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ABSTRACT

We present techniques for processing MPEG-audio encoded signals
during the decoding process, using efficient fixed-point arithmetic
operations. A large signal-to-quantization-noise-ratio is achieved
over a large range of input levels. By taking advantage of MPEG-
audio built-in properties, quantization distortion at the outputs of our
systems is kept largely inaudible, even though only low-resolution
fixed-point operations are used in the processing.

Index Terms— MPEG, DSP, companding

1. INTRODUCTION

The MPEG-1 audio coding standard is one of the most popular and
widely used standards for efficient and perceptually lossless audio
compression coding, since it achieves both high perceived audio fi-
delity and high compression rates. An excellent MPEG tutorial can
be found in [1]. MPEG-audio uses a digital filterbank to create 32
narrowband filtered versions of a digital input signal, referred to as
“subbands,” each of which is downsampled by a factor of 32. The
presence of a large signal in a particular subband makes noise in
that subband perceptually inaudible; this phenomenon is known as
“psychoacoustic masking”. In MPEG-1 layers I and II, scale factors,
coded as a 6-bit index corresponding to one of 64 high-precision
predefined values, are used to compress the dynamic range of the
subband samples (normalization). The actual value of each subband
sample is given by the normalized subband sample multiplied with
the corresponding scale factor; this multiplication is referred to as
“denormalization”.

Processing of MPEG-audio encoded signals is conventionally
performed by first fully decoding the input stream and then perform-
ing the desired processing. This method, which we refer to as “clas-
sical DSP,” completely ignores the features of MPEG-audio encod-
ing. The processor must process a signal with high dynamic range,
and with frequency content throughout the audio band. In [2, 3, 4, 5],
among others, the problem of how to directly process the subband
samples is addressed, but the processing proposed therein is done
after denormalization, so the processed subband signals, though nar-
rowband, have high dynamic range. As a result, to avoid introducing
significant audible quantization distortion, these subband processors
must be implemented in either very high resolution fixed-point or
in floating point. For many applications, specifically those targeting
low-power, battery-operated devices, it will often be very desirable
to reduce the complexity of the computation required to implement
the processing; using only low-resolution fixed-point operations for
the processing would be very desirable. This is the case regardless of
the implementation of the MPEG-1 decoder used, as this decoding
is necessary, and essentially a fixed, “sunk” cost, independent of the
implementation of the processing. Even if a floating-point decoder is
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Fig. 1. Direct processing of MPEG-audio. Subband samples and
corresponding scale factors are efficiently processed before denor-
malization by using syllabic companding or block-floating-point
processors.

used, great savings in dynamic power can be realized by improving
the efficiency of the processing.

In this work, we process prior to denormalization by using the
syllabic companding (compressing-expanding) DSP technique, in-
troduced in [6], or the block-floating-point (BFP) technique of [7];
these techniques process compressed input, along with correspond-
ing input scale factors, and yield compressed output, along with
corresponding output scale factors, provided that these scale factors
correspond to the the time-domain envelope of the subband samples.
The highest MPEG-audio layer for which this is the case is MPEG 1-
Layer II (MP2), and this is the standard we used in this work. How-
ever, the techniques presented in this work can be similarly applied
to any standard in which audio is encoded in the form of normal-
ized time-domain subband samples and corresponding time-domain
scale factors; we chose MP2 since it is used for many applications,
including digital-video-broadcasting (DVB) and DVD players.

The techniques presented in this work could also be used with
standards utilizing frequency-domain subband samples, such as the
popular MPEG 1- Layer III (MP3) standard, but with such standards,
it would be necessary to first partially decode the input stream to ob-
tain time-domain normalized subband samples and scale factors; for
the most part, such partial decoding is part of the standard decoding
process, so it is not an overhead.

The system-level block diagram for the technique we present in
this paper is shown in Fig. 1, where the MPEG-audio encoded signal
is processed during decoding, before denormalization, taking advan-
tage of the compressed input and scale factors provided to us by the
MPEG-audio standard. As in [3, 4], the processor shown in the fig-
ure is composed of 32 “subband processors,” where each subband
processor is a multiple-input, single-output system fed with subband
samples from all 32 subbands; the ith subband processor outputs the
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Fig. 2. A companding subband processor. For this case study, the
processor block of Fig. 1 is composed of 32 identical copies of this
subband processor, with the ith processor taking as input only the
ith stream of subband samples and corresponding scale factors.

subband samples corresponding to the ith subband. In contrast to
[2, 3, 4, 5], the processor shown in Fig. 1 can use few bits and sim-
ple low-bit fixed-point operations. Due to the compressed dynamic
range of the input, state, and output signals, the resulting output sig-
nal to quantization noise ratio (SNR) is always sufficiently high that
the output quantization noise is inaudible due to the psychoacous-
tic masking properties exploited by the MPEG-audio reconstruction
filter bank.

2. DIRECT PROCESSING OF MPEG-ENCODED SIGNALS

Due to lack of space, we present our techniques using a specific ex-
ample: an all-pass digital reverberator. A non-allpass filter could
theoretically filter out some artifacts caused by our technique; by
using an allpass filter, we ensure that the absence of artifacts is a
property of our technique, rather than an “accident” related to the
type of filtering used.

2.1. Syllabic Companding Approach

We used the syllabic companding DSP technique, introduced in [6]
and refined in [8], to implement a reverberator prototype, described
in state-space by the following equations:

x1(n+ 1) = −0.8 · xL(n) + 0.2 · u(n)
xi(n+ 1) = xi−1(n), 2 ≤ i ≤ L

y(n) = 1.8 · xL(n) + 0.8 · u(n)
(1)

where L = 2048 and the sampling rate for the input u(n), output
y(n), and states xi(n) of the prototype is fS = 44.1 kHz. For this
case, we could use the technique of [2], so that the processing is
implemented by 32 identical “subband processors,” with the ith pro-
cessor taking as input only the ith stream of (denormalized) subband
samples. Each of the 32 subband processors is described by (1), but
with L replaced by K = L

32
= 64, and with u(n) and y(n) now

being the stream of samples at the input and output, respectively, of
a particular subband processor; we will refer to such a subband pro-
cessor as the “subband-prototype.” Here, we would like to process
samples before denormalization, so we will apply the companding
DSP technique of [6] to the subband-prototype. Thus, as in [6],
we introduce externally applied control signals eu(n), ey(n), and

exi(n) signals, referred to as “e-controls”, and normalized input,
output and states û(n), ŷ(n), and x̂i(n), such that:

û(n) = u(n)
eu(n)

ŷ(n) = y(n)
ey(n)

x̂i(n) = xi(n)
exi

(n)
, 1≤i≤K

(2a)

By substituting (2a) in (1), we find that all subband processors are
identical and described by the state equations:

x̂1(n+ 1) =
−0.8exK (n)

ex1(n+ 1)
· x̂K(n) +

0.2eu(n)

ex1(n+ 1)
· û(n)

x̂i(n+ 1) = x̂i−1(n), 2 ≤ i ≤ K

ŷ(n) =
1.8exK (n)

ey(n)
· x̂K(n) +

0.8eu(n)

ey(n)
· û(n)

(2b)

with K = 64 and exK (n) = ex1(n − K + 1). The e-controls
are constrained to be integer powers of 2, so that the ratios in (2)
are efficiently implemented as subtractions of (integer) base-2 loga-
rithms, and multiplying by the ratios is efficiently implemented with
arithmetic bit-shift. Information about the input envelope for each
subband is provided in MPEG-audio in the form of a signal scale-
factor. From this, the eu(n) control signal is generated via a lookup
table (LUT). The LUT has a 14-bit input: the 8-bit normalized input
sample, concatenated with its corresponding 6-bit scale-factor index.
The LUT outputs a 4-bit integer corresponding to the base-2 loga-
rithm of the lowest integer power of 2 greater than the scale-factor,
and a new 8-bit compressed subband sample corresponding to this
power-of-2 scale factor. The new 8-bit sample is used as û(n) in (2),
while the power-of-2 scale factor is used as eu(n) in (2). As shown
in [6], the remaining e-controls should be chosen to correspond, at
least roughly, to the envelopes of the corresponding signals in the
prototype, in order to maximize the dynamic range of the subband
processor, and minimize the quantization distortion. Thus, as seen in
Fig. 2, we use an “Envelope generator” block to obtain the remain-
ing e-controls required by the companding DSP. In [6], a replica DSP
was used to calculate the remaining required e-controls. We could
do this here as well, using 32 low-resolution fixed-point implementa-
tions of the subband-prototype. However, implementing the replica
DSPs adds significant overhead, so we have devised a more efficient
technique for estimating the remaining e-controls. Our algorithm,
shown in block diagram format in Fig. 3, takes advantage of the nar-
rowband nature of the subbands, and is described in detail in the
following.

When a signal u(n), narrowband around a frequency ω1, is pro-
cessed with an LTI filter, one can approximate u(n) with a sin-
gle tone at frequency ω1, so that the output is roughly ỹ(n) =
A1 · u(n − n1), where A1 is the magnitude of the filter’s trans-
fer function at frequency ω1, and n1 is the group delay of the filter,
rounded to the nearest integer, at frequency ω1. Thus, the envelope
of y(n), ey(n), can be approximated with A1 · eu(n− n1). Similar
results hold for the filter states.

The above discussion only applies when there is no sudden
change in the input, u(n), since until the system resettles after the
sudden change, it cannot be viewed as above. We have determined
empirically that abrupt changes in u(n) are indicated by changes
of more than a factor of 8 between consecutive values of eu(n) in
(2a). When no such change is detected, we can consider the subband
signal to be narrowband. For our subband-prototypes, all input-state
and input-output transfer functions are normalized such that their
maxima are at 0 dB, so A1 = 1. Thus, in (2), we can approximate
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Fig. 3. Subband processor without a replica DSP.

the output envelope of the companding DSP’s output, ey(n), by
eu(n − G1) and the first state’s envelope, ex1(n), by eu(n − G2),
where G1 and G2 are the corresponding group delays, rounded to
the nearest integer.

The magnitude of the transfer function from the subband proto-
type’s input, u(n), to its Kth state, xK(n), was simulated to range
from −15 dB to 0 dB. Thus, when there have been no recent abrupt
input envelope changes, eu(n) and exK (n) differ by at most one or-
der of magnitude. When there are abrupt input envelope changes,
eu(n) will temporarily be either much larger or much smaller than
exK (n). In the subband prototypes, given by (1), but with L re-
placed by K = L

32
, we see that x1(n + 1) and y(n) are both com-

posed of two components: one depending on the input, u(n), and
the other on the Kth state, xK(n). When there is an abrupt input
envelope change, one or the other component will dominate in de-
terming the envelopes of x1(n + 1) and y(n), allowing us to use
simple approximations for these envelopes. Specifically, for sudden
increases in eu(n), eu(n) temporarily becomes significantly larger
than exK (n), so in (2), we can approximate ey(n) as .8 · eu(n), and
ex1(n) as .2 · eu(n). Since we always use exact integer powers of
2 for eu(n), and we also want ey(n) and ex1(n) to be exact integer
powers of 2, we further approximate ey(n) as .5 · eu(n) and ex1(n)
as .25 · eu(n). This also results in a far simpler implementation,
as ey(n) and ex1(n) can be easily computed from eu(n) by simply
subtracting 1 or 2, respectively, from the integer power of 2 stored
for eu(n). These assignments must be carried for at least G1 sam-
ples, after which the envelopes can again be estimated via the group
delays, until a new abrupt input jump is detected. Similarly, for sud-
den decreases in eu(n), both ey(n) and ex1(n) can be approximated
as max{exi(n)} until a new abrupt input jump is detected.

The above described functionality is shown in Fig. 3. Even
though only low-resolution fixed-point operations, along with a min-
imal amount of extra hardware, are used in the implementation de-
scribed above, its performance will be seen to yield high output
SNR over a large input dynamic range, and excellent perceived audio
quality.

2.2. Block Floating Point Approach

Another way to process samples before denormalization is to apply
a block floating point (BFP) technique, based on [7], but modified as
in [8] to allow for input and output compression in addition to state-
variable compression. We introduce scaling signals gu(n), gy(n),

and gi(n), referred to as “g-controls”, and normalized input, output
and states û(n), ŷ(n), and x̂i(n), such that:

û(n) = gu(n) · u(n)
ŷ(n) = gy(n) · y(n)
x̂i(n) = gi(n) · xi(n), 1≤i≤K

(3)

The derivation of the BFP technique is not included here due to space
constraints, but it is in [7, 8]; here, we apply this technique to the
subband prototypes of the previous subsection. In general, the BFP
technique of [7] obtains an intermediate “partially compressed” state
vector, x̃(n), and output, ỹ(n), from the compressed input, û(n), the
compressed state vector, x̂(n), and the g-controls. For the subband
prototypes, this is accomplished as follows:

x̃1(n+ 1)=−0.8 g1(n)
gK(n)

x̂K(n) + 0.2 g1(n)
gu(n)

û(n)

ỹ(n)=1.8
gy(n−1)

gK(n)
x̂K(n) + 0.8

gy(n−1)

gu(n)
û(n)

(4a)

where K = 64. Eqn. (4a) is not a standard state space, as it re-
lates x̃(n + 1) to x̂(n). As in the previous subsection, we use a
LUT to convert from the MPEG normalized subband samples and
scale factors to scale factors that are integer powers of 2, along with
the corresponding normalized subband samples. These are used as
gu(n) and û(n) in (4a). As in [7], the remaining g-controls are
derived recursively by introducing “p-controls.” Since for our case
study, gK(n) = g1(n −K + 1), we only need to derive g1(n) and
gy(n−1), so we only need p1(n) and py(n). The former is obtained
from x̃1(n):

p1(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4

α2N < |x̃1(n)|
1
2

α2N−1 < |x̃1(n)| ≤ α2N

1 α2N−2 < |x̃1(n)| ≤α2N−1

2 |x̃1(n)| ≤α2N−2

(4b)

where N is the number of bits used for compressed states, input,
and output, and α is a constant “safety factor” set to be slightly less
than unity. Similarly, py(n) is obtained by an equation identical
to (4b), but with ỹ(n) replacing x̃1(n). The p-controls are used to
recursively obtain g-controls:

g1(n) = p1(n) · g1(n− 1)
gy(n) = py(n) · gy(n− 1)

(4c)

The p-controls are also used to obtain the fully compressed x̂1(n)
and ŷ(n) from the partially compressed x̃1(n) and ỹ(n):

x̂1(n) = p1(n) · x̃1(n)
ŷ(n) = py(n) · ỹ(n) (4d)

The Kth state is simply obtained as: x̂K(n) = x̂1(n−K + 1).

The p(n) and g(n) signals in (4) are all integer powers of 2, and
they are stored as those powers. Thus, although (4) contains ratios
and products, these are implemented as additions and subtractions of
powers of 2, and bitshifts by these powers. No division is performed,
and the only multipliers are the coefficient multipliers.
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3. MEASUREMENTS

The systems discussed were implemented and simulated in Mat-
lab/Simulink with both pure-tone and speech inputs. Fig. 4 shows
the SNR for all systems when their inputs are a 500 Hz encoded
tone. All systems operate in 8-bit, fixed-point arithmetic, meaning
that they use 8-bit registers and multipliers, and 16-bit accumulators,
adders, subtracters and shifters. As shown, the SNR at the output of
the companding and BFP systems is very close to the full-scale SNR
over a large input dynamic range (DR); such is not the case for the
8-bit classical system. Thus, for a fixed target SNR, the compand-
ing and BFP systems can provide a much larger DR than a classical
system using the same number of bits.

Fig. 4 alone does not fully determine the performance of the sys-
tems when subject to signals of varying envelopes; such performance
will depend on both the SNRs in Fig. 4 and the accuracy of the enve-
lope calculations. As such, we also fed the presented systems with
audio signals, including speech signals. Sample audio clips have
been posted on a web site [9]; the use of only 8 bits allows us to
audibly demonstrate the noise reduction achievable using the tech-
niques presented, which would not be the case if more bits had been
used, as the noise in all cases would then be largely imperceptible,
due to limitations of the medium. Listening tests confirmed that the
quantization noise of the companding and BFP systems is signifi-
cantly reduced relative to that of the classical DSP, due to the higher
SNRs shown in Fig. 4 and the masking properties of the MPEG-
audio reconstruction filter bank.

4. CONCLUSION

We have applied both syllabic companding and BFP to directly pro-
cess MPEG-audio encoded signals before denormalization. Our pro-
posed technique takes advantage of the compressed subband sam-
ples and scale factors already provided in the MPEG-audio encoded
signal. The compressed input and scale factors are used as inputs
to low-resolution syllabic companding or BFP processors, and pro-
cessing is thus accomplished with low-resolution fixed point arith-
metic. For the number of bits used, relatively large SNR is achieved
over a large input dynamic range. The companding nature of the
processing ensures that significant quantization distortion is only
present in subbands that also simultaneously contain significant sig-
nal. This property, combined with the psychoacoustical masking
properties of the MPEG-audio reconstruction filter bank, ensures

that even though our processor uses low-resolution fixed-point arith-
metic, the resulting quantization distortion at the processor output
is significantly reduced relative to that of the classical DSP. Thus,
this work leverages the well-known psychoacoustical masking prop-
erties of the MPEG-audio reconstruction filter bank, already present
in any standard MPEG encoder/decoder, to acheive relatively large
SNR with relatively low-resolution fixed-point direct processing of
the subband samples.

We chose to use 8-bit systems to make the noise reduction ap-
parent in both our measurements and our audio clips, so that there
is an audible difference between the clips posted in [9]; more bits
would be used in commercial applications to further reduce the re-
sulting quantization noise and render it perceptually inaudible. Our
results imply that by using companding or BFP in lieu of classical
processing, fewer bits are required to achieve inaudible quantization
noise.

Due to space constraints, the only system we discussed in this
paper was a reverberator with a delay given by a multiple of 32. De-
riving the corresponding set of 32 subband processors was straight-
forward, as in [2]. Our proposed technique, though, is far more
general, and can be applied to any set of subband processor pro-
totypes. For example, we have applied our proposed technique to a
linear-phase, finite impulse response filter, using the method in [3] to
derive the subband processor prototypes. For the reverberator case
study presented in this work, the computational complexity of the
reverberator is small relative to that of the MPEG decoder, so our
presented technique only grants efficiency improvements for a small
fraction of the total processing required. Our proposed technique
would, in a relative sense, be more beneficial for cases where the
digital filtering would require large computational complexity, such
as for high-order FIR filtering. In this work, we chose to use an all-
pass system for the reasons discussed at the beginning of Section 2.
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