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M
elody extraction algorithms aim to produce a sequence of fre-
quency values corresponding to the pitch of the dominant melody 
from a musical recording. Over the past decade, melody extraction 
has emerged as an active research topic, comprising a large variety 
of proposed algorithms spanning a wide range of techniques. This 

article provides an overview of these techniques, the applications for which melody 
extraction is useful, and the challenges that remain. We start with a discussion of 
“melody” from both musical and signal processing perspectives and provide a case 
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study that interprets the output of a melody extraction algo-
rithm for specific excerpts. We then provide a comprehensive 
comparative analysis of melody extraction algorithms based on 
the results of an international evaluation campaign. We discuss 
issues of algorithm design, evaluation, and applications that 
build upon melody extraction. Finally, we discuss some of the 
remaining challenges in melody extraction research in terms of 
algorithmic performance, development, and evaluation 
methodology. 

Introduction
Music was the first mass-market industry to be completely 
restructured by digital technology starting with the compact disc 
and leading to today’s situation where typical consumers may 
have access to thousands of tracks stored locally on their smart-
phone or music player, and millions 
of tracks instantly available through 
cloud-based music services. This vast 
quantity of music demands novel 
methods of description, indexing, 
searching, and interaction. Recent 
advances in audio processing have 
led to technologies that can help 
users interact with music by directly 
analyzing the musical content of 
audio files. The extraction of melody from polyphonic music sig-
nals is such a technology and has received substantial attention 
from the audio signal processing and music information retrieval 
(MIR) research communities. Known as melody extraction, 
audio melody extraction, predominant melody extraction, pre-
dominant melody estimation, or predominant fundamental fre-
quency estimation, the task involves automatically obtaining a 
sequence of frequency values representing the pitch of the domi-
nant melodic line from recorded music audio signals (Figure 1). 

Music transcription, i.e., converting an audio signal into a 
description of all the notes being played, is a task that can usually 
be achieved by a trained student of music and has long been a 
topic of computational research. It has, however, proven to be 
very difficult due to the complex and deliberately overlapped 

spectral structure of musical harmonies. In one of the earliest 
works in the field, Masataka Goto pointed out that many interest-
ing music tasks, such as melody-based retrieval or melody line 
suppression for karaoke, could be achieved with a much more 
limited transcription that recovered only a single melody line as 
the “strongest” pitch in the likely melody range at any time [1]. 
This idea was picked up by Emilia Gómez, Beesuan Ong, and 
Sebastian Streich, who put together a melody extraction task as 
part of the Audio Description Contests associated with the 2004 
International Conference on Music Information Retrieval 
(ISMIR), organized by the Music Technology Group at Pompeu 
Fabra University, Barcelona [2]. This activity was followed by the 
Music Information Retrieval Evaluation eXchange (MIREX) eval-
uation campaign for MIR technologies [3] and has in subsequent 
years resulted in a series of well-organized international evalua-

tions with broad participation, 
described in the section “Algorithm 
Overview: 2005 to Date.” 

To frame the technical task of 
melody extraction, we should start 
by examining the musicological 
concept of “melody,” which ulti-
mately relies on the judgement of 
human listeners [2] and will there-
fore tend to vary across application 

contexts (e.g.,  symbolic melodic similarity [4] or music tran-
scription [5]). Centuries of musicological study [6] have 
resulted in no clear consensus regarding the definition of “mel-
ody” but, faced with the need for a common interpretation, the 
MIR community has opted for simplified, pragmatic definitions 
that result in a task amenable to signal processing. One popular 
definition [2] holds that “the melody is the single (mono-
phonic) pitch sequence that a listener might reproduce if asked 
to whistle or hum a piece of polyphonic music, and that a lis-
tener would recognize as being the essence of that music when 
heard in comparison.” This definition is still open to a consider-
able degree of subjectivity, since different listeners might hum 
different parts after listening to the same song (e.g., lead vocals 
versus guitar solo). In practice, research has focused on what we 

[Fig1]  Melody extraction: obtaining a sequence of frequency values representing the pitch of the melody from the audio signal of 
polyphonic music.
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term single source predominant fundamental frequency esti-
mation. That is, the melody is constrained to belong to a single 
sound source throughout the piece being analyzed, where this 
sound source is considered to be the most predominant instru-
ment or voice in the mixture. While the subjective element can 
not be completely eliminated even in this definition (for 
instance, how do we define predominant?), the problem is 
avoided in practice by working with musical material that con-
tains a clear lead singer or instrument. Thus, our modified task 
definition becomes “single source predominant fundamental 
frequency estimation from musical content with a lead voice or 
instrument.” While this definition is too limited to encompass 
everything one might consider as melody, its solution would 
nonetheless lead to extremely powerful technologies. Note that 
we have used the term fundamental frequency (henceforth f0 ) 
to refer to the physical property most closely related to the per-
ceptual property of pitch [7]. Still, the terms pitch and f0  are 
often used interchangeably in the melody extraction literature, 
and for the sake of readability we shall do the same here. The 
final musical term we must define is “polyphonic music.” 
Although musicology draws distinctions between monophonic, 
homophonic, heterophonic, and polyphonic musical textures, in 
this article “polyphonic” is simply used to refer to any type of 
music in which two or more notes can sound simultaneously, 
be it on different instruments (e.g., voice, guitar, and bass) or a 
single instrument capable of playing more than one note at a 
time (e.g., the piano). 

With these definitions of melody and polyphony, it becomes 
easier to define melody extraction as a signal processing chal-
lenge: given a recording of polyphonic music, we want to auto-
matically estimate the sequence of f0  values that corresponds to 
the pitch of the lead voice or instrument. Furthermore, we 
must estimate the time intervals when this voice is not present 
in the mixture (known as the “voicing detection” problem). For 
a human listener, this task might seem almost trivial—many of 
us can sing the melodies of our favorite songs even without any 
musical training. Those with musical training can even 

transcribe a melody into musical notation. However, when we 
try to automate this task, it turns out to be highly challenging. 
The complexity of the task is mainly due to two factors: first, a 
polyphonic music signal is composed of the superposition of 
the sound waves produced by all instruments in the recording, 
and much of the time these instruments play simultaneously. 
When considering the spectral content of the signal, the fre-
quency components of different sources superimpose making it 
very hard to attribute specific energy levels in specific frequency 
bands to the notes of individual instruments. This is further 
complicated by mixing and mastering techniques which can 
add reverberation (thus blurring note onsets and offsets and 
increasing the overlap of sound sources) or apply dynamic 
range compression (thus reducing the difference between soft 
and loud sources, increasing interference). Second, even after 
we obtain a pitch-based representation of the audio signal, we 
still need to determine which pitch values belong to the pre-
dominant melody and which are merely accompaniment. The 
challenge is illustrated in Figure 2, which displays the spectro-
grams of three polyphonic excerpts (a)–(c) and the target mel-
ody sequence [(d)–(f), in red] together with the estimate (in 
blue) of a melody extraction algorithm (see the next section). 

As we discuss in the section “Software and Applications,” mel-
ody extraction has many potential applications, including query-
by-humming (QBH) (searching for a song by singing or 
humming part of its melody) and cover song identification 
(detecting whether two recordings are different renditions of the 
same musical piece) [8], [9], genre classification (automatically 
sorting your music collection based on genre) [10], music de-
soloing for the automatic generation of karaoke accompaniment 
[11], and singer characterization [12]. It also has a wide range of 
applications in computational musicology and ethnomusicology, 
such as music transcription [13], intonation analysis [14], and 
automatic melodic motif and pattern analysis [15]. Determining 
the melody of a song could also be used as an intermediate step 
toward the derivation of other semantic labels from music sig-
nals. Finally, melody extraction also has a variety of uses outside 

[Fig2]  Case study examples: (a)–(c) show the log-frequency spectrogram of three excerpts in the genres of (a) vocal jazz, (b) pop, and 
(c) opera. Parts (d)–(f) show the extracted melody [16] (blue) and ground truth (red) for each excerpt, respectively.
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the realm of research, such as electroacoustic composition and 
music education. Melody extraction technologies are beginning 
to be incorporated into professional music production tools such 
as Adobe Audition and Melodyne (see “For More Information”).  

Case study
To better understand the challenges of melody extraction and 
the types of errors afflicting melody extraction algorithms, we 
start with a closer look at the actual melody extraction results 
for some musical excerpts. For conciseness, we limit ourselves 
to one state-of-the-art algorithm [16], but the types of errors  
we observe (and the challenges they represent) are common to 
all methods. 

Figure 2 shows the output of the algorithm for three 
excerpts in the genres of vocal jazz [(d)], pop music [(e)], and 
opera [(f)]. In (a)–(c), we display a log-frequency spectrogram 
of each excerpt, showing the complex pattern of harmonics 
associated with these polyphonic musical signals. Plots (d)–(f) 
display the final melody line estimated by the algorithm (blue) 
overlaid on top of the ground truth annotation (red).   

Before we can interpret different types of errors in the plots, 
it is useful to know what a correct extraction looks like, pro-
vided in Figure 2(d). We see that the blue (estimated) and red 
(ground truth) melody sequences overlap almost perfectly, and 
there are practically no frames where only one sequence is pre-
sent. The perfect overlap means the pitch estimation of the 
algorithm is correct. The fact that there are no frames where 
only one sequence is present indicates we have not made any 
voicing detection mistakes—a red sequence on its own would 
mean we wrongly estimated the frame as unvoiced when the 
melody is actually present. A blue sequence on its own would 
mean a case of voicing false alarm, i.e., a frame where we mis-
takenly included some other pitched source in the melody 

when the melody is in fact not present in that frame. In (d), 
we see that the algorithm correctly estimates the pitch of the 
lead singer while excluding the notes of the piano chord played 
between seconds three and four. 

In Figure 2(e), we provide an example that contains both 
pitch errors (seconds four to seven) and voicing errors (seconds 
seven to nine). The excerpt is taken from a pop song whose 
arrangement includes a lead singer, guitar accompaniment, and 
backing vocals. Here the source of both types of errors are the 
backing vocals, who sing a stable pitch in the same range as the 
melodic line of the lead singer. As a result, the algorithm mis-
takenly tracks the backing vocals, resulting in a wrong pitch 
estimate (up to the seventh second) followed by a voicing false 
alarm, since the backing vocals continue after the lead singer 
has paused. 

Finally, in Figure 2(f), we provide an example where the 
algorithm makes octave errors. In this excerpt, taken from an 
opera aria sung by a male singer, the pitch class of the melody is 
correctly estimated but in the wrong octave (one octave above 
the actual pitch of the singer). Here the octave errors most 
likely stem from the actual singing technique used by the 
singer. Unlike pop or jazz singers, classical singers are trained to 
produce a highly resonant sound (allowing them to be heard 
over the orchestra). In the low frequencies this resonance 
results in the second harmonic often having a larger amplitude 
than the fundamental frequency, and in the high frequencies 
the appearance (especially in male singers) of a clear formant 
around 3 kHz (the “singer’s formant”) [17]. Combined, these 
phenomena can cause the algorithm to give more weight to 

f2 0  than to f0  ( f0  being the correct fundamental frequency), as 
seen in the spectrogram in Figure 2(c) between seconds ten and 
12. The increased salience at double the true f0  combined with 
the relatively low pitch range of the melody (algorithms often 

For more information 

■■ Adobe Audition: http://www.adobe.com/products/audition/html

■■ Melodyne: http://www.celemony.com/cms

■■ SMSTools: http://mtg.upf/edu/technologies/sms

■■ Wavesurfer: http://www.speech.kth.se/wavesurfer

■■ LabROSAmelodyextract2005: http://labrosa.ee.columbia.edu/projects/melody/

■■ FChT: http://iie.fing.edu/uy/investigacion/grupos/gpa/fcht.html

■■ separateLeadStereo: http://www.durrieu.ch/research/jstsp2010.html

■■ IMMF0salience: https://github.com/wslihgt.IMMF0salience

■■ Vamp audio analysis plug-in system: http://www.vamp-plugins.org

■■ MELODIA: http://mtg.upf.edu/technologies/melodia

■■ �Melody Extraction for Music Games: http://www.idmt.fraunhofer.de/en/Service_Offerings/products_and_ 

technologies/m_p/melody_extraction.html

■■ SoundHound: http://www.soundhound.com

■■ ADC2004 and MIREX05 data sets: http://labrosa.ee.columbia.edu/projects/melody/

■■ MIR-1K data set: https://sites.google.com/site/unvoicedsoundseparation/mir-1k

■■ RWC pop data set: http://staff.aist.go.jp/m/goto/RWC-MDB/

■■ Audio Melody Extraction Annotation Initiative: http://ameannotationinitiative.wikispaces.com 
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bias the tracking against low frequencies) results in the algo-
rithm tracking the melody one octave above the correct pitch, 
thus producing the observed octave errors. 

Algorithm Overview: 2005 to date
Melody extraction is strongly linked to pitch (fundamental fre-
quency) estimation, which has a long research tradition. Early 
approaches for pitch estimation in music dealt with the estima-
tion of the f0  of monophonic music recordings and were 
adopted from the speech processing literature [18]. Since then, 
various approaches specifically tailored for f0  estimation in 
monophonic music signals have been proposed [19]. More 
recently, algorithms have also been proposed for estimating the 
f0  of multiple concurrent instruments in polyphonic recordings 
(multipitch estimation). For a detailed review, the reader is 
referred to [20]. As seen in the section “Introduction,” melody 
extraction differs from both monophonic and multipitch esti-
mation in two important ways. Unlike monophonic pitch esti-
mation, here we are dealing with polyphonic material and the 
challenges it entails. Unlike multipitch estimation, melody 
extraction requires the identification of the specific voice that 
carries the melody within the polyphony, but does not involve 
estimating the pitch values of the remaining sources. 

It is instructive to consider melody extraction systems as 
elaborations of monophonic pitch trackers. Monophonic pitch 
trackers usually take the audio signal ( )x t  and calculate a func-
tion ( , )S fx xx  evaluated across a range of candidate pitch fre-
quencies f  that indicates the relative score or likelihood of the 
pitch candidates at each time frame x . The function can be cal-
culated either in the time domain (e.g., the autocorrelation 
evaluated over a range of lags) or the frequency domain (e.g., 
some function of the magnitude spectrum evaluated over a 
range of frequencies). The local estimates of period are then typ-
ically subject to sequential constraints, for instance, via 
dynamic programming. Thus, the estimated sequence of pitch 
values ft , represented as a vector with one value for each time 
frame, is derived as  

	 ( , ) ( ),arg max S f Cf fxmon
f

x= +
x

x
t / 	 (1)

where fx  is the thx  element of f , and ( )C f  accounts for the 
temporal constraints. For example, a common choice for 

( , )S fx x  is an autocorrelation function such as  

	 ( , ) ( ; ) ( ) ( ) ,S f r
f W

x t x t
f
dt1 1 1

/

/
x xx

W

W

2

2
x x= = +

x

x

-

+# 	 (2)

where W  is the length of the autocorrelation analysis window. 
In melody extraction, the observed signal ( )y t  consists of a tar-
get monophonic melody signal ( )x t  with added accompani-
ment “noise” 

	 ( ) ( ) ( ) .y t x t n t= + 	 (3)

There are two paths to extending monophonic trackers to suc-
ceed in such conditions: we could improve the robustness of the 
underlying pitch candidate scoring function, so it continues to 

reflect the desired pitch even in the presence of other periodici-
ties; we call this salience-based melody extraction 

	 ( )fy ( , ) ,arg max S f Cfsal
f

x= +
x

xl lt / 	 (4)

where ySl  is the modified pitch salience function calculated over 
the mixed signal y . There are many different approaches for cal-
culating the salience function (cf.  the section “Salience Func-
tion”). For instance, some functions compute the salience of a 
candidate frequency f  as the weighted sum of its harmonics 

	 ( , ) ( , ) | ( , ) | ,S f g f h Y h f·y
h

N

1

h

x x=x x

=

l / 	 (5)

where Nh  is the number of harmonics in the summation,
( , )g f hx  is a harmonic weighting function [5], and ( , )Y f x  is the 

short-time Fourier transform (STFT), 

	 ( , ) ( ) ( ) ,Y f w t y t e dt
/

/

W

W j ft

2

2 2x x= + r

-

-# 	 (6)

where ( )w t  is a windowing function. 
Note that in (4) we now use ( )fCl  to represent the tempo-

ral constraints instead of ( )C f , since for the polyphonic case 
this is a far more complex problem: even with a modified 
salience function there is no guarantee that the frequency of 
the melody will always be found at the maximum of the func-
tion. As shall be seen in the section “Tracking,” this is 
addressed by employing tracking techniques such as Viterbi 
decoding, tracking agents, clustering, etc. 

Alternatively, we could attempt to decompose the mixed sig-
nal into separate sources, at least one of which, ( )x tt , is domi-
nated by the melody signal to a degree that makes it suitable for 
a largely unmodified pitch tracker; we call this source separa-
tion melody extraction  

	 ( )f( , ) ,arg max S f Cf xsep
f

x= +
x

x lt
t/ 	 (7)

where ( )x tt  is estimated using decomposition or matrix factor-
ization techniques (cf.  the section “Source Separation-Based 
Approaches”). 

The MIREX melody extraction evaluations
Since its initiation in 2005, over 50 melody extraction algo-
rithms have been submitted to MIREX [3]. In this annual cam-
paign, different algorithms are evaluated against the same set 
of music collections to obtain a quantitative comparison 
between methods and assess the accuracy of the current state 
of the art in melody extraction. We believe MIREX is a good 
point of reference for this review, given that the large majority 
of melody extraction algorithms that have had an impact on 
the research community have participated in MIREX at some 
point. Due to space limitations, approaches predating 2005 
(e.g., [1]) are not discussed in this article, and we refer the 
reader to [20] for further information on earlier work. 

In Table 1, we provide a summary of the characteristics of a 
selection of 16 representative algorithms out of all the 
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submissions to MIREX since 2005. To do so, we have attempted 
to break down the extraction process into a series of steps that 
are common to most algorithms. Since some authors submitted 
several algorithms over the years, we have opted to include only 
their most recent (published) contribution, as in most cases it 
represents the latest version in the evolution of a single algo-
rithm. If a certain step is not included in an algorithm (or oth-
erwise not mentioned by the authors) a “—” is placed in the 
table. “N/A” means a step is not relevant to the method (e.g., 
Poliner and Ellis [21] determine the melody directly from the 
power spectrum and hence a multipitch representation of the 
audio signal is not relevant for this approach). Finally, we note 

that some algorithms (those by Durrieu [22] and Tachibana 
[23]) cannot be broken down into the same steps as the rest of 
the approaches. This is indicated by fusing the columns of some 
steps in the table for these algorithms. 

The last column of the table, “Approach Type,” attempts to 
classify the algorithms based on their underlying approach, 
with most falling into the categories of salience based and 
source separation introduced above. Some approaches, how-
ever, do not fit into either category, including the data-driven 
approach in which the power spectrum is fed directly into a 
machine-learning algorithm that attempts to classify the mel-
ody frequency based on the observed spectrum at each frame. 

[Table 1] A lgorithmic architecture of 16 melody extraction algorithms from MIREX from 2005 to 2012.

First author/ 
MIREX year Preprocessing 

Spectral Transform 
and Processing 

Multipitch  
Rep. (salience 
function) Tracking Voicing 

Approach  
Type 

Paiva  
2005 [25] 

— Auditory model + 
autocorrelation  
peaks 

Summary 
correlogram 

Multipitch  
trajectories +  
note deletion 

Salience  
valleys 

Salience  
based 

Marolt  
2005 [26] 

— STFT + SMS  
harmonics plus  
noise 

EM fit to  
tone models 

Fragments +  
fragment  
clustering 

Loudness  
filter 

Salience  
based

Goto  
2005 [27] 

Bandpass  
filter 

Multirate  
filterbank + IF-based  
peak selection 

EM fit to  
tone models 

Tracking  
agents 

— Salience  
based

Cancela  
2008 [28] 

— Constant-Q + high  
pass filter + log  
power norm. 

Harmonicity  
map 

Contour 
tracking +  
weighting +  
smoothing 

Adaptive  
threshold 

Salience  
based

Ryynänen  
2008 [5] 

— STFT + spectral  
whitening 

Harmonic 
summation 

Note event  
HMM + global HMM 

Silence  
model 

Salience  
based

Dressler  
2009 [29] 

— MRFFT + IF peak  
correction +  
magnitude thresh. 

Pairwise  
comparison of  
spectral peaks 

Streaming  
rules 

Dynamic  
threshold 

Salience  
based

Rao  
2009 [30] 

— High resolution  
FFT + main-lobe  
mag. matching 

SMS + TWM Dynamic  
programming 

NHC  
threshold 

Salience  
based

Salamon  
2011 [16] 

Equal  
loudness  
filter 

STFT + IF peak  
correction 

Harmonic  
summation 

Contour  
tracking +  
contour filtering 

Salience  
distribution 

Salience  
based

Jo 2011 [31] — STFT with varying  
window length 

Harmonic  
summation 

Stable  
candidates +  
rule-based  
selection 

Implicit Salience  
based

Arora  
2012 [32] 

— STFT + log  
spectrum +  
peak selection 

IFT of log  
spectrum 

Harmonic  
cluster tracking +  
cluster score 

Harm. sum.  
threshold 

Salience  
based

Hsu  
2010 [33] 

Harm/perc  
sound sep. 

MRFFT + vocal  
partial  
discrimination 

Normalized  
subharmonic  
summation 

Global trend +  
dynamic  
programming 

Classification Salience based +  
source sep.  
preprocessing 

Yeh  
2012 [34] 

Harm/perc  
sound sep. 

MRFFT + vocal  
partial  
discrimination 

Normalized  
subharmonic  
summation 

Trend  
estimation +  
HMM 

— Salience based +  
source sep.  
preprocessing

Durrieu  
2009 [22] 

Source/filter model for melody source separation Viterbi  
smoothing 

Energy  
threshold 

Source  
separation 

Tachibana  
2011 [23] 

Two-stage harmonic/percussive sound separation Dynamic  
programming 

Signal/noise  
ratio threshold 

Source  
separation

Poliner  
2006 [21] 

Downsample  
to 8 kHz 

STFT + limit to 2 kHz + 
normalize magnitude 

N/A Support  
Vector Machine  
classifier 

Energy  
threshold 

Data driven 

Sutton  
2006 [35] 

Semitone  
att. + bandpass 

N/A N/A HMM combination  
of monophonic  
pitch trackers 

Confidence  
HMM 

Monophonic 
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Note that while melody extraction includes detecting both 
sung melodies and melodies played by lead instruments, many 
algorithms are developed particularly for singing voice extrac-
tion. The reason for this is twofold: first, there is a large body of 
popular music with sung melodies, which makes vocal melody 
extraction commercially attractive. Second, the singing voice 
has unique characteristics that are different from most instru-
ments [24], and algorithms can exploit these unique features to 
identify the melody more accurately. 

Salience-based approaches
As evident in Table 1, the largest set of approaches are those 
based on time-frequency representations of pitch salience (a 
salience function). The general architecture of these 
approaches, with possible substeps, is depicted in Figure 3. 

Preprocessing
As a first step, some approaches apply some type of preprocessing, 
normally a filter to enhance the frequency content where we 
expect to find the melody: Goto [27] applies a bandpass filter 
between 261.6 Hz and approximately 4 kHz, while Salamon and 
Gómez [16] apply a perceptually motivated equal loudness filter 
[7]. Some approaches use source separation to enhance the mel-
ody signal before it is further processed: Hsu [33] and Yeh [34] use 

a technique originally designed for har-
monic-percussive sound separation 
(HPSS) adapted to perform melody-accom-
paniment separation (cf. the section 
“Source Separation-Based Approaches”). 

Spectral transform  
and processing
Next, the signal is chopped into time 
frames and a transform function is 

applied to obtain a spectral representation of each frame. The 
most straightforward approach is to apply the STFT, with a win-
dow length typically between 50 and 100 ms [5], [16], [26], [30], 
[32]. Such a window length usually provides sufficient fre-
quency resolution to distinguish different notes while maintain-
ing adequate time resolution to track pitch changes in the 
melody over short time periods. Still, some approaches attempt 
to overcome the time-frequency resolution limitation inherent 
to the Fourier transform by applying a multiresolution trans-
form such as a multirate filterbank [27], the constant-Q trans-
form [28], or the multiresolution FFT (MRFFT) [33], [34], [36]. 
In general, these transforms use larger windows at low frequen-
cies (where we require greater frequency resolution to resolve 
close notes) and small windows at higher frequencies (where we 
need high-temporal resolution to track rapidly changing har-
monics). In [16], a comparison between the STFT and MRFFT 
showed there was no statistically significant difference between 
using one transform over another for melody extraction. None-
theless, since each step in a melody extraction system is highly 
sensitive to the output of the preceding step, it is possible that 
some algorithms do benefit from using multiresolution trans-
forms. Finally, we note that some methods use transforms 
designed to emulate the human auditory system [7] such as the 
model used by Paiva [25]. 

After applying the transform, most approaches only use the 
spectral peaks for further processing. Apart from detecting the 
peaks themselves, different peak processing techniques may be 
applied: some methods filter peaks based on magnitude or sinu-
soidality criteria in an attempt to filter out peaks that do not 
represent harmonic content or the lead voice [26], [27], [30], 
[33], [34]. Other approaches apply spectral magnitude normal-
ization in an attempt to reduce the influence of timbre on the 
analysis—Cancela [28] and Arora [32] take the log spectrum 
and Ryynänen and Klapuri (who use the whole spectrum, not 
just the peaks) apply spectral whitening [5]. Finally, Dressler 
[36] and Salamon and Gómez [16] obtain more accurate fre-
quency and amplitude estimates for each spectral peak by com-
puting its instantaneous frequency from the phase spectrum. 

Salience function
At the core of salience-based algorithms lies the multipitch 
representation, i.e.,  the salience function. This function pro-
vides an estimate of the salience of each possible pitch value 
(within the range where we expect to find the melody) over 
time. An example of the output of a salience function (used by 
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[Fig3]  A block diagram of salience-based melody extraction algorithms.
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[Fig4]  An example of the output of a salience function for an 
excerpt of vocal jazz [Figure 2(a) and (d)] computed using the 
algorithm proposed in [16].
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Salamon and Gómez [16]) is depicted in Figure 4. The peaks of 
this function are taken as possible candidates for the melody, 
which are further processed in the next stages. Different meth-
ods can be used to obtain a salience function: most approaches 
use some form of harmonic summation, by which the salience 
of a certain pitch is calculated as the weighted sum of the 
amplitude of its harmonic frequencies [5], [16], [28], [31], 
[33], [34]. Goto [27] and Marolt [26] use expectation maximi-
sation to fit a set of tone models to the observed spectrum. 
The estimated maximum a posteriori probability (MAP) of the 
tone model whose f0  corresponds to a certain pitch is consid-
ered to be the salience of that pitch. Other approaches include 
two-way mismatch computed by Rao [30], summary autocor-
relation used by Paiva [25], and pairwise analysis of spectral 
peaks as done by Dressler [37]. 

As evident in Figure 4, the salience function approach has 
one main undesirable effect—the appearance of the “ghost” 
pitch values whose f0  is an exact multiple (or submultiple) of 
the f0  of the actual pitched sound. This effect can lead to what 
is commonly referred to as octave errors, in which an algo-
rithm selects a pitch value that is exactly one octave above or 
below the correct pitch of the melody. [This type of error can 
be observed in Figure 2(f).] Different algorithms adopt differ-
ent strategies to reduce the number of octave errors they com-
mit. Some algorithms, such as the ones by Cancela [28] and 
Dressler [29], attempt to directly reduce the number of ghost 
pitch values present in the salience function. Dressler does 
this by examining pairs of spectral peaks that potentially 
belong to the same harmonic series and attenuating the result 
of their summation if there are many high amplitude spectral 
peaks whose frequencies lie between the pair being consid-
ered. Cancela attenuates the harmonic summation supporting 
a certain f0  if the mean amplitude of spectral components at 
frequencies · , · /kk f f2 3 20 0  and ·k f3 0  is above the mean of 
the components at frequencies ·k f0  (this will attenuate ghost 
pitch values whose f0  is /1 2, /2 3 , or /1 3  of the real f0 ). In 
[20], Klapuri proposes a method for reducing octave errors 
based on spectral smoothness. The amplitude of each peak in 
the salience function is recalculated after smoothing the spec-
tral envelope of its corresponding harmonic frequencies. Peaks 
representing octave errors will have an irregular envelope 
(compared to a smoother envelope for real notes) and thus will 
be attenuated by this process. An alternative approach for cop-
ing with octave errors is proposed by Paiva [25] and Salamon 
[16], who first group the peaks of the salience function into 
pitch contours and then determine which contours are actu-
ally ghost contours and remove them. The underlying idea is 
that once salience peaks are grouped into contours, detecting 
duplicate contours becomes easier since they have identical 
trajectories one octave apart. Determining which of the two is 
the ghost contour is done using criteria based on contour 
salience and the overall pitch continuity of the melody. 
Finally, we note that practically all methods reduce octave 
errors nonexplicitly by penalizing large jumps in pitch during 
the tracking stage of the algorithm. 

Tracking
Given the peaks of the salience function, the remaining task is to 
determine which peaks (i.e., pitch values) belong to the melody. 
This is one of the most crucial stages of each algorithm and, 
interestingly, it is also perhaps the most varied step where practi-
cally every algorithm uses a different approach. Most approaches 
attempt to directly track the melody from the salience peaks, 
though some (Paiva, Marolt, Cancela, and Salamon) include a 
preliminary grouping stage where peaks are grouped into contin-
uous pitch contours (also referred to as fragments or trajectories) 
out of which the melody is later selected [16], [25], [26], [28]. 
This grouping is usually performed by tracking sequential peaks 
based on time, pitch, and salience continuity constraints. Given 
the pitch contours (or salience peaks if no grouping is applied), a 
variety of tracking techniques have been proposed to obtain the 
final melody sequence: Marolt [26] uses clustering, while Goto 
[27] and Dressler [29] use heuristic-based tracking agents. 
Ryynänen [5] and Yeh [34] use HMMs, while Rao [30] and Hsu 
[33] use dynamic programming. Finally, Paiva [25] and Salamon 
[16] take a different approach—rather than tracking the melody, 
they attempt to delete all pitch contours (or notes) that do not 
belong to the melody. 

Voicing
An important part of melody extraction that is sometimes over-
looked is voicing detection, i.e., determining when the melody 
is present and when it is not. The voicing detection step of an 
algorithm is usually applied at the very end, though exceptions 
do exist (e.g., Salamon uses a threshold based on the salience 
distribution of pitch contours in the entire piece to remove 
nonsalient contours before proceeding to filter out other non-
melody contours). A common approach is to use a fixed or 
dynamic per-frame salience-based threshold, as done by Paiva, 
Marolt, Cancela, Dressler, Rao, and Arora. Alternative strategies 
include Ryynänen’s algorithm, which incorporates a silence 
model into the HMM tracking part of the algorithm, and Hsu’s 
algorithm, which uses timbre-based classification to determine 
the presence (or absence) of human voice. 

Source separation-based approaches
An alternative strategy to salience-based melody extraction is to 
use source separation algorithms to isolate the melody source 
from the mixture. A block diagram illustrating some of the strate-
gies for melody extraction using source separation is provided in 
Figure 5. This type of approach is the most recent of the ones 
mentioned in Table 1 and has gained popularity in recent years fol-
lowing the advances in audio source separation research. While 
there is a large body of research on melody and lead voice source 
separation (cf. [22] and [38]–[43] and references therein), such 
algorithms are usually evaluated using measures based on signal 
to noise ratios, and only few have been evaluated in terms of esti-
mating the frequency sequence of the melody, as is our goal here. 

Two methods in Table 1 are source separation based—those of 
Durrieu et al. [22] and Tachibana et al. [23]. Durrieu models the 
power spectrogram of the signal as the instantaneous sum of two 
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contributions: the lead voice and the accompaniment. The con-
tribution of the lead voice is represented with a source/filter 
model, and the contribution of the accompaniment as the sum of 
an arbitrary number of sources with distinct spectral shapes. Two 
different representations are proposed for the source/filter model: 
a smooth instantaneous mixture model (SIMM) and a smooth 
Gaussian scaled mixture model (SGSMM). The former represents 
the lead instrument (or voice) as the instantaneous mixture of all 
possible notes, while the latter is more realistic in that it only 
allows one source/filter couple to be active at any moment, albeit 
computationally heavier. In both cases, the model parameters are 
estimated using an expectation maximization framework. Once 
the model parameters are estimated, the final melody sequence is 
obtained using the Viterbi algorithm to find a smooth trajectory 
through the model parameters (which include the f0  of the 
source). Voicing detection is done by first using Wiener filtering 
to separate the melody signal based on the estimated model 
parameters, and then computing the energy of this signal at 
every frame to determine an energy threshold for frames where 
the melody is present. 

The approach proposed by Tachibana et al. is quite distinct. It is 
based on exploiting the temporal variability of the melody com-
pared to more sustained chord notes. To do so, they make use of 
the HPSS algorithm [44]. The algorithm was originally designed to 
separate harmonic from percussive elements in a sound mixture by 
separating sources that are smooth in time (harmonic content) 
and sources smooth in frequency (percussive content). By chang-
ing the window length used for the analysis, the algorithm can be 
used to separate “sustained” (i.e., chord) sounds from “temporally 
variable” (melody plus percussive) sounds. Once the accompani-
ment is removed, the algorithm is run again, this time in its origi-
nal form to remove percussive elements. After these two passes, the 
melody in the resulting signal should be significantly enhanced. 
The melody frequency sequence is obtained directly from the spec-
trogram of the enhanced signal using dynamic programming by 
finding the path which maximizes the MAP of the frequency 
sequence, where the probability of a frequency given the spectrum 
is proportional to the weighted sum of the energy at its harmonic 
multiples, and transition probabilities are a function of the distance 
between two subsequent frequency values. Voicing detection is 
done by setting a threshold on the (Mahalanobis) distance between 

the two signals produced by the second run 
of the HPSS algorithm (the melody signal 
and the percussive signal). 

Finally, in Table 1 we see that some 
authors attempt to combine salience-based 
and source separation approaches. Here, 
source separation is used as a preprocess-
ing step to attenuate the accompaniment 
signal, and then a salience function is com-
puted from the processed signal. Both Hsu 
[33] and Yeh [34] use the HPSS method 
proposed by Tachibana, but rather than 
attempt to estimate the melody directly 
from the spectrum of the resulting signal, 

they continue to compute a salience function and further steps 
similar to other salience-based approaches. 

For completeness, we briefly describe some singing voice 
source separation algorithms here. As mentioned earlier, while 
these methods have not been evaluated in terms of melody extrac-
tion, they could be used to build melody extraction systems by 
combining them with a monophonic pitch tracking algorithm 
that estimates the melody f0  sequence from the separated voice 
signal, or by using them as a preprocessing step similar to the 
aforementioned approaches by Hsu and Yeh. We have already seen 
the source/filter model proposed by Durrieu et al. [22] and the 
HPSS method employed by Tachibana et al. [23]. A different strat-
egy for separating the lead voice is to exploit the fact that the 
music accompaniment often has a repetitive structure, while the 
voice contains more variation. Huang et al. [41] exploit this by 
assuming that the spectrogram of the accompaniment can be 
modeled by a low-rank matrix, and the spectrogram of the voice 
by a sparse matrix. They use robust principal component analysis 
(RPCA) to factorize the spectrogram of the signal into the desired 
voice and accompaniment matrices. A different way of exploiting 
repetition is proposed by Rafii and Pardo [42]—they first compute 
the repetition period of the accompaniment using autocorrelation 
applied to the spectrogram of the mixture. By computing the 
median of the spectrograms of consecutive repetitions, they obtain 
a spectrogram that contains only the repeating signal (the accom-
paniment). This spectrogram is used to derive a time-frequency 
mask used to separate the voice from the accompaniment. This 
approach was extended by Liutkus et al. [43] to work on full songs 
(where the repetition period can change between verse and cho-
rus) by searching for local periodicities in a song, and again by 
Rafii and Pardo by applying the algorithm to local windows of the 
signal and by computing a self-similarity matrix to better identify 
repeating segments in a song. In [42], the authors also present 
some experiments on combining their approach with existing 
pitch trackers to perform melody extraction, and we expect to see 
an increase in the number of source separation-based melody 
extraction algorithms participating in MIREX in the future. 

Alternative approaches
While most melody extraction approaches are either salience or 
source separation based, some very different strategies have been 
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[Fig5]  A block diagram of source separation-based melody extraction algorithms.
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proposed as well. The first to appear in Table 1 is the data-driven 
approach by Poliner and Ellis [21]. Rather than handcraft knowl-
edge about musical acoustics into the system (e.g., in the form of 
a salience function based on harmonic summation), they propose 
to use machine learning to train a classifier to estimate the mel-
ody note directly from the power spectrum. As a preprocessing 
step they downsample the audio to 8 kHz, and use the STFT to 
obtain a spectral representation. Bins corresponding to frequen-
cies above 2 kHz are discarded and 
the magnitude of the remaining bins 
is normalized over a short time 
period to reduce the influence of dif-
ferent instrument timbres. The 
resulting 256 feature vector is used 
to train a support vector machine 
classifier using training data where 
each frame is labeled with one of 60 
possible output classes correspond-
ing to 60 MIDI notes spanning five 
octaves. Voicing detection is done by 
means of a global threshold based on the magnitude squared 
energy found between 200 and 1,800 Hz. 

Another completely different strategy is the one proposed 
by Sutton et al. [35]. Rather than design an algorithm to han-
dle polyphonic audio signals, they compute the pitch 
sequences returned by two different monophonic pitch esti-
mators and then combine them using an HMM. The underly-
ing assumption is that while monophonic pitch estimators are 
not designed to handle audio where there is more than one 
pitch present at a time (normally leading to a large degree of 
estimation errors), by combining the output of different esti-
mators a more reliable result could be obtained. 

Evaluation: measures and music collections
As explained earlier, melody extraction algorithms are 
expected to accomplish two goals: estimate the correct pitch of 
the melody (pitch estimation), and estimate when the melody 
is present and when it is not (voicing detection). The output of 
a melody extraction algorithm typically includes two columns, 
the first with timestamps at a fixed interval (e.g., for MIREX a 
10-ms interval is used), and the second with f0  values repre-
senting the algorithm’s pitch estimate for the melody at each 
timestamp (i.e., at each analysis frame). Algorithms can report 
a pitch even for frames where they estimate the melody to be 
absent (nonmelody frames), in this way allowing us to evalu-
ate pitch estimation and voicing detection independently. 

To evaluate the performance of an algorithm for a given 
audio excerpt, we compare the algorithm’s output with the 
excerpt’s ground truth. The ground truth file has the same for-
mat as the output file, and contains the correct series of f0  val-
ues representing the melody of the excerpt. The ground truth is 
produced by running a monophonic pitch tracker on the solo 
melody track of the excerpt (meaning we require access to the 
multitrack recording of every song we use for evaluation). Using 
a graphical user interface such as SMSTools or WaveSurfer (see 

“For More Information”), the output of the monophonic pitch 
tracker is manually inspected and corrected if necessary. Given 
the ground truth file, an algorithm is evaluated by comparing 
its output on a per-frame basis to the ground truth. For non-
melody frames in the ground truth, the algorithm is expected to 
indicate that it has detected the absence of melody. For melody 
frames, the algorithm is expected to return a frequency value 
matching the one in the ground truth. An algorithm’s fre-

quency estimate is considered cor-
rect if it is within 50 cents (i.e., half 
a semitone) of the ground truth. 

Measures
Based on this per-frame comparison, 
we compute five global measures 
that assess different aspects of the 
algorithm’s performance for the 
audio excerpt in question. These 
measures were first used in MIREX 
2005 [2], and have since become the 

de facto set of measures for evaluating melody extraction algo-
rithms. If the system’s estimated melody pitch frequency vector is 
f  and the true sequence is ,f *  let us also define a voicing indicator 
vector ,v  whose thx  element v 1=x  when a melody pitch is 
detected, with corresponding ground truth .v*  We also define an 
“unvoicing” indicator v v1= -x xr . Recall that an algorithm may 
report an estimated melody pitch ( f 02x ) even for times where 
it reports no voicing (v 0=x ). Then the measures are as follows: 

■■ Voicing recall rate: The proportion of frames labeled as 
melody frames in the ground truth that are estimated as 
melody frames by the algorithm 
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■■ Voicing false alarm rate: The proportion of frames labeled as 
nonmelody in the ground truth that are mistakenly estimated 
as melody frames by the algorithm  
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■■ Raw pitch accuracy: The proportion of melody frames in the 
ground truth for which fx  is considered correct (i.e., within 
half a semitone of the ground truth fx*)  
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where T  is a threshold function defined by  
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and M  maps a frequency in Hertz to a melodic axis as a real-
valued number of semitones above an arbitrary reference fre-
quency fref  (55 Hz, or note pitch A1, in this work): 

melody extraction  
algorithms are expected  

to accomplish two goals: 
estimate the correct pitch of  
the melody (pitch estimation),  

and estimate when the melody  
is present and when it is  
not (voicing detection). 
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■■ Raw chroma accuracy: As raw pitch accuracy, except that 
both the estimated and ground truth f0  sequences are mapped 
onto a single octave. This gives a measure of pitch accuracy 
that ignores octave errors, a common error made by melody 
extraction systems 
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Octave equivalence is achieved by taking the difference 
between the semitone-scale pitch values modulo 12 (one 
octave), where 

	 . .a a a12 12 0 512 = - +8 B 	 (14)

■■ Overall accuracy: This measure combines the performance 
of the pitch estimation and voicing detection tasks to give an 
overall performance score for the system. It is defined as the 
proportion of all frames correctly estimated by the algorithm, 
where for nonmelody frames this means the algorithm labeled 
them as nonmelody, and for melody frames the algorithm 
both labeled them as melody frames and provided a correct f0  
estimate for the melody (i.e., within half a semitone of the 
ground truth) 
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where L  is the total number of frames.

The performance of an algorithm on an entire music collection 
for a given measure is obtained by averaging the per-excerpt scores 
for that measure over all excerpts in the collection. 

Music collections
Over the years, different research groups have contributed 
annotated music collections for evaluating melody extraction in 
MIREX. The limited amount of multitrack recordings freely 
available, and the time-consuming annotation process, mean 
most of these collections are relatively small compared to those 
used in other MIR tasks. The collections currently used for eval-
uation in MIREX, which have remained fixed since 2009, are 
described in Table 2. 

Performance: 2005 to date

Extraction accuracy
In Figure 6, we present the results obtained by the 16 algo-
rithms in Table 1 for the MIREX evaluation collections. Note 
that some algorithms only participated in MIREX before all the 
collections were added, meaning we only have partial results for 
these algorithms. This is indicated in the graph with vertical 
dashed lines that separate the algorithms that were only evalu-
ated on some of the collections (to the left of the line) from 
those evaluated on all collections (to the right of the line). We 
only compute the mean for algorithms evaluated on all six col-
lections. To get a general idea of the performance of the algo-
rithms, it is sufficient to focus on two evaluation measures—the 
raw pitch accuracy [Figure 6(a)] and the overall accuracy [Fig-
ure 6(b)]. The former tells us how well the algorithm tracks the 
pitch of the melody, and the latter combines this measure with 
the efficiency of the algorithm’s voicing detection, meaning the 
voicing-related measures are (to an extent) also reflected in this 
measure. Starting with the raw pitch, the first thing we note is 
that the accuracy of all algorithms varies depending on the col-
lection being analyzed. While some collections are generally 
harder for all approaches (e.g., MIREX09 ( 5-  dB) where the 
accompaniment is louder and masks the melody), in general the 
variability in performance is not homogeneous. This highlights 
the advantages and disadvantages of different approaches with 
respect to the music material being analyzed. For instance, we 
see that Dressler’s method outperforms all others for the 
ADC2004 and MIREX05 collections, which contain a mixture of 
vocal and instrumental pieces, but does not for the other collec-
tions where the melody is always vocal. On the one hand this 
means that her approach is generalizable to a wider range of 
musical material, but on the other hand we see that approaches 
that take advantage of specific features of the human voice 
(e.g., Tachibana or Salamon) can do better on vocal melodies. 
We also see that the HPSS melody enhancement applied by 
Hsu, Tachibana, and Yeh is particularly advantageous when the 
melody source is relatively weak compared to the accompani-
ment [MIREX09 ( 6-  dB)]. Finally, examining the raw pitch 
accuracy results for the MIREX05 collection, we see that results 
have improved gradually from 2005 to 2009, after which raw 

[Table 2] T est collections for melody extraction 
evaluation in MIREX.

Collection Description 
ADC2004 20 excerpts of roughly 20 s in the genres of 

pop, jazz, and opera. Includes real recordings, 
synthesized singing, and audio generated from 
MIDI files. Total play time: 369 s. 

MIREX05 25 excerpts of 10–40 s duration in the genres of 
rock, R&B, pop, jazz, and solo classical piano. 
Includes real recordings and audio generated 
from MIDI files. Total play time: 686 s. 

INDIAN08 Four 1-min-long excerpts from north Indian 
classical vocal performances. There are two 
mixes per excerpt with differENT amounts of 
accompaniment, resulting in a total of EIGHT 
audio clips. Total play time: 501 s. 

MIREX09 (0 dB) 374 Karaoke recordings of Chinese songs 
(i.e., recorded singing with karaoke accompa-
niment). The melody and accompaniment are 
mixed at a 0-dB signal-to-accompaniment 
ratio. Total play time: 10,020 s. 

MIREX09 (−5 dB) Same 374 excerpts as MIREX09 (0 dB), but here 
the melody and accompaniment are mixed  
at a −5-dB signal-to-accompaniment ratio. 
Total play time: 10,020 s. 

MIREX09 (+5 dB) Same 374 excerpts as MIREX09 (0 dB), but here 
the melody and accompaniment are mixed  
at a +5-dB signal-to-accompaniment ratio. 
Total play time: 10,020 s. 
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pitch accuracies have remained relatively unchanged (more on 
the evolution of performance in the section “Are We Improv-
ing?”). Overall, we see that the average pitch accuracy over all 
collections lies between 70 and 80%. 

Turning over to the overall accuracy, we see that performance 
goes down compared to the raw pitch accuracy for all algorithms, 
since voicing detection is now factored into the results. Note that 
the results for Goto and Yeh are artificially low since these meth-
ods do not include a voicing detection step. The importance of 
this step depends on the intended use of the algorithm. For 
example, if we intend to use it as a first step in a transcrip-
tion system, it is very important that we do not include notes 
that do not belong to the melody in our output. On the other 
hand, similarity-based applications which rely on matching 
algorithms that can handle gaps in the alignment of melodic 
sequences may be less sensitive to voicing mistakes. If we look 
at the average results over all six collections, we see that the 
algorithms obtaining the best overall accuracy are those that 
obtain good raw pitch accuracy combined with an effective voi-
cing detection method. Generally, we see that overall accuracy 
results lie between 65 and 75% for the best performing algo-
rithms. While this clearly indicates that there are still many 
challenges remaining (see the section “Challenges”), this 
degree of accuracy is in fact good enough for new applications 
to be built on top of melody extraction algorithms (cf.  the sec-
tion “Software and Applications”). 

Finally, we note that one important aspect of perform-
ance that is not reflected in Figure 6 is the computational 
cost of each approach. Depending on the intended applica-
tion, we may have limited resources (e.g.,  time, computing 
power) and this can influence our decision when choosing 
which algorithm to use. While deriving O-notation complex-
ity estimates is too complicated for some of the algorithms, 
generally we observe that algorithms involving source separ-
ation techniques (which are often implemented as iterative 
matrix operations) tend to be significantly more computation-
ally complex than salience-based approaches. In this respect 
Dressler’s algorithm is of particular interest, obtaining both 
the lowest runtime and the highest mean overall accuracy 
among the algorithms participating in 2009 (only Salamon 
and Gómez obtain a higher mean accuracy, but there is no 
runtime information for 2011). 

Are we improving?
In the previous section we noted that, for some collections, per-
formance has not improved much over the last three to four 
years. In Figure 7, we present the evolution of the overall accu-
racy obtained for the six MIREX collections over the years. For 
each collection, we plot the best overall accuracy result obtained 
up to a given year (e.g., for 2008 we plot the best result obtained 
up to 2008, for 2009 the best result obtained up to 2009, etc.). 
Indeed, our previous observation seems to be confirmed—for the 
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[Fig6]  (a) Raw pitch accuracy and (b) overall accuracy obtained in MIREX by the 16 melody extraction algorithms in Table 1. The vertical 
dashed line separates the algorithms that were only evaluated on some of the collections (left of the line) from those evaluated on all 
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	 IEEE SIGNAL PROCESSING MAGAZINE  [130]  MARCH 2014

two earliest collections (ADC2004 and MIREX05), we observe a 
steady improvement in results from 2005 to 2009, after which 
performance does not improve. For the more recent collections 
(INDIAN08 and the three MIREX09 collections), we see a gradual 
improvement up to 2011; in 2012 no algorithm outperformed its 
predecessors for any of the collections. This highlights an impor-
tant limitation of the MIREX evaluation campaign—since the 
collections are kept secret, it is very hard for researchers to learn 
from the results to improve their algorithms. This limitation is 
discussed further in the section “Challenges.” 

Software and Applications

Software
While various melody extraction algorithms have been proposed, 
relatively few implementations are freely available for people to 
download and use. Such tools are important for facilitating com-
parative evaluations, increasing the reproducibility of research 
and facilitating the development of 
new applications that make use of 
melody extraction technology (cf. the 
section “Applications Based on Mel-
ody Extraction”). Below we provide a 
list of known melody extraction 
related tools that are freely available 
(for links to all tools mentioned below 
see “For More Information”) 

■■ LabROSAmelodyextract2005 
includes the code for the melody 
extraction system submitted by 
Poliner and Ellis to MIREX 2005 [21]. Runs on Linux and 
OSX systems and requires both MATLAB and Java.  

■■ FChT is an open source MATLAB/C++ implementation of 
the Fan Chirp Transform (FChT) and f0  gram (salience func-
tion) proposed by Cancela et al. in [45].  

■■ separateLeadStereo is an open-source python implementa-
tion of the algorithm by Durrieu et al. reported in [40]. The 
code includes functionality for melody extraction, as well as 
lead instrument/accompaniment source separation. 

■■ IMMF0salience is an open-source vamp plug-in for visual-
izing a salience function derived from the intermediate steps 
of the algorithm by Durrieu et al. [22], [40]. 

■■ MELODIA is a vamp plug-in available as a compiled library 
for Windows, OSX, and Linux. The plug-in implements the 
melody extraction algorithm by Salamon and Gómez [16], 
and in addition to its final output (i.e.,  the f0  sequence of the 
melody) it provides visualizations of intermediate steps of the 
algorithm such as the salience function and pitch contours 
computed before selecting the final melody.
For completeness, we also briefly mention some commer-

cially available software: Dressler’s algorithm is incorporated in 
Fraunhofer’s “Melody Extraction for Music Games” library, and 
certain melody extraction functionality is also incorporated in 

Adobe Audition and Melodyne, 
though the details of the algo-
rithms used in these products are 
not published. 

Applications based on 
melody extraction
The advances in algorithmic per-
formance of melody extraction 
algorithms over the past decade 
mean they now provide suffi-
ciently good results for more 

complex applications to be built on top of them. Below we pro-
vide a summary of some of these applications, whose wide 
range evidences the importance of melody extraction algo-
rithms for MIR and computational music analysis. 

Retrieval
One of the most commercially attractive applications for mel-
ody extraction is music retrieval. That is, helping users find 
the music they are interested in or discover new music by 
means of automatically analyzing and comparing songs. 
Within this large application area we highlight two different 
yet related retrieval applications: version identification (ver-
sion ID) and QBH. Version ID (also known as cover song ID) is 
the task of automatically retrieving different versions of a 
musical recording provided to the system by the user. Use 
cases range from the detection of copyright violations on Web 
sites such as YouTube, to automating the analysis of how 
musicians influence each other’s compositions. Since the mel-
ody is often one of the few musical facets that remain 
unchanged across different renditions, various studies have 
explored the use of melody extraction for version ID, either by 
attempting to fully transcribe it [46], by using it as a midlevel 
representation for computing similarity [47], or by combining 
it with other tonal features (e.g.,  harmony, bass line, or the 
accompaniment as a whole) [8], [9]. 

[Fig7]  The evolution of the best overall accuracy result over the 
years for the six MIREX collections.
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The second retrieval task, QBH, is designed to help in the 
scenario where the user remembers the melody of a song but 
does not have any of its editorial information (e.g., title, album, 
or artist). QBH systems help the user retrieve this information 
by allowing them to sing or hum the melody as a search query. 
One important problem in the creation of QBH systems is the 
generation of a melody database (song index) against which the 
sung queries are to be compared. While it is possible to find 
MIDI versions of many songs on the Internet, such an approach 
will always be limited since it is not feasible to generate (i.e., 
transcribe) MIDI files manually for the very large music collec-
tions in existence today. Another solution is to match queries 
against other queries (i.e.,  user-recorded melodies), as per-
formed by SoundHound (see “For More Information”). While 
this avoids the need for manual transcription, the approach still 
suffers from the same “cold start” problem—a song “does not 
exist” until a user records it. This problem can be alleviated by 
using melody extraction to automatically create a melody index 
for QBH systems. While no commercial QBH system based on 
melody extraction has been launched yet, research prototypes 
have shown promising results [9], [48], [49]. 

Classification
Automatic music classification attempts to help individual users 
as well as managers of large music corpora to organize their col-
lections by automatically assigning descriptive labels to the songs 
in these collections. One of the most commonly used labels for 
organizing music is musical genre. The characteristics of the 
melody are often related to the musical genre (e.g., use of vibrato, 
pitch range), and could help in its identification. In [10], the 
authors present a genre classification system based on melody-
related features obtained using melody extraction and demon-
strate how combining these features with more commonly used 
timbre-related features such as Mel-frequency cepstral coeffi-
cients (MFCCs) can help to improve classification accuracy. 

De-soloing
Music de-soloing involves “removing” the lead instrument from 
a polyphonic music mixture. Doing this automatically is a 
highly attractive application for karaoke bars and fans—any 
song could automatically be converted into a karaoke accompa-
niment. Melody extraction can be used as a first step for de-
soloing by providing a “score” of the melody that can be used to 
guide source separation algorithms in eliminating the melody 
from the audio mix [11]. 

Transcription
As we have already shown, a midlevel frequency-based represen-
tation of the melody is already very useful for various applica-
tions. However, sometimes transcribing all the way to symbolic 
notation (e.g., Western score notation) is desirable. For starters, 
music transcription is an attractive end goal in its own right, 
helping users learn music from automatically generated scores 
[5]. Automatic transcription can also help formalize the sym-
bolic representation of orally transmitted music traditions, such 

as Flamenco [13]. Finally, by obtaining a symbolic representa-
tion of the melody we can apply the wide range of techniques 
that have been developed for symbolic melodic similarity and 
retrieval [4]. In all cases, the first step for obtaining a symbolic 
transcription of the melody from a polyphonic recording is by 
applying a melody extraction algorithm, whose output is then 
quantized in time and pitch to produce musical notes. 

Computational music analysis
As a final application, we discuss a couple of examples where mel-
ody extraction is useful for computational music analysis. Unlike 
the previous applications, whose goal was to enhance the way we 
find, represent, and interact with music, here our goal is to learn 
about the musical content itself by means of automated analysis. 
In [15], the authors combine melody extraction with a pattern 
recognition algorithm to detect the presence (or absence) of 
musical patterns that were predefined by musicologists. This type 
of analysis allows musicologists to study important aspects of the 
given musical style, e.g., to confirm existing musical hypotheses. 

In [14], melody extraction is used for a different type of 
analysis. Here, melodies are extracted from excerpts of Indian 
classical music and summarized as pitch histograms with a 
high-frequency resolution. The resulting histograms are used 
for intonation analysis—an important aspect in Carnatic 
music (a  type of Indian classical music). The intonation of a 
singer can be used to identify the raga of the piece, as well as 
characterize the musical expression of the performer. 

Challenges
While melody extraction algorithms have improved consider-
ably since 2005, many challenges still remain. In the following 
sections we discuss some of the important issues, in terms of 
both algorithmic design and evaluation, that future research on 
melody extraction will have to address. 

Instrumental music and high degrees 
of polyphony
Earlier in our review, we mentioned that while most approaches 
can process instrumental music, many of them are particularly 
tailored for vocal music. We noted that this stems both from the 
popularity of vocal music, and from the uniqueness of the 
human voice which can be exploited by algorithms. However, if 
we wish to develop algorithms which generalize to a broader 
range of music material, melody extraction for instrumental 
music must be properly addressed. This presents two challenges 
compared with vocal melody extraction: first, instrumental 
music is not as constrained as vocal music. Instruments have a 
wider pitch range, can produce rapidly changing pitch 
sequences and include large jumps in pitch. Second, an instru-
ment playing the melody may be closer, both in timbre and in 
the pitch contour of individual notes, to other accompanying 
instruments, which makes the task of distinguishing the mel-
ody from the accompaniment more complicated. 

Regardless of the instrument playing the melody, the task 
becomes harder as we increase the number of instruments in the 
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mixture. This causes greater overlap of spectral content, mak-
ing it harder to determine individual pitched sources correctly. 
Even when we manage to correctly distinguish the pitch values 
of different notes, determining which of these belong to the mel-
ody is now harder. Currently, algorithms are designed to handle 
material that is primarily homophonic, i.e., a single dominant 
lead instrument (or voice) with some harmonic accompaniment 
(strictly speaking, homophonic implies that the accompaniment 
shares the same rhythm as the melody, here we use the term more 
generally to refer to all music which has a lead melody with some 
form of harmonic accompaniment). 
Accurately extracting a specific 
melody from (for example) a fugue 
with a high degree of polyphony and 
several competing melodic lines is 
something current melody extrac-
tion algorithms can not do yet. Even 
in the simpler homophonic case we 
can think of challenging examples 
for melody extraction, for instance, 
songs that have backing vocals or 
even just a second voice. A second voice will usually move very 
similarly to the melody, reside in the same pitch range, and often 
be equally loud. This makes the task of determining which of the 
two voices is the actual melody highly challenging. 

Voicing detection
When considering algorithmic performance, we saw that the 
key to obtaining high overall accuracy is the combination of 
high raw pitch accuracy with a good voicing detection method. 
To date, most approaches focus primarily on the former aspect 
of melody extraction, and less so on the latter (in Table 1 we see 
that some algorithms do not even include a voicing detection 
step). Often, voicing detection is only considered at the very end 
of the processing chain by applying a simple global energy 
threshold. Currently, even the algorithms with the most effec-
tive voicing detection methods obtain an average voicing false 
alarm rate (i.e., detecting melody where there isn’t any) of more 
than 20%. In [16], the authors note that the most significant 
potential improvement in the performance of their algorithm 
would come from reducing the voicing false alarm rate, even 
though it is already one of the lowest in MIREX. 

Development cycle and evaluation
In the section “Are We Improving?” we saw that for some 
MIREX collections performance has not improved significantly 
in recent years, and it was noted that this highlights a problem 
in the research and development cycle of melody extraction 
algorithms. Since the MIREX collections (with the exception of 
ADC2004) are kept secret for use in future evaluations, 
researchers have no way of analyzing the data to understand 
why their algorithms fail. Without listening to the audio con-
tent and examining the output of intermediate steps of the algo-
rithm, the final results obtained, even if broken into several 
metrics, only tell you where and how you fail, but not why. 

For algorithmic research and development, researchers use 
open data sets that are freely available. Since preparing a data 
set usually requires access to multitrack recordings and a con-
siderable amount of manual annotation, there are very few such 
collections: the ADC2004 data set, the MIREX05 train data set, 
the MIR-1K data set, and the RWC pop data set (see “For More 
Information”). But the problem does not end here—the former 
two collections, while varied in terms of music material, are 
very small in size (20 and 13 excerpts, respectively), and the lat-
ter two, which are larger, are limited to a single musical genre 

(Chinese and Japanese pop, respec-
tively). This means the collections 
are either too small to give statisti-
cally stable results, or too homoge-
neous to represent the universe of 
musical styles on which we would 
like our algorithms to work. 

The current challenges in mel-
ody extraction evaluation are stud-
ied in detail in [50]. The authors 
focus on three aspects of evaluation 

in the MIREX campaign: ground truth generation, the duration 
of the excerpts used in test collections, and the size and content 
of the collections themselves. They first show how the lack of a 
common protocol for generating ground truth annotations 
could potentially lead to systematic errors in evaluation. By 
comparing algorithms’ performance on excerpts with their per-
formance on shorter subclips taken from the same excerpts, 
they also show that often short excerpts are not representative 
of the full song, implying that test collections should use com-
plete songs rather than excerpts. Finally, they discuss the stabil-
ity and representativeness of the results based on the size of the 
data sets, as we have already commented above. As the authors 
note, these findings do not invalidate the MIREX results, but 
rather emphasize the fact that we can not generalize them with 
confidence to significantly larger data sets of full songs. In an 
attempt to answer these problems, the Audio Melody Extraction 
Annotation Initiative (AMEAI) was launched in late 2012 (see 
“For More Information”). The goal of the initiative is to estab-
lish a common annotation protocol and compile a new, open 
data set for evaluation. The data set is planned to comprise full 
songs, large enough to provide statistically stable results and 
varied enough to represent a larger set of musical genres than 
those currently represented by existing evaluation collections. 

summary and Conclusions
In this article, we provided a review of melody extraction algo-
rithms, considering not only aspects of algorithmic design and 
performance, but also the very definition of the task, its poten-
tial applications, and the challenges that still need to be solved. 
We started by considering the definition of melody and noted 
that to develop and evaluate melody extraction algorithms, we 
require a simplified and pragmatic definition. This was achieved 
by limiting the task to “single source predominant fundamental 
frequency estimation from musical content with a lead voice or 

melody is without  
doubt a very important 

and distinct aspect of music 
information, and systems for 
automatically extracting it 

from music audio are sure to 
be central to future music 
information technologies. 
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instrument.” We described the challenges melody extraction 
entails from a signal processing point of view, and noted the dif-
ferences between melody extraction, monophonic pitch estima-
tion and multipitch estimation. By means of a case study, we 
highlighted some of the most common errors made by melody 
extraction algorithms and identified their possible causes. Next, 
we provided a comprehensive review of algorithmic design by 
considering 16 of the most relevant algorithms submitted to the 
MIREX evaluation campaign since 2005. We noted the great 
diversity of approaches and signal processing techniques 
applied, and identified two main algorithmic categories: 
salience-based methods and source separation-based methods. 
The evaluation measures most commonly used to assess melody 
extraction algorithms were described, and algorithmic perfor-
mance was considered in terms of these measures. We saw that 
the best performing algorithms obtain a raw pitch accuracy 
between 70 and 80% and an overall accuracy of between 65 and 
75%. We also saw that while performance has not improved 
much for some of the earlier collections, overall performance 
has improved gradually over the years. 

Next, we provided a list of freely available melody extraction 
software, and considered some of the applications that have 
already been built on top of melody extraction algorithms, 
including: retrieval (version ID and QBH), genre classification, 
automatic de-soloing, music transcription, and computational 
music analysis. Finally, we considered some of the challenges 
that still need to be addressed by the research community. We 
noted that current algorithms are primarily designed to handle 
homophonic vocal music, and that in the future they will have 
to be extended to handle instrumental and highly polyphonic 
material. We highlighted the importance of voicing detection 
and noted the problem in the development cycle caused by the 
lack of open evaluation collections. We finally considered the 
evaluation process itself and noted that to be able to generalize 
the results obtained by melody extraction algorithms to larger 
music collections, we require new, larger and more heteroge-
neous test collections. 

After nearly a decade of formal evaluations and many dozens 
of complete systems, it is fair to ask what we have learned about 
the best approaches to this problem. In our distinction between 
salience-based and source separation approaches, we find repre-
sentatives of both among the best-performing systems accord-
ing to the evaluations. One might argue that further progress in 
source separation (and full polyphonic transcription) will ulti-
mately subsume this problem, but even despite the issue of 
greater computational expense, it remains an open question 
how best to model the perception and cognitive processing of 
the full music signal that goes on in the heads of listeners, who 
are not, we assume, performing a full analysis of the sound into 
individual sources when they listen to music. Notwithstanding 
the difficulties in obtaining a precise definition, melody is with-
out doubt a very important and distinct aspect of music infor-
mation, and systems for automatically extracting it from music 
audio are sure to be central to future music information 
technologies. 
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