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Using Broad Phonetic Group Experts for Improved
Speech Recognition

Patricia Scanlon, Daniel P.W. Ellis, Richard B. Reilly

Abstract— In phoneme recognition experiments it was found
that approximately 75% of misclassified frames were assigned
labels within the same Broad Phonetic Group (BPG). While
the phoneme can be described as the smallest distinguishable
unit of speech, phonemes within BPGs contain very similar
characteristics and can be easily confused. However different
BPGs, such as vowels and stops, possess very different spectral
and temporal characteristics. In order to accommodate the full
range of phonemes, acoustic models of speech recognition systems
calculate input features from all frequencies over a large temporal
context window. A new phoneme classifier is proposed consisting
of a modular arrangement of experts, with one expert assigned
to each BPG and focused on discriminating between phonemes
within that BPG. Due to the different temporal and spectral
structure of each BPG, novel feature sets are extracted using
Mutual Information, to select a relevant time-frequency (TF)
feature set for each expert. To construct a phone recognition
system, the output of each expert is combined with a base-
line classifier under the guidance of a separate BPG detector.
Considering phoneme recognition experiments using the TIMIT
continuous speech corpus, the proposed architecture afforded
significant error rate reductions up to 5% relative.

Index Terms— Automatic Speech Recognition, Broad phonetic
groups, Mutual Information, Mixture of experts.

I. INTRODUCTION

THE fundamental task of the acoustic model in a speech
recognizer is to estimate the correct subword or phonetic

class label for each frame of the acoustic signal. The phoneme
can be defined as the smallest phonetic unit in a language
that is capable of conveying a distinction in meaning, however
phonemes that may be within the same Broad Phonetic Group
(BPG) contain very similar temporal characteristics and can be
easily confused. In phoneme recognition experiments on the
TIMIT database, reported in [5], it was observed that almost
80% of all misclassified frames are identified as phonemes
within the same BPG as the correct target. The BPGs in
these experiments were vowels, stops, weak fricatives, strong
fricatives and nasals.

Similar results to those reported in [5] are illustrated in
Figure 1, where almost 75% of misclassified frames were
given labels within the same BPG. In Figure 1 phonemes are
divided into the BPGs of vowels, stops, fricatives and nasals,
where the vowel group contains all phonemes that may be
labeled as vowels, semivowels or dipthongs. Distinguishing
between these three vowel-like groups, it is observed that
almost 50% of confusions still lie within the same group as the
true label. However, since the vowel-like sounds are especially
confusable, they are placed in a single group. The confusion
matrix of phonemes is given in figure 1, with the phonemes
ordered in groups i.e. the first 25 are vowel or vowel-like
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Fig. 1. Confusion matrix with phonemes grouped into Broad Phonetic
Groups. Rows are normalized to give conditional probabilities, and values
larger than 20% (including most of the leading diagonal) are clipped to that
level. 48% of confusions fall into the same group, rising to 74% if vowels,
dipthongs, and semivowels are merged into a single group.

phonemes, the next 8 are stops, then 10 fricatives, 7 nasals,
and finally 11 silence/pause/stop-closures.

The task of speech recognition is complicated by the fact
that the information relevant to phoneme classification is
spread out in both frequency and time – due to mechanical
limits of vocal articulators, other co-articulation effects, and
phonotactic constraints. As a result it is generally advan-
tageous to base classification on information from all fre-
quencies and across a large temporal context window. This
generalized feature window results in a large number of
parameters as input to the classifier, and hence requires very
large training sets, as well as frustrating the classifier training
with redundant and irrelevant information. Using such a large,
general-purpose feature space can lead to confusion between
phonemes of the same BPG as seen in Figure 1.

In this paper a new modular architecture for speech recog-
nition is proposed in which an expert is assigned to each BPG.
These experts focus discrimination capabilities of the classi-
fier on the sometimes subtle differences between phonemes
belonging to the same BPG, rather than between all phonemes
in all BPGs. Since separate classifiers are used for each group,
it is proposed that different feature sets be used for each expert
that better support discrimination between the phonemes of
that group. In this paper Mutual Information (MI) is used as a
basis for selecting particular cells in the TF plane to optimize
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the choice of features used as inputs to each BPG classifier.
MI based feature selection for speech recognition has been

investigated previously in the literature. Morris et al. [7]
examined the distribution of information across a time-aligned
auditory spectrogram for a corpus of vowel-plosive-vowel
(VPV) utterances. The MI was estimated between each TF
cell and the VPV labels, as was the joint mutual information
(JMI) between pairs of TF cells and the VPV labels. The
goal was to use MI and JMI to determine the distribution
of vowel and plosive information in the TF plane. Features
with high MI and JMI were used to train a classifier to
recognize plosives in the VPV utterances. Bilmes [1] used
the Expectation Maximization (EM) algorithm to compute the
MI between pairs of features in the TF plane. He verified
these results in overlay plots and speech recognition word
error rates. Yang et al. [13] used methods similar to [7] but
their focus was on phone and speaker/channel classification.
Multi-layer perceptrons with one or two inputs were used to
demonstrate the value for phone classification of individual
TF cells with high MI and pairs with high JMI. In Scanlon
et al. [10], in addition to calculating MI over all phonetic
classes, the MI is examined for subsets formed by BPGs, such
as the MI between specific vowel labels across only the vowel
tokens etc. The hypothesis that high MI features provide good
discrimination was verified in [10] where a range of vowel
classifiers are evaluated over the TIMIT test set and show
that selecting input features according to the MI criteria can
provide a significant increase in classification accuracy.

The work described in this paper extends this work by
extracting the relevant feature sets for each BPG. Specifically,
the use of MI as measure of the usefulness of individual TF
cells for each of the BPGs has been investigated, using the
phonetically-labeled TIMIT continuous speech corpus as the
ground truth.

Modular or hierarchically organized networks as opposed to
monolithic networks have been studied extensively in the lit-
erature. The speech recognition task is divided among several
smaller networks or experts and the output of these experts are
combined in some hierarchical way yielding an overall output.

Hierarchical Mixtures of Experts (HME) was applied to
speech recognition in [14], where the principle of divide-
and-conquer was used. The training data was divided into
overlapping regions which are trained separately with experts.
Gating networks are trained to choose the right expert for each
input. In the HME architecture the combining process is done
recursively. The outputs from the experts are blended by the
gating networks and proceed up the tree to yield the final
output. In HME the decomposition is data driven and each
expert has the same feature set as input.

The Boosting algorithm constructs a composite classifier by
iteratively training classifiers while placing greater emphasis
on certain patterns. Specifically, hard-to-classify examples are
given increasing dominance in the training of subsequent
classifiers. The hybrid NN/HMM speech recognizer in [11]
shows it is difficult to take advantage of very large speech
corpora, and that adding more training data does necessarily
improve performance. The AdaBoost algorithm can be used to
improve performance by focusing training on the difficult and

more informative examples. In this paper log RelAtive Spec-
TrAl Perceptual Linear Predictive (log-RASTA-PLP) features,
modulation-spectrogram based features and the combination of
these feature sets are compared. It was shown that Boosting
achieves the same low error rates as these systems using only
one feature representation.

Previous research into using BPG experts in a modular
architecture has been carried out in [5], which also includes
the idea of using different feature sets for each of the BPG
experts. These feature sets were varied in dimension and in
time resolution and empirical measures were employed to
determine the best feature set for each expert. BPG feature
sets varied greatly using different feature vector dimensions,
resolution and including a variation of other features such as
duration and average pitch for vowel and semi-vowel classes,
zero-crossing rate, total energy of the segment and time
derivative of the low frequency energy for the fricative class. In
[5] no variation of the network parameters was made for each
of the BPG experts. A maximum a posterior (MAP) framework
was used for overall phoneme classification. This framework
combines posterior probabilities from all BPG experts outputs
with the posterior probability of its group.

Another approach to modular architecture for speech recog-
nition was investigated in [9]. This architecture decomposes
the task of acoustic modeling by phone. In the first layer
one or more classifiers or primary detectors are trained to
discriminate each phone and in the second layer the outputs
from the first layer are combined into posterior probabilities by
a subsequent classifier. It is shown that the primary detectors
trained on different front-ends can be profitably combined
due to independent information provided by different front-
ends. As different feature sets have individual advantages and
disadvantages, the use of different feature sets such as Mel-
Frequency Cepstral Coefficients (MFCC), PLP and Linear
Predictive Coding (LPC) feature sets and combinations of
these feature sets were compared. In these experiments the
feature set combination that maximized the entire system
was used. Another primary detector was incorporated into the
framework to detect the presence of BPGs over a large context
window, to combine with previous outputs to further improve
performance.

Chang et al. [3] proposed that a hierarchical classifier based
on phonetic features i.e. one classifier for manner, then a
conditional classifier for place given manner (which together
distinguish all consonants), could significantly outperform
traditional non-hierarchical classification based on experiments
using the assumption of perfect recognition of the conditioning
manner class. However, recent work [8] disproves this proposal
by implementing a similar system where the conditioning
manner class is automatically detected and showed that gains
suggested in [3] were minimized.

In Sivadas and Hermansky [12], a hierarchical approach
to feature extraction is proposed under the tandem acoustic
modeling framework. This was implemented as hierarchies of
MLPs such as speech/silence, voiced/unvoiced, voiced classes
and unvoiced classes. The output from the hierarchy of MLPs
was subsequently used as feature set in a Gaussian Mixture
Modeling (GMM) recogniser after some non-linear transfor-
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mation. It was observed that the hierarchical tandem system
performed better than the monolithic based classifier using
context-dependent models for recognition and worse when
context-independent models were used. It was suggested that
a more structured approach to the design of the classification
tree would improve performance.

Modular approaches to speech recognition in the literature
typically extract homogeneous feature vectors to represent
the acoustic information required to discriminate between all
phones [14], [11], [9], [3], [8]. While the performance of
different feature sets and combinations of these sets has been
compared in [11] and [9], homogeneous feature vectors are
used as input to the entire system. The use of heterogeneous
feature sets for modular based ASR system has also been
expored. A heuristic approach is used in [5] where empirical
results are used to chose the feature set for each BPG (or
phone-class). These feature sets vary greatly in dimensionality,
inclusion of temporal features and inclusion of other features
such as zero-crossing rate, energy and pitch. In [12] the output
from a hierarchy of MLP networks is used as the feature input
to a GMM based speech recogniser. In this paper the use of
MI criterion is proposed to select the most relevant features
based on speech class information. In this way just one unique
TF pattern per BPG is selected and discriminative classifiers
are used to distinguish within that group.

Our proposed approach combines modular network of BPG
experts with a scheme to select only features relevant to
each expert. Using a development set the size on the expert
network’s input layer, number of hidden nodes is chosen to
maximize the performance of the BPG experts. Our imple-
mentation of this architecture assigns each frame to a BPG or
the silence group. Each candidate frame is assigned to one of
the BPGs or a silence group. In order to easily incorporate
the proposed modular architecture into our existing baseline
framework the output from the set of experts is combined
or ‘patched’ into the baseline monolithic classifier posterior
estimates.

This remainder of the paper is organised as follows: The
next section describes the basic approach of decomposing
acoustic classification into a set of subtasks, and then section
III provides the background for MI, its computation and the
subtask-dependent feature selection algorithm. In Section IV,
the proposed classifier architecture is described. Details of the
baseline system and the BPG experts and the BPG detector
and integration methods are given. Section V discusses the
benefits of the proposed feature selection method and provides
experimental demonstration of the architecture.

II. MIXTURES OF EXPERTS

Central to the system presented is the idea of decomposing
the phone classification problem into a number of subtasks (i.e.
our within-BPG classification) and building expert classifiers
specific to each of those domains. This ensemble of experts is
used as a (partial) replacement for a single classifier deciding
among the entire set of phones, but in order to make these
alternatives directly interchangeable, it is necessary to decide
how to combine each of the experts into a single decision.

Consider our basic classification problem of estimating,
for each time frame, a phone label Q (which can take on
one of a discrete set of labels {qi}, based on an acoustic
feature vector X . A monolithic classifier, such as a single MLP
neural network, can be trained to make direct estimates of the
posterior probability of each phone label Pr(Q = qi|X). If,
however, a classifier is trained only to discriminate among the
limited set of phones in a particular BPG, this new classifier is
estimating posterior probabilities conditioned on the true BPG
of the current frame, C, taking on a specific value (also drawn
from a discrete set {cj}). Thus each expert classifier estimates
Pr(Q = qi|C = cj , X) for a different BPG class cj . These
can be combined into a full set of posteriors across all phones
with:

Pr(Q = qi|X) =
∑
cj

Pr(Q = qi|C = cj , X)Pr(C = cj |X)

(1)
i.e. as a weighted average of the experts, weighted by some
estimate P (C = cj |X) of which expert is in fact best suited
to the job – this process is called ‘patching in’, since at
different times the merged output stream consists of ‘patches’
coming from different individual experts. The weights could
constitute a ‘hard’ selection (i.e. 1 for a particular cj and
zero for all others), or they could be constants smaller than
1 (allowing some small proportion of different classifiers to
come through at all times), or they could also be dynamic,
varying in proportion to some kind of confidence estimate for
the class estimation.

The BPG weights Pr(C = cj |X) need to be obtained
somehow, most obviously through training a further classifier
simply to identify the appropriate BPG. However, this expert-
selection classifier will surely make some mistakes, and so
the overall benefit of this two-stage classification (BPG, then
phone given BPG) is a tension between the benefits of discrim-
ination only within a narrow set of phones (as performed by
the expert) and the degradation caused by imperfect estimation
of BPG labels. Such systems can be ‘tuned’ to be more
conservative simply by making it less likely that a frame will
be marked as relevant to one of the experts, assuming that the
baseline classifier is used when none of the experts is selected,
so that in the limit the system backs off to the simple baseline
system.

With ideal classifiers, decomposing the problem this way
should make no difference. However, since actual classifier
performance is a complex function of classifier algorithms and
available training data, the decomposition can have benefits.
In particular, because each of the experts is looking at a
distinct, homogeneous problem (discriminating phones within
a single class), the ‘structural’ discrimination of using different
feature vectors for each expert can be incorporated, thereby
reducing the number of parameters in the experts compared to
the baseline classifier, and possibly improving their ability to
exploit the finite training data. In the next section, how Mutual
Information is used to select these distinct per-expert feature
sets is discussed.



4

III. MUTUAL INFORMATION

A. Background

The entropy of a random variable is a measure of its
unpredictability [4]. Specifically, if a variable X can take
on one of a set of discrete values {xi} with a probability
Pr(X = xi) then its entropy is given by:

H(X) = −
∑

x∈{xi}

Pr(X = x) log Pr(X = x) , (2)

If a second random variable C is observed, knowing its
value will in general alter the distribution of possible values
for X to a conditional distribution, p(x|C = c).

Because knowing the value of C can, on average, only
reduce our uncertainty about X , the conditional entropy
H(X|C) is always less than or equal to the unconditional
entropy H(X). The difference between them is a measure of
how much knowing C reduces our uncertainty about X , and
is known as the Mutual Information (MI) between C and X ,

I(X;C) = H(X)−H(X|C) = H(C)−H(C|X) . (3)

Note that I(X;C) = I(C;X) ; this symmetry emerges natu-
rally from the expectations being taken over both variables,
and leads to the intuitive result that the amount of information
that C tells us about X is the same as the amount of
information that knowing X would tell us about C. Further,
0 ≤ I(X;C) ≤ min{H(X),H(C)} , and I(X;C) = 0, if
and only if X and C are independent.

B. The Selection Algorithm and its Implementation

Putting aside for the moment the issue of computing (3), the
MI-based algorithm for feature selection within the candidate
pool of TF features can be expressed as:

Xi = argmax
X ∈ X \ Xi−1

{I(X;C)} and Xi = Xi−1 ∪Xi

(4)

for i = 1, 2, ..., d , with Xo = ∅ , where d is the desired
dimensionality of the selected feature vector. Note that this
approach represents a simple sorting of all mutual information
values and it results in a nested selected feature set X1 ⊂ ... ⊂
Xd ⊂ X . Note also, however, that this greedy strategy does not
find the optimal set of d points since there may be information
‘overlap’ between the successively-chosen X points. In the
worst case, two TF points that always had identical values
would have equal I(X;C) (and would thus be neighbors in
the sorted list), but including the second would not add any
additional information about C over that provided by the first.

To obtain estimates of the MI values, needed in (4) the
histogram approach was used to approximate the density
functions required in (3), as in [13]. The histogram approach
requires choosing the number of bins to be used and their bin
widths. In order to exclude outliers (that can result in empty
or sparsely filled bins), the range over which the histogram is
computed, and hence the bin width, is determined by setting
the lower bound equal to the mean of the samples minus three
standard deviations; the maximum is similarly obtained.

TABLE I
PHONETIC BROAD CLASS GROUPS

Group Phonemes
Vowels iy ih eh ae aa ah ao uh uw ux ax ax-h ix
Dipthongs ey aw ay oy ow
Semi-vowels l el r w y er axr
Stops b d g p t k jh ch
Fricatives s sh z zh f th v dh hh hv
Nasals m em n nx ng eng en
Silence dx bcl dcl gcl pcl tcl kcl h pau epi q

Following [13], Doane’s rule, K = log2 n + 1 + log2(1 +
k̂
√

n/6) is used to determine the number of bins to estimate
p(X|C) and p(X). In this rule, k̂ is the estimate of the kurtosis
of the TF components (i.e., of random variable X), and n
is the total number of training samples. In our experiments,
n ≈ 105, and, on the average, 30 bins are derived for each TF
component. Note that the kurtosis estimates indicate that the
TF components are non-Gaussian.

Given the number of bins, equally spaced intervals are
formed bk, k = 1, 2, ...,K, between the upper and lower
bounds, as described above, computed for each X . Then
p(x) ≈ nk/n , iff x ∈ bk , is approximated where nk denotes
the number of observations x ∈ bk. Assuming that class
labels c ∈ {ci} are available for the training samples, the
nc and nk,c counts can similarly be obtained, thus estimating
p(c) = nc/n and approximating p(x|c) ≈ nk,c/nc , for all
x ∈ bk , k = 1, 2, ...,K , and c ∈ {ci}.

Based on these estimates of the density functions the
computation of (3) becomes feasible.

C. Mutual Information for Broad Phonetic Groups

The phonemes are divided into phonetic broad classes as in
Table I based on the distribution on confused phonemes in the
confusability matrix in figure 1.

The MI was computed between the phonetic labels and the
individual cells across the TF plane. The baseline features were
Perceptual Linear Predictive (PLP) cepstral coefficients [6]
calculated over a 25ms window with 10ms advance between
adjacent frames. For the TIMIT dataset, which is sampled at
16 kHz, 12th order PLP models were used.

Temporal regression features (or first derivative features)
were computed over a context window of 9 frames along
with acceleration (or second derivative) features over the same
window. These temporal features were appended to the feature
vector, resulting in 39 PLP features. A temporal window of
±15 frames around the labeled target frame (i.e. 31 time
frames total) was used as the domain over which MI was
computed. These features undergo a per-utterance mean and
variance normalization prior to MI calculation providing a
degree of invariance against variations in channel characteristic
(microphone positioning etc.).

An MI plot consisting of 39×31 cells was calculated
for each BPG. The MI calculation was performed for each
individual Time-Quefrency cell, for PLP cepstra, against the
phonetic labels within each BPG. An MI plot was generated
for each of the groups as shown in figure 2. To take advantage
of the MI plots, an MI feature selection mask is created by
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Fig. 2. Information distribution using Mutual Information for Broad Phonetic
Groups (a) Vowels, (b) Stops, (c) Fricatives and (d) Nasals. The irregular
outlines contain the top 200 cells in each case. Each block has three panes
corresponding (from bottom to top) to static, and first and second derivatives
respectively. The PLP static features are 13 PLP coefficients.

selecting N TF cells with the largest MI values. This results
in an irregularly-shaped pattern in the TF plane (MI-IRREG)
consisting of all the cells with values above some threshold.
The threshold was varied to extract different feature vector
dimensionalities. As an example, figure 2 shows MI masks
used to select 200 features as outlines. Standard feature vectors
corresponding to rectangular regions in the TF plane (RECT)
are also extracted in the experiments, where all spectral com-
ponents e.g. 13 PLP , plus first and second derivative features
across a temporal window of 9 successive 10ms frames, are
used.

It can be seen from figure 2 that the BPGs contain very
different spectral and temporal characteristics.

It can be seen that information for discriminating between
all the vowel-like phonemes is concentrated mainly in the
static features. The information is spread out ±50 ms and
concentrated mainly in the third, fourth, sixth and eighth
coefficients. For Stops, information is spread out over the
static and first derivative features. For the PLP features the
most significant information exists in the second coefficient
(spectral tilt) from -70 ms to 30 ms, with some less relevant
information in the third, fourth and fifth coefficients over a
shorter time span. The MI between the TF cells and the
fricative BPG phonemes is mainly concentrated in the static
features. The greatest information exists in the second, third
and fourth coefficients between -30 ms and 50 ms. The nasal

MI plots show only weak information, spread out over static
and first and second derivative features. There appears to be a
minimum of MI at the center of the window and information is
concentrated in the second and fifth coefficients from -90 ms
to -10 ms and in the first and third coefficients from 20 ms to
50 ms.

Due to the steady-state nature of vowels, most of the im-
portant information for discrimination between vowels exists
in the static TF cells. Fricatives and nasals show an increasing
trend of information shifting to the derivative features, with
stops showing the greatest information in dynamic features.
All this is consistent with our preconceptions concerning these
BPGs.

(a) Cond MI - vowellike - plp

(b) Cond MI - stops - plp

(c) Cond MI - fricatives - plp

(d) Cond MI - nasals - plp
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Fig. 3. Conditional Mutual Information distribution between each cell on the
TF plane and the phone label within each Broad Phonetic Groups (a) Vowels,
(b) Stops, (c) Fricatives and (d) Nasals, additionally conditioned on the value
of the time-frequency cell at time zero for that frequency band.

Note that in the MI investigation above, the MI was com-
puted for each TF cell in isolation and the relative MI for
all cells is shown in Figure 2. For steady-state phonemes
such as vowel-like phonemes it is assumed that correlation
is high along the time axis. This suggests that the immediate
neighbours of a TF cell along the time axis may be omitted
from the classifier without a significant loss of information.
Therefore, conditional MI between the BPG phone labels and
two feature variables in the TF plane was applied to measure
the relevance of the feature cells before and after the current
time frame.

Figure 3 shows the MI between each cell on the TF plane
and the phone label within each BPG (as before), additionally
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conditioned on the value of the TF cell centered on the labeling
instant for that frequency band, i.e. the additional information
provided by knowing a second cell’s value. Thus, the values
are zero for the 0msec column, since this is the value already
present in the conditioning. Note that the MI scale is much
smaller compared to Figure 2. Also note that each row of
each spectrogram corresponds to a different experiment, since
the conditioning value moves with the frequency band being
measured. It can be seen in Figure 3 that for the vowel BPG,
the immediate neighboring features in time provide the lowest
conditional MI with the current frame for all coefficients.
However, for the fricative, stop and nasal BPGs, the immediate
neighbouring coefficients in time do not always provide the
lowest conditional MI.

To compute the conditional MI for more than two features,
multivariate density estimation is required which is difficult
to reliably obtain without an inordinate amount of data and
computation time. Therefore in order to approximate the N-
way joint maximally informative set for the steady state vowel
BPG, the selection masks are multiplied by a vertically striped
pattern which reduces the inclusion of possibly redundant
neighbouring TF cells. An advantage of this method of
‘striping’ the MI masks to reduce redundancy is that, for a
given dimensionality, using the striped feature mask includes
features spread out further in time when compared to non-
striped feature masks with the same dimensionality.

IV. CLASSIFIER ARCHITECTURE

The proposed system first detects which BPG each frame
belongs to. Once identified, the output for that frame is
extracted from the corresponding BPG expert classifier and
‘patched’ into the baseline classifier output to reduce the
number of misclassifications that occur between phonemes
within the same BPG. In this section the implementation of the
baseline classifier, the BPG experts, and the proposed modular
architecture are described.

A. Baseline System

The hybrid ANN/HMM speech recognition framework de-
scribed in [2] was used as our baseline system to estimate the
61 TIMIT phone posteriors. The neural network multi-layer
perceptron (MLP) classifier had an input layer of 351 units
to accommodate the 39 PLP plus first and second derivative
features as described in the previous section, over a context
window of 9 frames. The network also had a single hidden
layer (whose size was varied in our experiments) and 61
output units, corresponding to each phone class. The network
was trained to estimate the posterior probability for each
of the 61 TIMIT phone classes for each frame of input by
back-propagation of a minimum-cross-entropy error criterion
against ‘one-hot’ targets. The MLP was trained using all 468
speakers from the 8 dialects of the TIMIT database – a total of
4680 utterances, of which 370 utterances were used for cross-
validation. The cross validation set is used for adjusting the
learning rate during MLP training and also for determining
the early stopping point to prevent over-fitting.

These posteriors are scaled using phone priors, and the 61
phones were then mapped to a smaller set of 39 phones prior
to being fed to an HMM decoder to find a single sequence
of phone labels that best combines models and observations.
This phone sequence is compared to the manual ground
truth to produce a phone error rate (PER) that includes all
substitutions, deletions and insertions.

The 39 PLP plus first and second derivative features were
computed for each frame in both the training and test sets.
The mean and standard deviation was computed across all
features in the training data for normalization. Each feature
dimension in the training set is separately scaled and shifted
to have zero mean and unit variance, which ensures the MLP
input units are operating within their soft saturation limits. The
same normalization is applied to the test sets.

The 168 test speakers were divided into two groups: 84
speakers were used in the development set to tune variables,
and the other 84 were used in the final test set for evaluation
of the proposed network.

B. Broad Phonetic Group Expert

The networks used for the BPG experts are similar to that of
the baseline system but the output layers consist of a smaller
number of units e.g. 25, 8, 10 and 7 units for vowels, stops,
fricatives and nasals respectively.

MI indicates which TF cell contain the most information for
discriminating between each of the BPGs. A different feature
set is extracted for each BPG to maximise discrimination
capabilities of the expert, but the total number of input units
is held constant across all experts.

C. Broad Phonetic Group Detector

In order to determine whether to assign the candidate frame
to the silence group or one of the BPG experts, two different
methods were investigated. The first uses the baseline classifier
output to determine which BPG or the silence group dominates
the posterior distribution, by summing all the posteriors from
each group and assigning the group with the greatest pooled
posterior probability to the candidate frame. This is similar
to the method described in [9]. Note if the silence group
is assigned to the frame no expert is used and the baseline
posteriors are preserved in the final output stream.

The second method uses one classifier for each BPG and
one for the silence group, each with a binary output (i.e. this
group or not this group). The posterior probabilities from each
of these detectors was combined to determine the inferred BPG
or the silence group of the current frame.

Since these two mechanisms for estimating the current
frame’s group are different, they can give different results.
A third method combines these two approaches and only
assigns a candidate frame to a BPG or silence group once
both methods agree. When the methods disagree the original
baseline posteriors are maintained.

D. Integration

Given the outputs of several different classifiers (the base-
line plus one or more experts), the question then arises of
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Fig. 4. Classifier architecture: Individual classifiers for each Broad Phonetic Group are run on group-specific feature masks applied to the entire utterance,
then combined with a general-purpose classifier at the posterior level according to the estimated current BPG.

how to combine these differing values into a single set of
posteriors to pass on to the decoder. One choice is to simply
patch all the BPG phoneme posteriors in the baseline output
with the posteriors of the BPG expert and set all other
phoneme posteriors to zero – i.e. fully replacing the outputs
of the baseline classifier for frames detected as belonging to a
particular BPG. However, if the BPG classification is in error,
this may result in irreparable damage to the posterior stream.
Another approach is to mix the phoneme posteriors in the
baseline output with the posteriors of the BPG expert using
fixed mixing weights, so that even when a particular BPG
class has been chosen, the posteriors remain a mixture of both
expert and baseline classifiers. It would also be possible to
make variable interpolations between the two sets of posteriors
based e.g. on the degree of confidence of the current BPG
label, but in preliminary experiments a variable-mixing-weight
rule that showed any advantage over hard decisions was not
found.

V. CLASSIFIER EXPERIMENTS

A. Broad Phonetic Group Experts

Table II illustrates that high-MI feature selection leads to
improved performance. The table compares the accuracies for
frame-level phone classification of each expert individually
for both baseline RECT and MI-IRREG features using 351
features. In all cases, the expert MLP classifiers had 100
hidden units. It can be seen from Table II that the performance
of the MI-IRREG features are significantly better than the
baseline RECT features for all BPGs except Nasals. Similarly
based on these results, MI-IRREG features are used for Vowel,
Stop and Fricative experts, and RECT features are used for
Nasal experts. Significance at the 5% level is 0.4%, 0.9%,
0.6% and 0.9% for Vowel, Stop, Fricative and Nasal frame
accuracies respectively; note that the improvements due to MI-
IRREG are at the lower limit of significance in most cases.

Since each BPG has different characteristics, with different
feature selections made according to the MI criteria, it is worth
investigating the variation of accuracy with the size of the

TABLE II
FRAME PHONE CLASSIFICATION ACCURACIES (%) FOR DIFFERENT

METHODS OF FEATURE SELECTION: PLP RECT, PLP MI-IRREG FOR

ALL BPGS USING 100 HIDDEN UNITS. 351 PLP FEATURES ARE USED.

BPG Vowels Stops Fricatives Nasals
RECT 55.2 78.9 77.9 73.9
MI-IRREG 55.6 79.8 79.7 72.9

feature vector independently for each expert: it is expected
that increasing the amount of information available for each
classifier will improve performance up to a point, beyond
which the burden of the added complexity fails to outweigh the
added information, and performance actually declines due to
over-training. Figure 5 shows the frame accuracy across 195,
273, 351 and 429 features. Figure 5 also examines the effect of
omitting adjacent feature vectors in time to avoid any possible
correlation of the features. A feature vector dimensionality of
273 was found to maximise frame accuracy for the Vowel,
Stop and Nasal experts while 351 maximised performance for
the Fricative expert. Experts for Stops, Fricatives, and Nasals
maximised performance using all features, whereas the Vowel
expert performed best when the ‘striped’ MI-IRREG mask
was used for feature selection. Again, the variables which
performed best for each BPG were used for the remainder
of the experiments.

As the expert networks have fewer outputs than the baseline
classifier (i.e. 7 to 25 vs. 61 in the baseline), the BPG expert
units can afford to have larger hidden layers without increasing
the total complexity of the classifiers. The results of varying
the hidden layer sizes to 100, 500, 1000, 2000, 3000, 4000
and 5000 units are shown in Table III. Although the gains
due to the much larger networks are sometimes quite small,
for the Vowels and Stops experts 4000 hidden units provided
maximum frame accuracy, while for both Fricatives and Nasals
3000 hidden units maximised performance.
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Fig. 5. Frame Accuracy for different feature vector dimensions using all features or ‘striping’.

TABLE III
PHONE CLASSIFICATION FRAME-LEVEL ACCURACIES (%) FOR

DIFFERENT NETWORK HIDDEN UNITS FOR ALL BROAD PHONETIC

GROUPS

Hidden Units 100 500 1000 2000 3000 4000 5000
Vowels 56.4 58.8 59.6 59.2 59.8 60.5 60.2
Stops 80.2 82.3 82.9 83.0 83.1 83.3 83.3
Fricatives 79.7 80.8 80.9 81.0 81.4 81.4 80.7
Nasals 73.9 74.9 75.1 75.3 75.9 75.8 75.7

TABLE IV
BPG DETECTOR FRAME ACCURACIES (%) FOR DIFFERENT FEATURE

VECTOR DIMENSIONS (MLP INPUT UNITS). HIDDEN UNITS ARE HELD

CONSTANT AT 100.

Features 117 195 273 351 429
BPG Detector 90.7 91.0 91.0 91.1 91.0

B. Broad Phonetic Group Detector

In this section three methods of assigning candidate frames
to BPG experts are compared. The first method considered
uses the baseline classifier’s output to determine which BPG
or silence group dominates the posterior distribution. This
approach provides a frame-level BPG classification accuracy
of 90.8%.

The second method uses a separate network for each BPG
and a silence group with a binary output. The frame is labeled
with the group corresponding to the network with the greatest
confidence (largest posterior), given the silence group the
baseline posteriors are maintained for that frame. Table IV
provides the frame accuracies for a number of different feature
vector sizes; best performance is achieved for 351 inputs. In
these BPG detector networks only 2 output units are required,
and since the number of output units is so small more hidden
units can be used without increasing complexity of the system.
The results of varying the hidden units for 100, 500, 1000,
2000 and 3000 are shown in Table V. In these results, a
difference of around 0.2% is significant at the 5% level.

TABLE V
BPG DETECTOR FRAME ACCURACIES (%) FOR DIFFERENT NUMBER OF

MLP HIDDEN UNITS. THERE ARE 351 INPUT UNITS IN EACH CASE.

Hidden Units 100 500 1000 2000 3000
BPG Detector 91.1 91.3 91.4 91.4 90.8

TABLE VI
PHONE ERROR RATES (%) OBTAINED FROM PATCHING WEIGHTED

BROAD PHONETIC GROUP EXPERT OUTPUTS INTO BASELINE SYSTEM,
USING 100 HIDDEN UNITS IN THE BASELINE SYSTEM, FOR DIFFERENT

METHODS OF BPG DETECTION, AS A FUNCTION OF THE MIXING WEIGHT.

Weight 1 0.9 0.7 0.5 0.3 0.1 0
BPG Detector 28.8 26.7 26.8 27.5 29.0 31.9 33.9
BPG Posteriors 28.7 26.7 26.9 27.8 28.9 32.2 33.9
Combined 26.9 26.4 27.0 27.8 29.3 32.2 33.9
Oracle 22.6 22.8 23.4 24.6 26.9 31.3 33.9

C. Integration with baseline system

The BPG phoneme posteriors in the baseline output are
merged with the posteriors of the BPG expert using constant
mixing proportions. The phone error rates (PERs) in Table
VI were obtained by varying the mixing weights then passing
the merged posteriors to the HMM decoder to obtain a final
inferred phoneme sequence; when the mixing weight is zero,
the baseline classifier posteriors are unchanged regardless of
the detected BPG, and the baseline PER is achieved.

Both basic methods of BPG detection (‘BPG Detector’ and
‘BPG Posteriors’) perform similarly. The ‘Combined’ method
combines the results of the previous approaches and only
assigns a candidate frame to a BPG once both methods agree;
it can be seen that this provides improvement in performance –
indicating that the two basic methods differ in their errors, and
that combining them avoids some of these errors. The ‘oracle’
results are obtained by using the the ground-truth BPG label
to control the patching i.e. using the labels of the database
to assign each frame to the silence group or one of the BPG
experts. This gives an idea of the upper bound achievable by
the BPG experts given ideal BPG detection.

The results of Table VI were given using a baseline network
with 100 hidden units. In Table VII the number of hidden
units in the baseline classifier was varied over 100, 500, 1000
and 2000 hidden units. When the mixing weight is zero,
the PER corresponds to the baseline system without BPG
experts. While baseline performance improves markedly for
larger classifier networks, significant improvements can still be
seen over baseline as the experts are patched in. Significance
at the 5% level is achieved for a difference of 0.7% in these
results.

The results in the experiments were maximised for the
development set. Given a baseline PER of 26.5%, using the
proposed modular architecture reduces this error to 25.2%.
Application to the omitted test set of speakers from dialects 4
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TABLE VII
PHONE ERROR RATES (%) OBTAINED FROM PATCHING IN WEIGHTED

BROAD PHONETIC GROUP EXPERT OUTPUTS INTO BASELINE SYSTEM

FOR DIFFERENT NUMBERS OF HIDDEN UNITS, USING THE ‘COMBINED’
METHOD OF BPG DETECTION FROM TABLE VI, AS A FUNCTION OF THE

MIXING WEIGHT.

Weight 1 0.9 0.7 0.5 0.3 0.1 0
100 hidden units 26.9 26.4 27.0 27.8 29.3 32.2 33.9
500 hidden units 26.2 25.6 25.6 25.8 26.5 27.1 27.7
1000 hidden units 26.1 25.3 25.2 25.3 25.5 26.0 26.5
2000 hidden units 26.2 25.4 25.4 25.4 25.5 26.3 26.8

to 8 in the TIMIT dataset gives a baseline PER of 27.3%,
which is reduced to 26.3% using BPG experts. For both
the development and test sets 5% statistical significance is
achieved for a difference of around 0.7%. Over the entire test
set the baseline PER is reduced from 26.9% to 25.8% using
the proposed architecture, for the entire test set 5% statistical
significance is achieved for a difference of around 0.5%.

VI. DISCUSSION

The spread of relevant information for each of the BPGs
was illustrated in the MI plots of figure 2. These observa-
tions reinforce received wisdom concerning different phone
classes based purely on objective measurements. Of course,
the great contrast shown between the BPGs reinforces the
case that BPGs should benefit from distinct, expert classifiers,
structurally adapted to obtain the most information from the
front-end features.

The number of hidden nodes has a strong impact on the
performance of a neural network classifier. The more hidden
nodes it contains, the more complex the model it can cap-
ture. Good recognition performance, however, depends on the
availability of sufficient training data.

Training a NN on limited data can lead to over fitting
which is more likely to occur as more hidden nodes are
introduced. To prevent overfitting training is usually stopped
early, using the performance of the network measured with a
cross validation (CV) dataset held out from the main training
data. In our learning schemes, training is typically stopped
when the performance of the CV set increases by less than
0.5% after an entire back-propagation pass through the training
set. When training the single, baseline classifier stopping
criteria represents an average across all phonemes and may not
be ideal for each BPG. In using the expert networks proposed
in this paper, not only are the feature sets specific to each
broad phonetic class of phonemes but also the early stopping
point can specifically prevent overfitting of this class.

Given the limited amount of training data available using the
TIMIT database there is a limit to the number of hidden nodes
that can be used to model the complexities of the data without
overfitting the training set. As was seen in the experiments,
performance ceases to improve, and in some cases decreases,
past a certain number of hidden nodes. The baseline system
performance is at maximum with 1000 hidden units, while the
smaller expert system performance is maximsed at 3000-4000
nodes. However, even in these cases, very little improvement
is seen above 1000 units.

Current methods of computing MI and conditional MI
use the histogram approach to obtain the density estimation
between one or two features and the classes of interest, but
ideally the joint MI between the entire feature set selected so
far and each successive candidate could be computed. This
approach would benefit from more sophisticated methods to
obtain a multivariate probability density estimation between a
complete set of features.

In table VI, the oracle results illustrate the potential of the
system given an ideal BPG detector. Therefore crucial to the
performance of the proposed system is the BPG detection.
Based on the confusion matrix in Figure 1, given division
of phonemes into the BPGs: vowel, semi-vowels, dipthongs,
stops, fricatives and nasals, only 50% of misclassified frames
fell within the same BPGs. However, grouping the similar
vowel-like BPGs vowels, semi-vowels and dipthongs, in-
creased this percentage to 75%. Therefore the task of BPG
detection is simplified and improved BPG feature extraction
is achieved, by further increasing the number of misclassified
frames that fall within the same BPG. For this reason it
is hypothesized that a more rigorous approach to grouping
phonemes into BPGs would improve system performance.

VII. CONCLUSION

In this paper, using the observation that phone-level confu-
sions fall most often into the same BPG as the true target, a
phone recognition system was designed with separate experts
trained to discriminate only within the broad classes of Vowels,
Stops, Fricatives, and Nasals. Since the TF characteristics of
these different speech sounds are so different, the experts
were each given individual, distinct ‘perspectives’ on the input
signal by selecting subsets of the feature dimensions drawn
from a wide time window and choosing the feature dimensions
exhibiting the greatest MI with the class-conditional label.
It was shown empirically that this feature selection gave a
small but meaningful improvement in classification accuracy
for three of the four broad classes.

To construct a complete phone recognition system, we
needed to mix the judgments of the experts with the baseline
classifier under the guidance of a separate broad-class detector.
The method of simply pooling groups of posteriors from
the baseline classifier was compared with an ensemble of
separately-trained detectors, one for each broad class. While
both approaches performed similarly, combining them such as
to detect a broad class only when both detectors agreed gave
the best overall performance.

An elaborate classification scheme must of course prove
itself superior to the simple approach of increasing the com-
plexity of a single baseline classifier – in our case, adding more
hidden units to the MLP neural network. For both baseline and
experts, the hidden layer sizes were increased to the maximum
supportable by the TIMIT training set used in the. Even
with the rather large networks this implied, the expert-based
system continued to afford significant error rate reductions;
for smaller, more computationally-efficient systems, the gains
possible with the experts are even larger.
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