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ABSTRACT
As part of a project into speech recognition in meeting environ-
ments, we have collected a corpus of multi-channel meeting
recordings. We expected the identification of speaker activity to
be straightforward given that the participants had individual
microphones, but simple approaches yielded unacceptably errone-
ous labelings, mainly due to crosstalk between nearby speakers
and wide variations in channel characteristics. Therefore, we have
developed a more sophisticated approach for multichannel speech
activity detection using a simple hidden Markov model (HMM).

A baseline HMM speech activity detector has been extended to
use mixtures of Gaussians to achieve robustness for different
speakers under different conditions. Feature normalization and
crosscorrelation processing are used to increase the channel inde-
pendence and to detect crosstalk. The use of both energy normal-
ization and crosscorrelation based postprocessing results in a 35%
relative reduction of the frame error rate.

Speech recognition experiments show that it is beneficial in this
multispeaker setting to use the output of the speech activity detec-
tor for presegmenting the recognizer input, achieving word error
rates within 10% of those achieved with manual turn labeling.

1.  INTRODUCTION
The Meeting Recorder project at ICSI aims at processing (tran-
scription, query, search, and structural representation) of audio
recorded from informal, natural, and even impromptu meetings.
Details about the challenges to be met, the data collection, and
human and automatic transcription efforts undertaken in this
project can be found in [1]. Each meeting in our corpus is recorded
with close-talking microphones for each participant (a mix of
headset and lapel mics), as well as several ambient (tabletop) mics.

In this paper we focus on the task of automatically segmenting the
individual participants’ channels into portions where that partici-
pant is speaking or silent. We cast this as segmentation into
“speech” (S) and “nonspeech” (NS) portions. Our interest in this
preliminary labeling is threefold:

• Accurately pre-marking speech segments greatly improves
the speed of manual transcription, particularly when certain
channels contain only a few words.

• Knowing the regions of active speech helps reduce errors and
computation time for speech recognition experiments. For
instance, speaker adaptation techniques assume segments
contain data of one speaker only.

• Patterns of speech activity and overlap are valuable data for
discourse analysis, and may not be extracted with the desired
accuracy by manual transcription.

The obvious approach to this problem, energy thresholding on
each close-mic’d channel, turns out to give poor results. Our inves-
tigation revealed the following problems:

• Crosstalk:  In the meeting scenario, with participants sitting
close together, it is common to get significant levels of voice
other than that of the microphone-wearing person on each
channel.  This is particularly true for the lapel mics, which
pick up close neighbors almost as efficiently as the wearer
(however, users prefer not to wear headsets).

• Breath noise: Meeting participants are often not experienced
in microphone technique, and in many instances the head-
worn microphones pick up breath noises, or other contact
noises, at a level as strong or stronger than the voice.

• Channel variation:  The range of microphones and micro-
phone techniques between and within meetings means tha
the absolute speech level, and the relative level of backgrou
noise, vary widely over the corpus.

The multiparty spontaneous speech recorded on multiple sepa
microphones for this project is not represented in any stand
task or database, and many of these problems have attracted
or no previous attention. For these reasons, we found it necess
to develop a more sophisticated system to detect the activity
individual speakers.

The remainder of this paper is organized as follows. In Section
we present both the architecture of the S/NS detector and the
tures used in the multichannel setting. Section 3 describes
approach to correcting crosstalk pickup via crosscorrelation. S
tion 4 presents experimental results with the new S/NS detec
Section 5 presents a  discussion, and Section 6 gives conclusio

2.  HMM-BASED S/NS DETECTION

2.1 Baseline architecture
The S/NS detection module is based on a hidden Markov mo
(HMM) S/NS detector designed for automatic speech recogniti
on close-talking microphone data of a single speaker [2]. T
baseline detector is similar to the one used in [3], and consists
an ergodic HMM with two main states – “speech” and “non
speech” – and a number of intermediate state pairs to impose t
constraints on transitions between the two main states. Both m
and intermediate states use the same multivariate Gaussian
sity, i.e., one Gaussian for “speech” and one Gaussian for “no
speech”.

2.2 Modifications for the Meeting Recorder project

2.2.1 HMM with Gaussian mixtures

Crosstalk makes the distribution of features in the “nonspeec
state much more complex than in relatively static backgrou
noise. Therefore, a mixture of Gaussians are used for the “n
speech” state. A mixture is used also for the “speech” state, mo
vated by the fact that the S/NS detector for meeting data should
channel independent, i.e., cope with different speakers and diff
ent microphones without the need for retraining.
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2.2.2 Features for S/NS detection

The wide variability of channel characteristics and signal level has
considerable influence on the features used to model distributions
within the HMM states. To avoid dependence on absolute level,
we use a set of “normalized” features. The complete feature vector
comprises 25 dimensions and is calculated over a 16 ms Hamming
window with a frame shift of 10 ms. The feature vector contains
loudness values of 20 critical bands up to 8kHz (distance between
adjacent bands 1 bark), energy, total loudness, modified loudness
[4], zerocrossing rate, and the difference between the channel spe-
cific energy and the mean of the farfield microphone energies.

Zero crossing rate is independent of signal scaling, but the other
components of the feature vector are normalized as follows: Spec-
tral loudness values are normalized to the sum over all critical
bands. The total loudness and the modified loudness are normal-
ized using the overall maximum within each channel.

The log-energyEj(n) of channelj at framen is  normalized by:

(1)

First, the minimum frame energyEmin,j of channelj is subtracted
from the current energy valueEj(i) to compensate for the different
channel gains. The minimum frame energy is used as an estimate
of the “noise floor” to make this normalization mostly independent
of the proportion of speech activity in that channel.

In the second step the mean (log) energy of allM channels is sub-
tracted. This procedure is based on the idea that when a single sig-
nal appears in all the channels, the log energy in each channel will
be the energy of that signal plus a constant term accounting for the
linear gain coupling between that channel and the signal source.
Subtracting the average of all channels should remove the varia-
tion due to theabsolute signal level, leaving a normalized energy
which reflects solely therelative gainof the source at channelj
compared to the average across all channels. Signals that occur
only in one channel, such as microphone contact and breath noise,
should also be easy to distinguish by this measure, since in this
case the relative gain will appear abnormally large for the local
microphone.

2.2.3 Architecture of the multichannel S/NS detector

For a meeting withM individual channels,M detection modules
are used to create preliminary S/NS hypotheses for each of theM
channels (see Figure 1), which are then fed into a postprocessing
module which focuses on correcting overlap regions (i.e., regions
where several hypotheses show activity) as described below.

3.  CROSSCORRELATION ANALYSIS
The peak normalized short-time crosscorrelation,

(2)

between the active channelsi and j are used to estimate the simi-
larity between the two signals. For “real” overlaps (two speake
speaking at the same time) the crosscorrelation is expected to
lower than for “false” overlaps (one speaker coupled into bo
microphones). For sound coming from a single source, the cro
correlation shows a maximum at a time skew corresponding to
difference in the arrival time of the signal at the two microphone

The postprocessing module calculates the crosscorrelation fu
tion for time skews up to 250 samples (ca. 5m difference betwe
the microphones) on 1024 point signal windows. The maximum
smoothed via median filtering over a 31 point window. When th
smoothed maximum correlation exceeds a fixed threshold,
hypothesized “speech” region of the channel with the lower ave
age energy or loudness is rejected. The threshold is chosen
described below.

We consider in particular the relation of a lapel microphone (cha
nel 0) and a headset microphone (channel 1). Table 1 shows
counts of frames incorrectly labeled as overlapping (both chann
active) in the preliminary analysis, broken down by the true sta
(according to hand labels).

As can be seen, the majority (88%) of erroneous overlap det
tions is found when channel 1 is active (rows “chan1 only” an
“chan1 and others” of Table 1), whereas activity in channel 0
not combined with a large number of errors of this type. This is n

Enorm j, n( ) Ej n( ) Emin j,–
1
M
----- Ek n( )

k∑–=

true state frame count

chan0 only 15 (0.6%)

chan0 and others 186 (7.0%)

chan1 only 1391 (52.4%)

chan1 and others 938 (35.3%)

other channels only 41 (1.5%)

no other channel 83 (3.1%)

total 2654 (100%)

Table 1: Frame counts of erroneous overlap labeling
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Figure 1:Architecture of the multichannel S/NS detector
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surprising, since the lapel microphone of channel 0 will pick up
more speech from other speakers than the headset microphone of
channel 1.

Figure 2 shows the histograms of the smoothed maximum correla-
tion between channel 0 and channel 1 for true overlap regions
(according to the hand transcriptions) compared to error frames
where channel 1 was active. It can be seen that choosing a thresh-
old between 0.4 and 0.7 will successfully reject many of the cases
when activity in channel 1 is causing the preliminary analysis to
mistakenly label channel 0 is active, while excluding few or none
of the truly overlapped frames.

4.  EXPERIMENTS AND RESULTS

4.1 S/NS detection

4.1.1 Training and test data

The training data consists of the first 20 minutes of conversational
speech of a four-speaker meeting with three males and one female,
wearing three wireless headset microphones and one wireless
lapel microphone. For each channel a label file specifying four dif-
ferent S/NS categories (foreground speech, silence regions, back-
ground speech and breath noises) was manually created using the
Transcriber tool [5].

The test data consists of conversational speech from four different
multispeaker meetings. Five consecutive minutes were chosen
from each channel of these meetings totalling 135 minutes (27
channels, 5 minutes each). The chosen regions involved several
speakers and showed frequent speaker changes and/or speaker
overlaps. These regions were manually marked with the categories
“speech” and “nonspeech”.

4.1.2 Results

S/NS detection is evaluated using the frame error rate for the two-
class problem of classification into “speech” and “nonspeech”, as
well as the percentage of false alarms and false rejections.

Table 2 shows that the average frame error rate is 18.0% without
energy normalization, 13.7% with energy normalization but with-
out postprocessing, and 12.0% when both energy normalization
and postprocessing are applied. This is a relative improvement of
35% which is caused by a decrease in the number of false alarms,
whereas the number of false rejections is slightly increased.

4.2 Automatic Speech Recognition

4.2.1 Recognition system

The recognizer was a stripped-down version of the large-voca
lary conversational speech recognition system fielded by SRI
the March 2000 Hub-5 evaluation [6]. The system performs voc
tract length normalization, feature normalization, and speak
adaptation using all the speech collected on each channel.
acoustic model consisted of gender-dependent, bottom-up c
tered (genonic) Gaussian mixtures. The Gaussian means
adapted by two linear transform so as to maximize the likeliho
of a phone-loop model, an approach that is fast and does
require recognition prior to adaptation. The adapted models
combined with a bigram language model for decoding. As a
expedient we omitted more elaborate adaptation, cross-word tri
one modeling, and higher-order language and duration mod
from the full SRI recognition system (which yield about a 20%
relative error rate reduction on Hub-5 data). Note that both t
acoustic models and the language model of the recognizer w
identical to those used in the Hub-5 system, i.e., did not inclu
any meeting training data

4.2.2 Test data

Six different meetings were used as test data for the recognit
experiments (see Table 3). Only native American speakers wit
sufficient word count were included in the ASR test set and t
digits reading portions of the meetings were excluded (see [1]).

4.2.3 Experiments and results

To evaluate the influence of the S/NS detection on ASR perfo
mance three types of experiments were conducted using differ
segmentations of the test data:

1. Manual segmentation: the test data of each channel was s
mented according to the transcript. Only portions containin
speech  from  the foreground speaker were fed to the recogniz

2. Automatic segmentation: the output of the S/NS detector w
used. Only “speech” portions were given to the recognizer.

3. “Unsegmented” data: each channel was continuously divide
into segments covering the complete signal. The chunking in
segments was necessary to feed the recognizer with signals of t
table length. As an expedient we used the feature normalizatio
and speaker-adapted models from the “manual” condition; t
results are therefore an optimistic estimate of recognition error
this condition.
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Figure 2:Smoothed maximum correlation for true overlaps and
frames mislabeled overlap where channel 1 was active.

energy
norm.

post-
process.

FER (%) FRJ (%) FAL (%)

no no 18.6 1.7 16.9

yes no 13.7 1.8 11.9

yes yes 12.0 2.2 9.8

Table 2: S/NS detection results with/without energy normalizatio
and with/without postprocessing.

FER: frame error rate, FRJ: false rejections, FAL: false alarm

Meeting Manual Automatic Unsegmented

all 41.6 45.8 73.2

no lapel 41.4 45.4 59.1

Table 3: Word error rate in percent for different segmentation
all: weighted average of all channels

no lapel: weighted average of all channels except lapel chann



a
ds

vity
on
ech
t-

ve
are
uc-
t a
lk.

ture
e S/
sys-

to
ion,
ech

er-
m
for

n

l,
us-

ct
ed
.

.

e/
e-

,
.
er
-

l-

al
ip-

st

n
g
g.
Whereas the manual segmentation provides an upper bound for
recognition accuracy, the unsegmented data is expected to show
how the recognizer itself can handle the multispeaker situation.
Table 3 shows the recognition results for the three different seg-
mentation types for each meeting of the test data. The automatic
S/NS segmentation achieves word error rates within 10% relative
of the ideal manual labelings.

5. DISCUSSION
In the preliminary labeling, error analysis revealed a signficant dif-
ference between the case of channel 1 alone and the case of chan-
nel 1 active simultaneous with other channels. In the latter case
the peak correlation is well below the mode of the histogram in
Figure 2. The smaller peak value indicates that sources such as
activity in another channels might also contribute to the occur-
rence of this type of error. In fact, a high correlation between
channel 0 and one of the remaining channels can be found in many
of these cases; in 68% of these frames, the normalized crosscorre-
lation exceeds 0.5 with one of the other channels.

The use of the “normalized energy” of Equation 1 reduces the
error rate by 26.4% relative (rows 1 and 2 of Table 2), mainly by a
decrease in false alarms at the cost of some added false rejections.
A closer analysis of the results shows that, without energy normal-
ization, the error rates of the lapel microphones are particularly
high, which makes us believe that the normalization is essential to
cope with the channel variations found on this data.

A comparison of the S/NS detection results achieved with and
without crosscorrelation based postprocessing (rows 2 and 3 of
Table 2) shows, that the use of a predefined threshold is an effi-
cient way of reducing error rates. On average, the frame error rate
was reduced from 13.7% to 12.0%, for a relative reduction of
12.4%. Again, the reduction is caused by a decrease in false
alarms; however, it goes along with an increase in false rejections.

The combined use of energy normalization and the postprocessing
reduces the accuracy of the system in detecting true speech seg-
ments, but the number of falsely detected speech segments is
reduced by a much greater amount. The relative cost in transcrip-
tion of these two kinds of error is not known: Transcribers must
take care to detect speech segments which were missed by the sys-
tem, but the number of distracting “empty” segments is reduced.

Crosscorrelation analysis suggests a different approach to the
problem of crosstalk, namely, estimating the coupling between
different channels and using the estimates to cancel the crosstalk
signals. We are investigating such an approach based on the Block
Least Squares algorithm described in [7]. However, the situation
is complicated by the very rapid changes in coupling that occur
when speakers or listeners move their heads. Since the coupling
filters are sensitive to changes of just a few centimeters, these
movements are highly detrimental to this approach.

The ASR experiments show that in the framework of a multi-
speaker setting, it is crucial to provide reliable information about
speeh activity. As is true for most recognizers, the ASR system
was not designed to distinguish between foreground and back-
ground speech, and the “unsegmented” test condition shows that
indeed it fails to do so even with headset microphones, resulting in
higher insertion rates. This is consistent with earlier results where
elevated insertion rates were found even on hand-segmented
meeting data when segment boundaries were not always tightly fit-
ted around the foreground speech [8]. On the other hand, the auto-
matic S/NS detector tends to miss some speech segments, thus
reducing recognition accurracy due to an increased number of
deletion errors.

A possible direction for future research in this area could be
combination of S/NS detection and speaker verification metho
to distinguish between foreground and background speech.

6. CONCLUSIONS
We have presented an HMM based approach to speech acti
detection which utilizes feature normalization and crosscorrelati
postprocessing. The method was applied to presegment spe
data of multispeaker meetings in the framework of the ICSI Mee
ing Recorder project [1].

To meet the requirements of the multispeaker setting and impro
the channel independence of the system, normalized features
used. The proposed energy normalization method leads to red
tions in frame error rate. In addition, the experiments show tha
crosscorrelation threshold is appropriate for detecting crossta
Both approaches have been combined successfully.

The S/NS detection results show that our system is able to cap
most of the speech segments in the different channels. Since th
NS detection produces output for each channel separately, the
tem is able to detect regions of speaker overlap.

Recognition results indicate that automatic segmentation leads
error rates about 10% higher than using a manual segmentat
but to considerably better performance when compared to spe
recognition on unsegmented data.
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