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Abstract

We present a system for model-based source separation for use on single channel
speech mixtures where the precise source characteristics are not known a priori.
The sources are modeled using hidden Markov models (HMM) and separated using
factorial HMM methods. Without prior speaker models for the sources in the mix-
ture it is difficult to exactly resolve the individual sources because there is no way
to determine which state corresponds to which source at any point in time. This is
solved to a small extent by the temporal constraints provided by the Markov mod-
els, but permutations between sources remains a significant problem. We overcome
this by adapting the models to match the sources in the mixture. We do this by rep-
resenting the space of speaker variation with a parametric signal model based on the
eigenvoice technique for rapid speaker adaptation. We present an algorithm to infer
the characteristics of the sources present in a mixture, allowing for significantly im-
proved separation performance over that obtained using unadapted source models.
The algorithm is evaluated on the task defined in the 2006 Speech Separation Chal-
lenge (Cooke and Lee, 2008) and compared with separation using source-dependent
models. Although performance is not as good as with speaker-dependent models,
we show that the system based on model adaptation is able to generalize better to
held out speakers.
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1 Introduction

Recognition of signals containing contributions from multiple sources contin-
ues to pose a significant problem for automatic speech recognition as well as
for human listeners. One solution to this problem is to separate the mixed sig-
nal into its constituent sources and then recognize each one separately. This
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approach is especially difficult when only a single channel input is available,
making it impossible to utilize spatial constraints to separate the signals. In-
stead, most approaches to monaural source separation rely on prior knowledge
about the nature of the sources present in the mixture to constrain the possi-
ble source reconstructions. Because natural audio sources tend to be sparsely
distributed in time-frequency, a monaural mixture can be segregated simply
by segmenting its spectrogram into regions dominated by each source. This
can be done using perceptual cues as in systems based on computational au-
ditory scene analysis (CASA) such as Srinivasan et al. (2006). Alternatively,
given statistical models of the source characteristics for each source in the
mixture, the signals can be reconstructed by performing a factorial search
through all possible model combinations (Varga and Moore, 1990; Roweis,
2000; Kristjansson et al., 2004).

The 2006 Speech Separation Challenge (Cooke and Lee, 2008) was an orga-
nized effort to evaluate different approaches to monaural speech separation.
The task was to recognize what was said by a target speaker in instantaneous
two-talker mixtures composed of utterances from 34 different speakers. The
entries included some based on computational auditory scene analysis (e.g.
Srinivasan et al. 2006) as well as some based on model-based separation (e.g.
Kristjansson et al. 2006). In general, model-based systems outperformed those
based on CASA type heuristics. Like most previous work in this area, such as
Kristjansson et al. (2004), these systems modeled each speaker using hidden
Markov models (HMMs) for separation. The best performing systems incorpo-
rated a lot of task-specific knowledge into these models. The Iroquois system
(Kristjansson et al., 2006) incorporated knowledge of the task grammar to
constrain the reconstructed sources, and was able to outperform human lis-
teners under some conditions. Instead of reconstructing each source prior to
recognition, other model-based systems (Virtanen, 2006; Barker et al., 2006)
attempted to recognize the two simultaneous utterances directly from the mix-
ture.

We focus on the model-based approach to source separation when the precise
source characteristics are not known a priori. Ozerov et al. (2005) propose
the idea of beginning with a source-independent model and adapting it to
the target source for monaural singing voice separation. This approach can
separate previously unseen sources far better than using unadapted models,
but requires a substantial amount of adaptation data. In this work we con-
sider adaptation when there is much less data available, requiring a more
constrained model space. The remainder of this paper is organized as follows:
Section 2 reviews the source models used in our system. The technique for
model adaptation is described in section 3. Section 4 describes the detailed
separation algorithm. Finally, sections 5 and 6 contain experimental results
and discussion.
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2 Source models

An important observation for efficient model-based source separation is that
audio sources tend to be sparsely distributed in time and frequency. If we
represent a mixture of two speech signals using time-frequency representation
based on a tapered analysis window, it is empirically observed that over 80%
of short-time spectral cells have magnitudes that lie within 3 dB of the larger
of the magnitudes of the corresponding cells of two clean speech signals (Ellis,
2006). Selecting a representation that exploits this property allows for efficient
inference because the full range of combinations of source model states need
not be considered when their overlap is minimal (Roweis, 2003). We therefore
follow the example of the Iroquois system and model the log-spectrum of each
source derived from a short-time Fourier transform with 40 ms window and
10 ms hop.

As shown in Kristjansson et al. (2006), incorporating temporal dynamics in
source models can significantly improve separation performance. This is espe-
cially true when all sources in a speech mixture use the same model, in which
case separation depends on knowledge of the task grammar. We, however, are
interested in creating a more generic speech model that is not specific to a
given grammar, so we follow the “phonetic vocoder” approach (Picone and
Doddington, 1989), which models temporal dynamics only within each phone.
This is similar to the approach taken in Schmidt and Olsson (2006) which
utilizes phone models trained using non-negative matrix factorization.

The log power spectrum of each source is modeled using a hidden Markov
model (HMM) with Gaussian mixture model (GMM) emissions. Each of the
35 phones used in the task grammar are modeled using a standard 3-state
forward HMM topology. Each state’s emissions are modeled by a GMM with
8 mixture components. The transitions from each phone to all others have
equal probability, which was found to work as well as more phonotactically-
informed values. This structure allows us to incorporate some knowledge of
speech dynamics without being specific to any grammar.

We used the HTK toolkit (Young et al., 2006) to train the models on the
Speech Separation Challenge training data (Cooke and Lee, 2008), downsam-
pled to 16 kHz and pre-emphasized as in the Iroquois system. The training
data for all 34 speakers was used to train a speaker-independent (SI) model.
We also constructed speaker-dependent (SD) models for each speaker by boot-
strapping from the SI model to ensure that each mixture component of the
SD models corresponded directly to the same component in the SI model.
The consistent ordering across all speaker models is needed for the speaker
adaptation process described in the next section.

3



Only the GMM means were updated during the SD training process, so the
likelihood of a given frame of signal x(t) under component c of state s of the
model for speaker i can be written as:

P (x(t)|s, c, µi) = N (x(t); µi,s,c, Σs,c) (1)

where µi,s,c denotes the mean for component c of state s in the model for
speaker i, and Σs,c denotes the corresponding covariance matrix from the
speaker-independent model. Note that all models described in this paper use
diagonal covariances, so for convenience we use the notation σs,c to denote
the diagonal components of Σs,c.

3 Model adaptation

Because only a single utterance is available for model adaptation, there is
insufficient data to use standard adaptation methods such as MLLR (Leggetter
and Woodland, 1995). We solve this problem by using the SD models described
above as priors on the space of speaker variation. Adapting to the observed
source involves projecting the source onto the space spanned by these priors.
This is done by orthogonalizing the SD models using principal component
analysis (PCA), which allows each point in the space spanned by the different
speakers to be represented as a point in a low dimensional “eigenvoice” space
(Kuhn et al., 2000).

Only the model means are adapted. The mean vectors of each component
of each state in the SD model for speaker i are concatenated into a mean
supervector µi. These supervectors are constructed for all M speaker models
and used to construct a matrix U = [µ

1
, µ

2
, ..., µM ] that spans the space of

speaker variation. Performing PCA on U yields orthonormal basis vectors for
the eigenvoice space, µ̂j .

Although the ordering of states and mixture components in the supervectors
is arbitrary, care must be taken to ensure that the ordering is consistent across
all speakers. Because we are using GMM emissions, further complications are
possible if there is no correspondence of mixture components across speaker
models. This is possible if the speaker models are trained independently using
different initializations or a process such as mixture splitting. The training
procedure described in section 2 is used to enforce a one-to-one mapping be-
tween mixture components in all speaker models and avoid such problems.

In addition to eigenvoice adaptation, we extend the model of Kuhn et al. (2000)
to include a gain parameter tied across all states to account for any mismatch
between signal level in the training and testing data. This compensation is
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especially important because the speech signals in the SSC dataset are mixed
over a wide range of signal-to-noise ratios.

Using the new basis, a speaker-adapted model can be parametrized simply by
a set of N eigenvoice weights, w, and the gain parameter g. The mean for
component c of state s of a speaker-adapted model can be written as a linear
combination of these bases:

µs,c(w, g) =
N

∑

j=1

wjµ̂j,s,c + µ̄s,c + g (2)

where wj is the weight applied to the jth eigenvoice, µ̂j,s,c, and µ̄s,c is the
average across all SD models of the mean for component c of state s (i.e. the
mean voice). We describe the process for inferring the adaptation parameters
w and g for a particular speaker in section 4.4.

In the experimental results reported in this paper we do not discard any low
variance eigenvoice dimensions (i.e. N = M − 1) so it is possible to exactly
reconstruct the original model for speaker i given the corresponding weights
wi, i.e. µi = µ(wi, 0). However, in practice the adapted models never match
the original speaker models perfectly because the adaptation is based only on
the relatively small set of model states found in a single utterance.

Figure 1 shows the mean voice as well as the three eigenvoices with the highest
variance learned from the training data. The mean voice is very similar to
the speaker-independent model and very coarsely models the overall spectral
shape characteristic of different phones. Successive eigenvoices are used to add
additional high resolution detail to this model. Eigenvoice 1, µ̂

1
, emphasizes

formant resonances that are characteristic of female speakers. In fact, as shown
in figure 3, the corresponding eigenvoice weight is perfectly correlated with
gender; female speakers have positive w1 and male speakers have negative w1.
Eigenvoice 2 emphasizes different formants in consonant states and introduces
some fundamental frequency information and high frequency resonances into
the vowel states. Finally, µ̂

3
incorporates additional pitch trajectory detail

into voiced phones.

4 Separation algorithm

As in Kristjansson et al. (2006), we perform separation by finding the Viterbi
path through a factorial HMM composed of models for each source. This is
complicated by the fact that we do not have prior knowledge of the speaker
models. Instead we must use the same speaker-independent model for both
sources. However, separation performance is quite poor because the speech
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Fig. 1. Eigenvoice speech model. The top panel shows the mean voice µ̄ which
closely resembles the speaker-independent model. The remaining panel show the
three eigenvoices with the largest variance, µ̂1, µ̂2, and µ̂3 respectively.

model does not enforce strong temporal constraints. This is due to ambiguity in
the Viterbi path through a factorial HMM composed of identical models (Ellis,
2006). The state sequences can permute between sources whenever the Viterbi
path passes through the same state in both models at the same time. Since our
models only include basic phonetic constraints, the resulting separated signals
can permute between sources whenever the two sources have (nearly) syn-
chronous phone transitions. Figure 2 shows an example of such permutations
where each source is modeled using the same speaker-independent model.

This permutation problem can be solved using models matched to each source,
but the adaptation procedure described in section 4.4 requires clean source
signals. Instead we use the following iterative algorithm to solve the problem
of estimating the eigenvoice parameters for the two sources directly from the
mixture:

1. Obtain initial model estimates for each source
2. Separate signals using factorial HMM decoding
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Fig. 2. Phone permutations found in the Viterbi path through a factorial HMM that
models the mixture of two sources. Each source is modeled with the same speak-
er-independent (SI) models. Neither of the resulting source reconstructions (middle
row) is a good match for either of the sources found by separation using speaker-de-
pendent models (bottom row). Each SI reconstruction contains short regions from
both of the SD sources. For example, the final phone in SI source 1 is quite close to
that of the corresponding SD source, but the first half second of the signal is closer
to SD source 2.

3. Reconstruct each source
4. Update model parameters
5. Repeat 2-4 until convergence

The intuition behind the iterative approach is that each of the reconstructed
source estimates will resemble one source more closely than the other (i.e. more
than half of it will match one of the sources) even if the initial separation is
quite poor. As a result, the model parameters inferred from these estimates
will also be a better match to one source than to the other. This in turn should
improve the separation in the next iteration.

Initially the dynamic constraints in the model partially make up for the lack of
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Fig. 3. Quantization of eigenvoice coefficients w1 and w2 across all training speakers.

source-dependent feature constraints. But the reconstructions are still quite
prone to permutations between sources. The permutations tend to get cor-
rected as the algorithm iterates because the adaptation allows the models to
better approximate the speaker characteristics. Unfortunately the algorithm
is slow to converge, so this process takes many iterations.

4.1 Initialization

As with many iterative algorithms, this method is vulnerable to becoming
stuck in local optima. Good initialization is crucial to finding good solutions
quickly. We begin by projecting the mixed signal onto the eigenvoice bases
to set the parameters for both sources (see section 4.4). Obviously these pa-
rameters will not be a good match to either isolated source and, as described
earlier, using the same model for both sources will lead to poor performance.
So further steps are taken to differentiate the two speakers.

We use the speaker identification component of the Iroquois speech separa-
tion system (Kristjansson et al., 2006) which chooses the most likely speaker
model based on frames of the mixture that are dominated by a single source.
This could be used directly to search through a set of adaptation parameter
vectors corresponding to the speakers in the training set, in which case our
system reduces to a variant of Iroquois. However this may not work well on
sources that are not in the training set. Instead we note that by design the
eigenvoice dimensions are decorrelated which allows us to treat each of them
independently. The idea is to build an approximation of w for each source
from the bottom up, beginning from w1 and adding consecutive weights.

During training we learn prototype settings for each weight wj by coarsely
quantizing the corresponding weights of the training speakers to three quan-
tization levels using the Lloyd-Max algorithm (Lloyd, 1982). This allows wj
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for any given speaker to be approximated by one of the quantized values
{ŵ1

j , ŵ
2

j , ŵ
3

j}. The first two panels of figure 3 show example quantization levels
for w1 and w2.

Given the mixed signal, we can approximate the eigenvoice adaptation param-
eters for each speaker, w1 and w2, using the following bottom up construction:

Initialize w1 and w2 to zero, i.e. set µ(w1) and µ(w2) to µ̄.
For each speaker i and eigenvoice dimension j:

Use the quantized weights to construct prototype models {µk(wi)}1≤k≤3

where µ
k(wi) = µ(wi) + ŵk

j µ̂j.
Use the Iroquois speaker identification algorithm to select the most likely
prototype model given the mixed signal and update wi and µ(wi) accord-
ingly.

An example of this process is shown in figure 3. The first and second panels
show the quantization levels of eigenvoice dimensions 1 and 2 respectively.
The shaded regions show the prototypes chosen for speaker 1 (dark gray) and
speaker 2 (light gray). Finally, the rightmost panel shows the joint selection
of w1 and w2 for both speakers.

This is only done for the 3 eigenvoice dimensions with the highest variance.
The remaining parameters are the same for both sources, set to match the
mixture. This technique is not very accurate, but in most cases it suffices to
differentiate the two sources. It works best at differentiating between male and
female speakers because the eigenvoice dimension with the most variance is
highly correlated with speaker gender.

4.2 Factorial HMM decoding

The mixed signal is modeled by a factorial HMM constructed from the two
source models as in Varga and Moore (1990) and Roweis (2000). Each frame
of the mixed signal y(t) is modeled by the combination of one state from each
source model.

The joint likelihood of each state combination is derived using the “max”
approximation (Roweis, 2003) which relies on the sparsity of audio sources
in the short-time Fourier transform representation. Assuming that each time-
frequency cell of an audio mixture will be dominated by a single source, and
that the GMM emissions use Gaussians with diagonal covariance, the joint
likelihood of the mixed signal at time t can be computed as follows (Varga

9



and Moore, 1990):

P (y(t)|s1, c1, s2, c2) =
∏

d

P (yd(t)|s1, c1, s2, c2) (3)

P (yd(t)|s1, c1, s2, c2) =N (yd(t); µd
1,s1,c1

, σd
s1,c1

)C(yd(t); µd
2,s2,c2

, σd
s2,c2

)

+ N (yd(t); µd
2,s2,c2

, σd
s2,c2

)C(yd(t); µd
1,s1,c1

, σd
s1,c1

) (4)

where C denotes the Gaussian cumulative distribution function.

Because the sources rarely overlap, it is possible to approximate the likelihood
in a form that is significantly cheaper computationally:

P (y(t)|s1, c1, s2, c2) ≈ N (y(t); max(µ
1,s1,c1

, µ
2,s2,c2

), σ) (5)

where σ = σs1,c1 for dimensions where µ
1,s1,c1

> µ
2,s2,c2

(i.e. where source 1
dominates the mixture) and σ = σs2,c2 otherwise. Equation 5 is not accurate
when µd

1,s1,c1
is close to µd

2,s2,c2
or when σd

s1,c1
and σd

s2,c2
are very different, but

in practice we have found it to work well.

The sources are separated by finding the maximum likelihood path through
this factorial HMM using the Viterbi algorithm. This process is quite slow
since it involves searching through every possible state combination at each
frame of the signal. To speed it up we prune the number of active state and
component combinations at each frame to the 200 most likely.

4.3 MMSE source reconstruction

Model updates are performed on estimates of the spectral frames of each
speaker. These are found using the minimum square error estimate: x̂1(t) =
E[x1(t)|s1, c1, s2, c2,y(t)] where (s1, c1) and (s2, c2) correspond to the active
state and component combinations at time t in the Viterbi path. Each di-
mension d of the conditional mean is found using the same approximation as
equation 5:

E[xd
1
(t)|s1, c1, s2, c2, y

d(t)] ≈







µd
1,s1,c1

, if µd
1,s1,c1

< µd
2,s2,c2

yd(t), otherwise
(6)

The estimate for x̂2(t) follows the same derivation. Because the factorial model
of the mixture assumes that there is little overlap between the source signals,
equation 6 simply assigns the observed frequency bin to the dominant source
and uses the model mean wherever the source is masked.
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4.4 Eigenvoice parameter inference

Finally, the speaker models are updated to better match the source estimates
x̂1(t) and x̂2(t). The model parameters wj and g can be estimated iteratively
using an extension of the maximum likelihood eigen-decomposition (MLED)
expectation maximization algorithm described in Kuhn et al. (2000). The
derivation follows that of the MLLR transform described in Leggetter and
Woodland (1995).

The E-step of the algorithm involves computing γs,c(t), the posterior prob-
ability of the source occupying component c of state s at time t given the
observations xi(1..t) and the model using the HMM forward-backward algo-
rithm (Rabiner, 1989).

The M-step maximizes the likelihood of the observed sequence x̂i under the
model. As in Kuhn et al. (2000) and Leggetter and Woodland (1995), this is
done by maximizing the auxiliary function L(w, g):

L(w, g) = −
∑

t

∑

s

∑

c

γs,c(t)(x̂i(t) − µs,c(w, g))TΣ−1

s,c (x̂i(t) − µs,c(w, g)) (7)

The solution that maximizes 7 is found by solving the following set of simul-
taneous equations for wj and g:

∑

t,s,c

γs,c(t)µ̂
T
j,s,cΣ

−1

s,c(x̂i(t) − µ̄s,c − g) =
∑

t,s,c

γs,c(t)wjµ̂
T
j,s,cΣ

−1

s,c

∑

k

wkµ̂k,s,c (8)

∑

t,s,c

γs,c(t)1
T Σ−1

s,c(x̂i(t) − µ̄s,c − g) =
∑

t,s,c

γs,c(t)1
T Σ−1

s,c

∑

j

wjµ̂j,s,c (9)

where 1 is a vector of ones.

This solution can be written as a matrix inversion as follows:







w

g





 =







A b

bT c







−1 





d

e





 (10)
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where

Aj,k =
∑

t,s,c

γs,c(t)µ̂
T
j,s,cΣ

−1

s,cµ̂k,s,c (11)

bj =
∑

t,s,c

γs,c(t)µ̂
T
j,s,cΣ

−1

s,c1 (12)

c =
∑

t,s,c

γs,c(t)1
T Σ−1

s,c1 (13)

dj =
∑

t,s,c

γs,c(t)µ̂
T
j,s,cΣ

−1

s,c(x̂i(t) − µ̄s,c) (14)

e =
∑

t,s,c

γs,c(t)1
T Σ−1

s,c (x̂i(t) − µ̄s,c) (15)

The EM algorithm is applied to each source estimate x̂1 and x̂2 to infer w and
g for each source. For increased efficiency, we do not use the dynamics of the
HMMs for the E-step computation (i.e. the models are reduced to GMMs).
The updated source models are then used for the next iteration.

Figure 4 gives an example of the source separation process using model adap-
tation. The initial separation does a reasonable job at isolating the target, but
it make some errors. For example, the phone at t = 1 s is initially mostly
attributed to the masking source. The reconstruction improves with subse-
quent iterations, getting quite close to the reconstruction based on SD models
(bottom panel) by the fifth iteration.

5 Experiments

The system was evaluated on the test data from the 2006 Speech Separation
Challenge (Cooke and Lee, 2008). This data set is composed of 600 artificial
speech mixtures composed of utterances from 34 different speakers, each mixed
at signal to interference ratios varying from -9 dB to 6 dB. Each utterance
follows the pattern command color preposition letter digit adverb. The task is
to determine the letter and digit spoken by the source whose color is “white”.

The separation algorithm described above was run for fifteen iterations us-
ing eigenvoice speech models trained on all 34 speakers in the data set. All
33 eigenvoice dimensions were used for adaptation. The time-domain sources
were reconstructed from the STFT magnitude estimates x̂i and the phase of
the mixed signal. The two reconstructed signals are then passed to a speech
recognizer; assuming one transcription contains “white”, it is taken as the
target source. We used the default HTK speech recognizer provided by the
challenge organizers (Cooke and Lee, 2008), retrained on 16 kHz data. The
acoustic model consisted of whole-word HMMs based on MFCC, delta, and
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Fig. 4. Separation using speaker-adapted models. The top plot shows the spec-
trogram of a mixture of female and male speakers. The middle three show the
reconstructed target signal (“set white in l 2 again”) from the adapted models after
iterations 1, 3, and 5. The bottom plot shows the result of separation using the
speaker-dependent model for target speaker.

acceleration features. Performance is measured using word accuracy of the
letter and digit spoken by the target speaker. 1

5.1 Results

Figure 5 compares the performance of the speaker adaptation (SA) system
to two comparison systems based on SD and SI models respectively. The SD
system identifies the most likely pair of speakers present in the mixture by

1 Sound examples of reconstructed sources are available at http://www.ee.

columbia.edu/~ronw/SSC.html
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Fig. 5. Separation performance using speaker-dependent (SD), speaker-adapted
(SA), and speaker-independent (SI) models. The target source is identified by choos-
ing the source that contains the word “white”. Also shown is performance of sepa-
ration using oracle knowledge of speaker identities and relative gains (Oracle) and
baseline performance of the recognizer on the mixed signal (Baseline).

SNR Same Talker Same Gender Diff Gender Avg.

6 dB 41.89% 63.41% 71.00% 57.99%

3 dB 32.43% 58.38% 71.25% 53.08%

0 dB 29.05% 53.35% 64.25% 48.00%

3 dB 22.07% 43.02% 56.50% 39.77%

-6 dB 19.59% 39.39% 40.25% 32.36%

-9 dB 14.64% 24.30% 30.25% 22.71%

Table 1
Recognition accuracy on the 2006 Speech Separation Challenge data test set using
our source-adapted separation system.

searching the set of SD models using the Iroquois speaker identification and
gain adaptation technique (Kristjansson et al., 2006). The sources are sep-
arated by finding the maximum likelihood path through the factorial HMM
composed of those two source models. We also compare this to performance
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SNR Same Talker Same Gender Diff Gender Avg.

6 dB 38.29% 78.49% 74.25% 62.23%

3 dB 37.84% 74.58% 77.75% 62.06%

0 dB 28.60% 72.07% 76.00% 57.32%

-3 dB 22.75% 62.29% 66.00% 48.92%

-6 dB 15.32% 46.93% 51.25% 36.69%

-9 dB 9.01% 27.93% 27.50% 20.80%

Table 2
Recognition accuracy on the 2006 Speech Separation Challenge data test set using
speaker dependent models and Iroquois speaker identification on the 2006 speech
separation challenge test set.

when using oracle knowledge of the speaker identities and gains. Finally, we
include baseline performance of the recognizer generating a single transcript of
the original mixed signal. The overall performance of the SA and SD systems
are also listed in tables 1 and 2 respectively.

The performance of the SI system is not sensitive to the different speaker
conditions because the same model is used for both sources. The other sep-
aration systems work best on mixtures of different genders because of the
prominent differences between male and female vocal characteristics, which
mean that such sources tend to have less overlap. Conversely, the performance
on the same talker task is quite poor. This is because the models used for each
source are identical (or close to it in the SA case) except for the gain term,
and the models enforce only limited dynamic constraints. The performance of
the SI system is quite poor in all conditions for the same reason. The marked
difference between the SA and SI systems demonstrates that adapting the
source models to match the source characteristics can do a lot to make up for
the limited modeling of temporal dynamics.

Looking at general trends, we see that the SD models perform similarly whether
using oracle or Iroquois-style speaker information. Both of these are signifi-
cantly better than the SA system, itself better than the SI system and baseline.
The reduced performance of the SA system in this task is mainly due to its
vulnerability to permutations between sources, which reflects the sensitivity of
the initial separation to initialization. The adaptation process is able to com-
pensate for limited permutations, as in the final second in figure 4. However
when the initialization does not sufficiently separate the sources, the system
can get stuck in poor local optima where each of the estimated sources is only
a partial match to the ground truth. In contrast, it performs significantly bet-
ter on the different gender condition because the initial separation tends to be
better. The errors get worse as SNR decreases because the stage of initializa-
tion that adapts to the mixed signal favors the louder source. Fortunately the
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Fig. 6. Separation performance improvement averaged over all SNRs as the source
adaptation/separation algorithm iterates.

algorithm is generally able to compensate for poor initialization as it iterates,
however as shown in figure 6 this process is slow.

Figure 6 shows how the word accuracy improves after each iteration averaged
across all SNRs. It is quite clear from this figure that the iterative algorithm
helps significantly, increasing the average accuracy by about 18% in both the
same gender and different gender conditions after 15 iterations. The perfor-
mance improvement for the same talker condition is more modest.

5.2 Held out speakers

Source separation systems based on speaker-dependent models are potentially
at a disadvantage when presented with mixtures containing sources that are
not represented in the SD model set. We expect that the SA system should be
better suited to handling such cases. To evaluate this hypothesis we separated
the SSC training data into random subsets of 10, 20, and 30 speakers and
trained new eigenvoice models from each subset. All eigenvoice dimensions
were retained for these models, e.g. the model trained from 10 speaker subset
used 9 eigenvoice dimensions for adaptation, etc. A new test set was generated
from utterances from the four speakers held out of all training subsets. The
held out speakers were evenly split by gender. The test set consists of 400
mixtures at 0 dB SNR, broken up into 200 same gender mixtures and 200
different gender mixtures.
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Fig. 7. Performance on mixtures of utterances from held out speakers using only
subsets of 10, 20, and 30 speakers for training compared to models trained on all
34 speakers.

Figure 7 compares the performance of the SD system and SA system on this
data set. The SD models used were limited to the same speakers as were
used to train the new eigenvoice models. Performance using smaller subsets
of training speakers is compared to a baseline containing all 34 speakers from
the training set. It is important to note that the mixtures in the test set
were generated from portions of the clean data used to train the baseline 34
speaker SD and SA models. The performance would likely have been worse
had there been enough clean data to properly generate a separate test set,
so the accuracy shown for the 34 speaker set should be viewed as an upper
bound.

Performance of both the SD and SA systems suffers on held out speakers,
but the performance decrease relative to the use of models trained on all 34
speakers shown in the bottom row of the figure is much greater for the SD
models. In fact, the SA system slightly outperforms the SD system in absolute
accuracy in most of the held out speaker cases. It is clear that separation using
eigenvoice speech models generalizes better to unseen data than separation
based on model selection from a set of SD models.

Despite this, the performance drop on held out speakers for both systems
is quite significant. We expect that this is because a relatively small set of
speakers were used to train the systems. As the number of eigenvoice training
examples increases we expect the model to better capture the characteristics
of the general speaker space and thus be able to generalize better to unseen
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speakers. At the same time, as the number of training speakers grows it be-
comes increasingly likely that one of the models in the set will be a good
match for a previously unseen speaker. Still, we expect that the performance
of the SD system will not improve as quickly as the SA system as the size of
the training set grows. This can be seen to some extent in the fact that the
SD system have a flatter slope than the SA system as the number of models
decreases in figure 7, especially in the different gender case.

In light of this, we note that these results are still preliminary. It is unclear
how a system based on eigenvoice adaptation would compare to a system
based on model selection from a large set of speaker-dependent models. In a
future publication we plan to evaluate the ability of these systems to generalize
to unseen speakers using a significantly larger data set containing utterances
from hundreds of speakers.

6 Conclusions

We have approached the task laid out in the 2006 Speech Separation Challenge
using minimal prior knowledge about the signal content. Although the best
performance requires the use of models that capture speaker specific charac-
teristics, we have shown that good results are still possible using an approach
based on speaker adaptation. The resulting system also has advantages in that
it is better able to generalize to unseen speakers and it does not depend on
knowledge of the task grammar.

The greatest weakness of our system is its tendency to permute between
sources due to limited modeling of temporal dynamics. This is alleviated
through the iterative eigenvoice re-estimation, but this process is slow. The
permutation problem is caused by the ambiguity in the hard decisions made
during the initial Viterbi decoding. Again, this arises because the initial source
models computed as described in section 4.1 are often very similar. Reducing
the dependence of the initial adaptation on these hard assignments should de-
crease the severity of the permutation problem and potentially allow for faster
convergence. This could be accomplished by extending the MLED algorithm
to operate directly on the mixed signal, updating parameters based only on
portions of the mixture dominated by a single source.

We also note that only a subset of model parameters are being adapted to
match the source statistics. Adapting the GMM covariances and HMM tran-
sition probabilities as well would make it easier to distinguish the sources.
Figure 8 compares separation performance using mean-adapted source models
with fully adapted source models, including means, covariances, GMM priors,
and transition probabilities. In both cases oracle knowledge of speaker identity
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Fig. 8. Speaker-dependent separation performance where the full model is adapted
(full) and where only the mean is updated (mean only). Performance on same gender
mixtures is compared to performance on different gender mixtures.

and gains is used so this figure represents an upper bound on performance.
It is clear that using fully adapted models can further improve performance
over the mean-adapted models used in our system. This is especially true for
the same gender conditions where the additional parameters make it easier to
distinguish between the two speakers even if the corresponding model means
are similar. As shown in the difference between the “full” and “mean only”
same gender curves in the figure, this effect is most prominent at lower SNRs
where the additional model constraints make up for the noisy observations.
Potential extensions to the MLED inference algorithm to allow for adaptation
of the remaining parameters are discussed in Kuhn et al. (2000).

In summary, we have described a novel monaural source separation system
based on adaptation of a generic speech model to match each of the sources in
a speech mixture. We use eigenvoice models to compactly define the space of
speaker variation and propose an iterative algorithm to infer the parameters
for each source in the mixture. The source-adapted models are used to separate
the signal into its constituent sources. Source adaptation helps compensate
for the limited temporal dynamics used in the speech model. However, it still
does not perform as well as a system that uses speaker-dependent models,
largely because it is prone to permutations between sources. Despite these
shortcomings, we show that source adaptation based system shows promise in
its ability to generalize better to held out speakers.
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