0y xn]
window with a frame shift of 10 ms. The feature vector contains W £n nm0 0

loudness values of 20 critical bands up to 8kHz (distance between

adjacent bands 1 bark), energy, total loudness, modified loudnedetween the active channéland] are used to estimate the simi-
[4], zerocrossing rate, and the difference between the channel spirity between the two signals. For “real” overlaps (two speakers
cific energy and the mean of the farfield microphone energies. ~ speaking at the same time) the crosscorrelation is expected to be

Zero crossing rate is independent of signal scaling, but the othelp‘.’ver than for *false” overlaps (one speaker coupled into both

components of the feature vector are normalized as follows: Spe(!!g(r:rrglztt}gﬂisrzblez/grasr?]i?(?mcl?rwg]tgaf{icr)n n; Z(sécvglcirsrggr%eﬁdt&e ?gotise_
tral loudness values are normalized to the sum over all criticaf P 9

bands. The total loudness and the modified loudness are normafli-ifference in the arrival time of the signal at the two microphones.

ized using the overall maximum within each channel. The postprocessing module calculates the crosscorrelation func-
) . : : . tion for time skews up to 250 samples (ca. 5m difference between
The log-energyFj(n) of channe] at framenis normalized by: the microphones) on 1024 point signal windows. The maximum is
- _ 1 smoothed via median filtering over a 31 point window. When the

Enorm (M = Ej(N) =B MZkEk(n) @ smoothed maximum correlation exceeds a fixed threshold, the
First, the minimum frame energgmn j of channelj is subtracted ~hypothesized “speech” region of the channel with the lower aver-

from the current energy valug(i) to compensate for the different 89¢ €nergy or loudness is rejected. The threshold is chosen as

. 2 . . escribed below.
channel gains. The minimum frame energy is used as an estlmape

of the “noise floor” to make this normalization mostly independent We consider in particular the relation of a lapel microphone (chan-
of the proportion of Speech activity in that channel. nel 0) and a hea(_jset mlcrophone (channel l) .Table 1 shows the
counts of frames incorrectly labeled as overlapping (both channels

In the second step the mean (log) energy oh&ithannels is sub- ﬁ:tive) in the preliminary analysis, broken down by the true state

tracted. This procedure is based on the idea that when a single si

nal appears in all the channels, the log energy in each channel wi ceording to hand labels).

be the energy of 'ghat signal plus a constant term accoynting for the true state frame count
linear gain coupling between that channel and the signal source.
Subtracting the average of all channels should remove the varia- chanO only 15 (0.6%)
tion due to theabsolute signal leveleaving a normalized energy chanO and others 186 (7.0%)
which reflects solely theelative gainof the source at channegl o
compared to the average across all channels. Signals that occur chanl only 1391 (52.4%
only in one channel, such as microphone contact and breath noise, chanl and others 938 (35.3%)
should also be easy to distinguish by this measure, since in this other channels only 41 (1.5%
case the relative gain will appear abnormally large for the local 1o other channel 83 (3.1%
microphone.

. . total 2654 (100%)
2.2.3 Architecture of the multichannel S/NS detector

. e ) Table 1: Frame counts of erroneous overlap labeling
For a meeting withiM individual channelsM detection modules

are used to create preliminary S/NS hypotheses for each dfithe As can be seen, the majority (88%) of erroneous overlap detec-
channels (see Figure 1), which are then fed into a postprocessirPns is found when channel 1 is active (rows “chanl only” and
module which focuses on correcting overlap regions (i.e., regionschanl and others” of Table 1), whereas activity in channel 0 is
where several hypotheses show activity) as described below. not combined with a large number of errors of this type. This is not
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8 801 | Table 2: SINS detection results with/without energy normalization

601 and with/without postprocessing.
FER: frame error rate, FRJ: false rejections, FAL: false alarms
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1 The recognizer was a stripped-down version of the large-vocabu-
crosscorrelation lary conversational speech recognition system fielded by SRI in

Figure 2: Smoothed maximum correlation for true overlaps and the March 2000 Hub-5 evaluation [6]. The system performs vocal-
frames mislabeled overlap where channel 1 was active tract length normalization, feature normalization, and speaker
' adaptation using all the speech collected on each channel. The

surprising, since the lapel microphone of channel O will pick upacoustic model consisted of gender-dependent, bottom-up clus-
more speech from other speakers than the headset microphonetefed (genonic) Gaussian mixtures. The Gaussian means are
channel 1. adapted by two linear transform so as to maximize the likelihood

Figure 2 shows the histograms of the smoothed maximum correls@f & phone-loop model, an approach that is fast and does not
tion between channel 0 and channel 1 for true overlap regiongequire recognition prior to adaptation. The adapted models are
(according to the hand transcriptions) compared to error frame§ombined with a bigram language model for decoding. As an

where channel 1 was active. It can be seen that choosing a thresgxpedient we omitted more elaborate adaptation, cross-word triph-
old between 0.4 and 0.7 will successfully reject many of the case§ne modeling, and higher-order language and duration models
when activity in channel 1 is causing the preliminary analysis toffom the full SRI recognition system (which yield about a 20%

mistakenly label channel 0 is active, while excluding few or nonerelative error rate reduction on Hub-5 data). Note that both the

of the truly overlapped frames. acoustic models and the language model of the recognizer were
identical to those used in the Hub-5 system, i.e., did not include
4. EXPERIMENTS AND RESULTS any meeting training data
4.1 S/INS detection 4.2.2 Test data

L Six different meetings were used as test data for the recognition
4.1.1 Training and test data experiments (see Table 3). Only native American speakers with a
The training data consists of the first 20 minutes of conversationagufficient word count were included in the ASR test set and the
speech of a four-speaker meeting with three males and one femalgigits reading portions of the meetings were excluded (see [1]).

wearing three wireless headset microphones and one wireless
lapel microphone. For each channel a label file specifying four dif-| Meeting Manual Automatic Unsegmentegd
ferent S/NS categories (foreground speech, silence regions, bac

; . all 41.6 45.8 73.2
ground speech and breath noises) was manually created using the
Transcriber tool [5]. no lapel 41.4 45.4 59.1
The test data consists of conversational speech from four different Table 3: Word error rate in percent for different segmentations
multispeaker meetings. Five consecutive minutes were chosen all: weighted average of all channels

from each channel of these meetings totalling 135 minutes (27 no lapel: weighted average of all channels except lapel channel
channels, 5 minutes each). The chosen regions involved several .

speakers and showed frequent speaker changes and/or speag&'3 Experiments and results

overlaps. These regions were manually marked with the categorieko evaluate the influence of the S/NS detection on ASR perfor-
“speech” and “nonspeech”. mance three types of experiments were conducted using different

4.1.2 Results segmentations of the test data:

S/NS detection is evaluated using the frame error rate for the twos: Manual segmentation: the test data of each channel was seg-

e S ,, “ . . mented according to the transcript. Only portions containing
class problem of classification into *speech” and r_10n§peech ! asspeech from the foreground speaker were fed to the recognizer.
well as the percentage of false alarms and false rejections.

. . . Automatic segmentation: the output of the S/NS detector was
Table 2 shows_ tha_t the average frame error rate is 1_8.0% Wlt_hou sed. Only “speech” portions were given to the recognizer.
energy normalization, 13.7% with energy normalization but with- ) o
out postprocessing, and 12.0% when both energy normalizatios- “Unsegmented” data: each channel was continuously divided
and postprocessing are applied. This is a relative improvement dito segments covering the complete signal. The chunking into
35% which is caused by a decrease in the number of false alarm§egments was necessary to feed the recognizer with signals of trac-

whereas the number of false rejections is slightly increased. ~ table length. As an expedient we used the feature normalizations
and speaker-adapted models from the “manual” condition; the

results are therefore an optimistic estimate of recognition error in
this condition.



Whereas the manual segmentation provides an upper bound fér possible direction for future research in this area could be a
recognition accuracy, the unsegmented data is expected to shavembination of S/INS detection and speaker verification methods
how the recognizer itself can handle the multispeaker situationto distinguish between foreground and background speech.
Table 3 shows the recognition results for the three different seg-

mentation types for each meeting of the test data. The automatic 6. CONCLUSIONS

S/NS segmentation achieves word error rates within 10% relativgye have presented an HMM based approach to speech activity
of the ideal manual labelings. detection which utilizes feature normalization and crosscorrelation
postprocessing. The method was applied to presegment speech
5. DISCUSSION data of multispeaker meetings in the framework of the ICSI Meet-
In the preliminary labeling, error analysis revealed a signficant dif-ing Recorder project [1].

ference between the case of channel 1 alone and the case of chafy meet the requirements of the multispeaker setting and improve
nel 1 active simultaneous with other channels. In the latter casgye channel independence of the system, normalized features are
th_e peak correlation is well below t'he'mode of the histogram insed. The proposed energy normalization method leads to reduc-
Figure 2. The smaller peak value indicates that sources such agyns in frame error rate. In addition, the experiments show that a
activity in another channels might also contribute to the occur-ygsscorrelation threshold is appropriate for detecting crosstalk.

rence of this type of error. In fact, a high correlation betweenggin approaches have been combined successfully.

channel 0 and one of the remaining channels can be found in mal . .
9 he S/NS detection results show that our system is able to capture

of these cases; in 68% of these frames, the normalized crosscorr ) . h
> most of the speech segments in the different channels. Since the S/

lation exceeds 0.5 with one of the other channels. ;
i i NS detection produces output for each channel separately, the sys-
The use of the “normalized energy” of Equation 1 reduces theem js able to detect regions of speaker overlap.

error rate by 26.4% relative (rows 1 and 2 of Table 2), mainly by a

decrease in false alarms at the cost of some added false rejectiorrecognition resuits indicate that automatic segmentation leads to
. . 0, i i i
A closer analysis of the results shows that, without energy normal€/TOr rates about 10% higher than using a manual segmentation,

ization, the error rates of the lapel microphones are particularl ut to considerably better performance when compared to speech

high, which makes us believe that the normalization is essential t8c09nition on unsegmented data.
cope with the channel variations found on this data.
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