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Abstract

Audio sources frequently concentrate much of their energy
into a relatively small proportion of the available time-frequency
cells in a short-time Fourier transform (STFT). Thissparsity
makes it possible to separate sources, to some degree, simply by
selecting STFT cells dominated by the desired source, setting all
others to zero (or to an estimate of the obscured target value), and
inverting the STFT to a waveform. The problem of source sep-
aration then becomes identifying the cells containing good target
information. We treat this as a classification problem, and train a
Relevance Vector Machine (a probabilistic relative of the Support
Vector Machine) to perform this task. We compare the perfor-
mance of this classifier both against SVMs (it has similar accuracy
but is not as efficient as RVMs), and against a traditional Com-
putational Auditory Scene Analysis (CASA) technique based on
a noise-robust pitch tracker, which the RVM outperforms signif-
icantly. Differences between the RVM- and pitch-tracker-based
mask estimation suggest benefits to be obtained by combining
both.

1. Introduction
The problem of single channel source separation involves decom-
posing a mixture of two or more sources into its constituent clean
signals. This problem is under-determined since we want to be
able to extract two or more signals when only one signal is given.
Therefore techniques such as indepedent component analysis will
not work directly. However, due to the sparsity of the short-time
Fourier transform (STFT) representation for most audio signals,
only one source is likely to have a significant amount of energy in
any given time-frequency cell. This motivates the approach of at-
tempting to identify the regions of the mixed signal that are dom-
inated by each source and treating these regions as independent
signals (i.e. refiltering [1, 2]).

Many recent approaches to single channel source separation,
such as [2, 3], require prior knowledge of the nature of the signals
present in the mixed signal. Each source is modeled by cluster-
ing spectral slices from the STFT using a Gaussian mixture model
(GMM). Inference involves the creation of binary masks that in-
dicate which STFT cells are dominated by each source. This ap-
proach requires explicit models for each of the interfering signals
and a factorial search over all possible combinations of frames of
each signal.

An alternative approach to mask generation is given in [4]
which does not require a factorial search. A simple maximum like-

lihood Gaussian classifier is used to generate these masks. This
approach was shown to generalize well over many different kinds
of interference.

Given these masks, a GMM signal model can be used to fill
in the missing spectral regions that were labelled as unreliable and
reconstruct the clean signal as in [5, 6, 7].

In this paper we present a system that is able to recover
a speech signal in the presence of additive non-stationary noise
through a combination of the classification approach to mask es-
timation and the use of signal models for reconstructing the parts
of the speech signal that are obscured by the interference. We also
compare this classifier-based approach to an alternative approach,
frequently referred to as Computational Auditory Scene Analy-
sis (CASA), which attempts to identify the pitch track of target
speech, then to build an STFT mask to select cells reflecting that
pitch.

Section 2 reviews relevance vector machine classifiers which
we use to generate the masks. Section 3 reviews techniques for
reconstructing the unreliable dimensions of the mixed signal using
missing data masks. In section 4, we briefly describe our contrast,
CASA-based mask generation system. Section 5 presents some
experimental results, followed by conclusions in section 6.

2. The Relevance Vector Machine
The relevance vector machine [8] is a kernel classifier similar to the
support vector machine, but derived using a Bayesian approach.
As with the SVM, the RVM forms a linear classifier in a high di-
mensional kernel space defined by some kernel function.

Like an SVM, the RVM makes predictions using a function of
the following form:

y(z|w,v) =
∑

n

wnK(z,vn) + w0 (1)

wherez is the data point to be classified,vn is thenth support
vector with associated weightwn, andK is some kernel function.

For classification, the probability of the data pointz being
in the positive class is given by wrapping eqn. (1) in a sigmoid
squashing function:

P (t = 1|z,w,v) =
1

1 + e−y(z|w,v)
(2)

Instead of attempting to produce a classifier with maximum
margin, as in the SVM case, the RVM approach attempts to pro-
duce a sparse model (i.e. one with very few support vectors). This
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Figure 1: Mask generation accuracy for each frequency band on
held out testing data. The baseline performance is the percentage
of positive labels in the test data. The SVM performs slightly better
than the RVM on average.

is accomplished by learning the weights,w, in a probabilistic man-
ner and defining hyperparameters over each weightwn so that
a different hyperparameter is associated with each support vec-
tor. As noted in [8], in practice the posterior distributions over
the weights become infinitely peaked at zero. The weights asso-
ciated with uninformative support vectors, i.e. those that do not
help predict class labels, go to zero. Therefore, the support vectors
associated with those weights can effectively be removed from the
RVM model. In the interest of space, the details of the learning
algorithm are omitted. They can be found in [8].

2.1. Advantages of the RVM

The RVM approach has a number of advantages over the SVM, in-
cluding a significant improvement in sparsity over the equivalent
SVM, as mentioned above. The RVM generally uses about 10%
as many support vectors as the SVM on this task; for our experi-
ments where we trained on 500 frames, the RVM used around 50
examples in the classifier, whereas the SVM consistently used vir-
tually all of them. In addition, the RVM does not restrict the set of
allowable kernels to those that obey Mercer’s condition. There is
also no need to estimate the “nuisance” parameterC. Finally, the
RVM does more than just discriminate: Eqn. (2) gives an estimate
of posterior probability of class membership. Tipping argues in [8]
that unlike methods to obtain posterior probability estimates from
the distance from SVM classifier boundaries, the estimate of the
posterior given by the RVM more closely approximates the actual
posterior.

2.2. Comparison to the SVM

In order to evaluate the efficacy of RVMs as compared to SVMs on
this task, both types of classifiers were trained to predict reliable
data masks on speech signals corrupted by various types of noise,
similar to [4], but using plain STFT magnitudes as features. Sep-
arate classifiers were used for each frequency bin in the STFT. In

total, 129 subband classifiers were used. The inputs to each classi-
fier were drawn from all frequency bands (not just the band being
classified) over several time frames.

2.2.1. Data

Training and testing data were generated by digitally mixing
speech and corrupting noise in MATLAB. Since the clean ver-
sions of the underlying signals are available, it is easy to gener-
ate ground truth mask labels for mixed signals: An STFT cell in
the mixed signal is said to be dominated by the speech signal if the
same cell in the clean speech signal has more energy than the same
cell in the noise signal. The speech signal was taken from an au-
diobook recording (male speaker), known to be recorded in clean
conditions. The noise signals used were excerpts from the NOI-
SEX database, including: babble noise, car noise (“volvo”), and
two different recordings of background factory noise, all of which
are non-stationary. In addition, simple stationary signals, includ-
ing white noise, pink noise, and speech shaped noise (white noise
filtered to have the same average spectral envelope as the speech
signal) were generated in MATLAB.

The training data consisted of 20 s of speech mixed with 20
s of each of the noise signals at signal to noise ratios varying be-
tween -5 dB and 20 dB in increments of 5 dB. Testing was per-
formed using 10 s mixtures with held out sections of the same
signals under the same SNRs. The same speaker and noise types
were used, but the testing signals consisted of later sections of the
sound files that were not used in training.

All signals used were sampled at 8 kHz. STFTs were gen-
erated using a 256 point FFT with a 256 point (32 ms) Hanning
window and a 64 point (8 ms) hopsize.

2.2.2. Features

The same features were used for each of the subband classifiers.
They consisted of the STFT power measured in decibels of the
current frame and the previous 5 frames of context, for a total of
6× 129 = 774 feature dimensions. We observed empirically that
adding context improved classification accuracy by a few percent.
This follows our expectation because speech signals are locally
stationary, so knowing that there was significant speech energy at
time t − 30 ms will usually imply that there is still significant
speech energy present at timet.

2.2.3. Cross validation

To obtain the best performance, cross validation was performed to
select the best kernel type and kernel parameters for both the RVM
and SVM classifiers. Evaluated kernels included linear, polyno-
mial (order 2 and 3), and radial basis function (variance varied be-
tween 1 and 16) kernels for both RVM and SVM. In addition, a few
exponential family variants of the RBF kernel, including Laplace
and Cauchy kernels, were evaluated for the RVM classifiers only.
Finally, another level of cross validation had to be performed for
the SVM to obtain a good value ofC. The parameters that had the
highest mean accuracy across all frequency subbands on the test
data were chosen as the best.

The best performing SVM used a Gaussian kernel with a vari-
ance of 8 andC = 256. The best performing RVM used a Cauchy
kernel with parameter 8. Use of the Cauchy kernel resulted in only
one or two percentage point increases in accuracy over the Gaus-
sian kernel for the RVM.



2.2.4. Results

As seen in fig. 1, the SVM classifiers generally performed slightly
better on the test data than the RVM classifiers in most frequency
bands. In both cases, the mean accuracy of the 129 subband clas-
sifiers was just over 80%. This is a significant improvement over
baseline performance of about 31% where every cell is labeled as
reliable, i.e. all classifiers output 1 all the time. A more realistic
baseline (not pictured) would be one in which each subband clas-
sifier always labeled the input with the label that is most common
in that subband in the data, giving each classifier at least 50% ac-
curacy. In this case, the mean accuracy is still significantly below
that of the SVM and RVM.

The primary difference between the RVM and SVM becomes
apparent when looking at the number of support vectors used by
each of the classifiers. The number of support vectors used for
each subband classifier is roughly constant across all frequency
bands for both the SVM and RVM. But the RVM classifiers con-
sistently use a only small fraction (about 10%) of the number of
support vectors used by the SVM classifiers. This leads to a corre-
sponding increase in classification speed since the RVM requires
fewer inner product/kernel function computations.

3. Missing Feature Reconstruction

Using the RVM subband classifiers described in section 2, a good
estimate of the frequency bands of each observed audio frame that
are dominated by speech (reliable) or not (unreliable/missing) can
be obtained. The RVM goes a step further and gives the probability
that each frequency bin is reliable for each observed audio frame.

If much of the observation is missing (e.g. if lowpass noise ob-
scured everything below 200 Hz), these dimensions must be recon-
structed in order to obtain a good estimate of the underlying clean
signal. This can be accomplished using a prior GMM model of the
clean signal to create a minimum mean squared error (MMSE) es-
timator to reconstruct the missing dimensions given the observed
ones. The soft mask reconstruction process is described in [7].

4. CASA Pitch-based masking

Much of the energy in speech is associated with pseudo-periodic
segments of vowels and similar sounds, and human listeners ap-
pear to be well able to separate and track speech by following
the pitch percept that arises from this local periodicity. This has
led to several so-called Computational Auditory Scene Analysis
systems that attempt to effect signal separation by mimicking the
processing of the auditory system. We use an implementation of
the system described by [9] which is able to track the pitch of tar-
get speech despite high levels of interfering noise. It operates by
extracting envelopes from many band-pass signals roughly corre-
sponding to the separate frequency bands used by the ear. The
short-time autocorrelation of each envelope is checked for strong
periodicities, and the normalized autocorrelations of all such chan-
nels are summed to find a single, dominant periodicity. Channels
whose individual autocorrelation indicated energy at this period
are then added to the target mask for that time step as being dom-
inated by the inferred target. Our work with this pitch tracker is
described in more detail in [10].
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Figure 2: Comparison of the different reconstruction techniques
using different masks on speech corrupted by factory noise. Per-
formance using ground truth masks present an upper bound on per-
formance using estimated masks. For each type of mask signal, the
GMM reconstrucion performs better. RVM reconstruction using
soft masks performs better than reconstruction using hard (binary)
masks.

5. Experiments
The data described in section 2.2.1 was used to evaluate the per-
formance of RVM mask generation. However the RVM classifiers
were only trained on a subset of the noise signals (speech shaped
noise, babble noise, factory noise 1) to evaluate how well the clas-
sifiers could generalize to unseen types of noise. Evaluation on
out-of-model noise was performed on car noise, different factory
noise, white noise and highly nonstationary instrumental music.

The RVM subband classifiers were trained using the kernel
and parameters as in section 2.2.3. A random sample of 2000
frames of the training data was used for training. To evaluate
performance of MMSE reconstruction, a GMM with 512 mixture
components was trained on 80 s of clean speech.

Evaluation was performed on data that was not used to train
any of the models used. Four kinds of masks were evaluated:
ground truth masks (GT) consisting of binary labels correspond-
ing to a priori knowledge of where the speech signal dominates
the mixture, RVM hard masks (HM) consisting of binary labels
predicted by the RVM subband classifiers (i.e.P (rd) ≥ .5)), and
RVM soft masks (SM) consisting of the RVM posterior probability
estimates (P (rd)). Finally, performance of the RVM mask gener-
ation system is compared to that of the CASA mask generation
system described above.

Reconstruction was performed by refiltering as in [2], where
each cell of the mixed signal STFT is multiplied by the corre-
sponding cell in the mask, and by MMSE reconstruction as in [7].

All SNR measurements listed in the evaluation are magnitude
SNRs measured on the magnitude of the reconstructed STFTs.

5.1. Results

Fig. 2 shows the performance of different reconstruction tech-
niques on speech corrupted by a non-stationary noise signal. SVM
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Figure 3: Comparison of errors made by RVM and pitch tracker
masks.

hard mask reconstruction results are omitted since they were very
similar to those of RVM hard masks.

GMM reconstruction performs better than simple masked re-
filtering. The exception to this is refiltering with the ground truth
mask at higher SNRs where less data is missing and the GMM re-
construction fills in cells with energy that exceeds that of the clean
speech signal. In all other cases refiltering performs worst since it
leaves gaps in the signal wherever noise obscures the speech sig-
nal, and MMSE inference puts energy in these gaps that is at least
somewhat closer to the original. However, for the CASA masks,
the difference between refiltering and reconstruction is very small
because in many cases the pattern of present-data returned by the
pitch tracker, which included many falsely-accepted noisy dimen-
sions, returned no meaningful inference from the GMMs.

Finally, it is clear that the use of soft masks where applica-
ble gives approximately a 1 dB improvement over the same re-
construction method using hard masks across all SNRs. How-
ever, there is still room for improvement in mask estimation as
evidenced by the big gap in reconstruction SNR between the use
of ground truth masks and RVM masks. Part of this is due to the
fact that time and memory constraints limited the amount of data
that could be used to train the RVMs.

It is important to note that reconstruction SNR is not neces-
sarily the best evaluation metric. Much of the noise present in
the reconstructed signal is due to mismatches between the signal
model and the actual clean signal, not to the presence of noise
in sections of the signal where there is no speech present. This
is especially true when the mixed signal is at higher SNRs. The
exceptions to this are instances when the mask mistakenly labels
noise dominated cells as reliable.

Figs. 3 and 4 break the mask errors down into false ac-
cept/insertion errors where the mask mistakenly labels noise-
dominated cells as reliable and false reject/deletion errors where
the mask mistakenly labels speech-dominated cells as noise. The
false positive rate of the pitch tracker mask is much higher than
that of the RVM mask. This is a result of the fact that the pitch
tracker masks tend to be very inaccurate at high frequencies.

Fig. 6 compares the mutual information between the ground-
truth STFT cell labels and the masks based on RVM classifier and
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Figure 4: Amount of noise energy added by false positive mask
cells and the amount of signal energy deleted by false negative
mask cells.

CASA pitch tracker. Mutual information is somewhat independent
of the false alarm / false reject tradeoff, to allow a comparison
that does not depend so strongly on threshold. The RVM mask
is significantly more informative about the true mask label than
the CASA-based pitch track mask, but the joint MI between the
ground truth and both masks is higher still, indicating that there is
some information in the CASA mask not capture by the RVM, and
hence there could be some value in combining them.

From fig. 5 it is clear that performance is best on the same
kind of noise signals that were used to train the RVM classifiers.
Despite this there is a clear a boost in SNR on all noise signals
when the mixed signal is below 8 dB SNR using RVM masks. The
worst performance occurs on the music noise. The estimated RVM
masks on this signal are often wrong because it is highly nonsta-
tionary with highly harmonic sections, unlike any of the signals
used to train the RVM.

Fig. 7 shows specific examples of the mask estimation and
different types of reconstruction. Problems with RVM mask pre-
diction are evidenced by the false negatives in the first 0.5 s. When
the masks are wrong, there is no way for the MMSE reconstruc-
tion to properly recover the missing data. Even though MMSE
reconstruction does not give a huge boost in SNR, it does much to
fill in the blanks (e.g. in the vowel at about 1 second). As noted
earlier, the biggest failing of the CASA mask generation lies in the
prevalence of false positives. When a lot of noisy data is labelled
as being reliable, the MMSE reconstruction is unable to get a good
estimate of the underlying speech signal. We note in passing that
the pitch-track based CASA mask has no way to identify correct
masks for unpitched speech sounds (fricatives), limiting its poten-
tial performance.

We also note in passing that the CASA pitch tracking system
fares much better in the low frequency regions below about 1 kHz
where pitch harmonics are strongest. Our measures such as detec-
tion rate and mutual information count individual STFT cells of
fixed bandwidth; a division of time-frequency using a more per-
ceptual frequency axis (e.g. Mel or Bark scale) would increase
the relative significance of these low-frequency bands, and would
show the CASA system in a more favorable light.
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6. Conclusions
A system for inferring a clean speech signal from a noisy signal
that does not depend on explicit noise models was presented. RVM
classifiers were evaluated and shown to have a clear advantage over
SVMs in terms of model sparsity, without a large cost in accuracy.
Sparsity has a large effect on computational complexity of actual
classification since the run time scales with the number of support
vectors.

The performance of RVM masks was also shown to be supe-
rior to that of masks generated by a pitch tracking CASA approach.
Poor mask estimation where many noisy cells are labelled as be-
ing reliable, as is the abundance of false positives using the pitch
tracker mask, poses significant problems to the feature reconstruc-
tion process. Because of this, the false negative errors made by the
RVM mask are actually less detrimental than the false positives
made by the pitch tracker mask.

The biggest drawback to this system is the computational com-
plexity of the RVM training algorithm. The amount of data used
to train the RVMs was limited since the run time of the training
algorithm is cubic in the number of training examples. Use of the
fast training algorithm described in [11] would mitigate this.

Our analysis showed large differences between the RVM-
based masks and masks from a traditional CASA pitch-tracking
system. However, although the RVM system was superior, the
mutual information results indicate that there is benefit to be had
by combining both systems. One natural approach to this would
be to include pitch-related information as features for the RVM
classifier.

Finally, as hinted at in [4], the subband classifiers might be
able to generalize better across different types of interference if
they used features that are less dependant on the type of noise.
These might include broad spectral shape features such as spectral
flatness and spectral centroid or perceptually motivated features
such as MFCCs.
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