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ABSTRACT

Fundamental frequency contours for speech, as obtained
by common pitch tracking algorithms, contain a great deal
of fine detail that is unlikely to hold much perceptual signif-
icance for listeners. In our experiments, a radically reduced
pitch contour consisting of a single linear segment for each
syllable was found to judged as equally natural as the orig-
inal pitch track by listeners, based on high-quality analysis-
synthesis. We describe the algorithms both for segmenting
speech into syllables based on fitting Gaussians to the en-
ergy envelope, and for approximating the pitch contour by
independent linear segments for each syllable. We report our
web-based test in which 40 listeners compared the stylized
pitch contour resyntheses to equivalent resyntheses based on
the original pitch track, and also to pitch tracks stylized by
the existing Momel algorithm. Listeners preferred the origi-
nal pitch contour to the linear approximation in only 60% of
cases, where 50% would indicate random guessing. By con-
trast, the original was preferred over Momel in 74% of cases.

Index Terms— Speech analysis, Speech processing, Piece-
wise linear approximation

1. INTRODUCTION

Voice pitch or intonation is a major component of the non-
lexical ‘prosodic’ content of speech, and carries important in-
formation relating to phrasing, utterance type (question vs.
statement), stressing particular words, etc. However, a pitch
tracker will return estimates of fundamental frequency (fj) as
a function of time that vary on a millisecond scale, whereas
linguistic analysis suggests that pitch information is organized
only at the level of syllables or words (hundreds of millisec-
onds) [7]. This paper is concerned with simplifying, or styl-
izing, the raw pitch track derived from a signal to see to what
extent detail can be removed without affecting the informa-
tion and/or quality of the speech. A successful stylization
scheme could have applications in reducing the data rate in
speech coding, as well as pointing to the kind of internal rep-
resentation or processing of speech employed by listeners.
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Momel [4] is one example of an approach to this solution,
and its inclusion in the widely-used PRAAT software [1, 3]
perhaps makes it the de-facto standard for pitch contour styl-
ization. The algorithm is fairly simple: it finds minima and
maxima boundary points within a certain time window and
fits a 2"?-order spline function to the boundary markers. De-
spite being a much smoother representation of the original
pitch track, human subjects are reported to find the stylized
contours perceptually unimpaired — direct evidence that lis-
teners are not particularly sensitive to subtle details in voice
pitch contour.

Based on the idea that pitch gestures are perceived as prop-
erties of words (or at the finest scale, the stressed syllables
within words), we wished to experiment with stylizations that
first segment speech into syllables, then describe the pitch
contour with a few parameters per syllable. In pilot experi-
ments, we found that using just one pitch parameter per syl-
lable — a constant, average pitch — significantly impaired the
perceived naturalness of the speech, but, to our surprise, a
two-parameter model — average pitch plus a constant pitch
slope — afforded resyntheses that were frequently difficult to
distinguish from the originals, despite being a highly stylized,
and rather implausible, contour.

In order to easily manipulate a number of speech param-
eters, we use the STRAIGHT analysis-synthesis tool [5]. It
is based on a source-filter model and achieves highly natural
speech synthesis. Using STRAIGHT allowed us to separate
pitch track from spectral envelope, optionally substitute styl-
ized versions of the pitch track, then resynthesize speech of
very high perceptual quality to use in listening experiments.

The next section describes our pitch stylization system,
and section 3 describes our evaluation of both syllable seg-
mentation and perceptual quality of the stylized pitches. We
discuss some future directions in section 4.

2. OVERVIEW

Our pitch stylizer has two separate parts: a syllable segmenter
to segment pitch by syllable, and a pitch stylizer to model
the pitch within each syllable as a linear segment. Figure 1
illustrates the entire process, and is described in more detail
in the subsections below.
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Fig. 1. Overview of the syllable segmentation and pitch stylization system. (a) Spectrogram of the original speech, drawn from
the TIMIT corpus [2]. (b) Manual word and phone transcripts. Shaded backgrounds indicate vowel phones, taken as syllable

centers.

(c) Original waveform. (d) Energy envelope, smoothed with a 15 ms window. (e) First stage Gaussian modeling

(overfit with more than one Gaussian per syllable; the sum of all Gaussians is plotted). (f) Second stage Gaussian modeling;
each Gaussian is separately plotted with a dotted line at its center, indicating a syllable detected by the system. (g) Original
pitch contour (shaded), plus Momel (dotted) and linear (solid) stylizations. The Momel curve has been displaced up by 10 Hz,

and the linear curve down by 10 Hz, to aid clarity.

2.1. Syllable Segmentation

An integral part to the pitch modeling scheme is the sylla-
ble segmentation since the pitch curve is modeled on syllabic
units. We start with the energy curve of the original wave-
form, smoothed with a 15 ms Hanning window. The goal is
to approximate this curve with a sequence of one-dimensional
Gaussian curves, with each Gaussian representing (and thus
defining) the energy due to a separate syllable. Gaussian mix-

tures can be fit to any curve using the Expectation-Maximization

(EM) algorithm, and the fit can be made arbitrarily close by
increasing the number of Gaussians. The challenge is to de-
cide how many Gaussians are needed to fit the variations in
energy due to syllables, but not sub-syllabic structure. Our
solution was a two-stage Gaussian modeling approach, which
first uses a relatively large number of Gaussians to approx-
imate the raw energy curve, then makes a second Gaussian
mixture approximation to the result of the first stage. The
steps in the procedure are as follows: (1) Segment the en-
ergy curve into 250 ms segments and determine the number

of local maxima (V) in each frame. (2) Fit each segment’s
energy curve with a number of Gaussians moving from N — 3
to N 4+ 3 until the mean-squared error improves by less than
10% for two successive increments. (3) Count the number
of local maxima in the combined Gaussian energy curve of
(2) that are also the peak values within a 250 ms window
(N"). (4) Model the energy curve from (2) using N’ Gaus-
sians. Overfitting in steps (1) and (2) causes no problems in
this segmentation strategy as the extra Gaussians are unlikely
to produce extra maxima in step (3). Syllable boundaries are
then taken as the point at which adjacent Gaussians cross.

Panels (d) through (f) of figure 1 illustrate this procedure.
Notice that although the /ae/ in “ask” is initially modeled with
two maxima in the first stage (panel (e)), these are collapsed
to a single Gaussian in the second stage (panel (f)).

2.2. Pitch Model

Once the pitch track is segmented by syllable, the pitch track
within each syllable is modeled as a straight line segment,



discarding the microprosodic information. In order to en-
sure robustness against bad pitch estimates, the linear fit is
weighted by the energy curve of the original speech. Em-
pirically we observed that while the pitch tracker we used
correctly identify unvoiced sections in most circumstances,
at times it would make spurious pitch estimates as voiced
sections were transitioning to unvoiced sections. This could
cause the edge of a pitch track to change rapidly and seriously
impact the fit. These sections, however, have very low energy
in comparison to voiced sections; hence weighting the linear
regression based on the energy curve discounted these prob-
lems.

We applied this stylization to the outputs of a number of
pitch trackers. The most common gross pitch tracking errors
that we observed, pitch halving and doubling, are not cor-
rected through stylization unless they occur in regions of very
low energy. Unlike pitch stylization procedures that attempt
to match the entire pitch curve of a phrase, however, because
in this model each syllable is fit independent of all others, a
bad pitch stylization is limited in impact to the syllables in
which the bad pitch estimate occurs.

Panel (g) of figure 1 shows the original pitch tracker out-
put (shaded) and the per-syllable linear fits (solid lines, offset
down by 10 Hz for clarity). Also shown for comparison is
the output of the Momel algorithm (dotted, offset upwards)
which connects across unvoiced regions.

3. EVALUATION

Syllable segmentation and pitch stylization were evaluated
separately, using an objective measure for the former, and
subjective listening tests for the latter.

3.1. Syllable Segmentation

To test the accuracy of the syllable segmenter, we ran the al-
gorithm on the TIMIT training database (with 50 speakers and
roughly 5000 speech samples) and evaluated our syllable seg-
ments against the TIMIT phoneme labels. We also compared
our algorithm to a minima-based syllable extractor (similar
to [6]) which looked for minima with in 40ms windows and
identified those minima as syllable boundaries. However, the
TIMIT data does not directly provide ground truth syllable
segmentation, only the hand-marked phone labels. Definitive
syllable boundaries are notoriously elusive, as illustrated by
the words “..carry an..” in figure 1, which could be argued to
constitute either two or three syllables.

Our approach was to consider each vowel phoneme as
a syllable nucleus, and to sidestep the problem of defining
precisely where the boundaries between successive syllables
occur. We considered a syllable to be correctly detected if
boundaries are placed before the beginning of the correspond-
ing vowel and after the end of the vowel nucleus. In figure
1, “.carry an..” is thus considered as three syllables in the
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Fig. 2. User interface of the web experiment.

ground truth (since it has three vocalic phonemes), but only
two of these are correctly bracketed by Gaussians.

With this metric, the GMM syllable segmenter achieved
an accuracy of 78% while the minima classifier correctly seg-
mented vowel nuclei 70% of the time. The downside to using
the GMM syllable segmenter, however, was that it was two
orders of magnitude slower than the minima-based classifier.
We should also note that the speakers in the TIMIT database
pronounce their words quite clearly, leading to easier segmen-
tation of syllables. The accuracy numbers for the GMM clas-
sifier and the minima classifier are likely to be significantly
worse in conversational speech.

3.2. Human Evaluation of Pitch Model

In order to evaluate the naturalness of synthesized speech based
on the pitch stylization model, we created a web experiment
in which listeners are given two versions of the same utter-
ance from the TIMIT database. Using the same STRAIGHT
resynthesis for both, one is generated from the original pitch
contour, while the other uses a stylized pitch. Subjects are
asked to choose the more natural-sounding speech sample.
Figure 2 shows a sample screen from the web experiment.

In the experiment, 20% of trials used pitch stylizations by
Momel instead of the linear model. Both stylizations were
based on the pitch track produced by PRAAT [1], which was
also the source of the Momel implementation. For about 3%
of the TIMIT samples, Momel produced pitch tracks with
large oscillations giving peak f values above 10 kHz; these
tokens were excluded from the experiment. For speed of pro-
cessing, we used ground-truth syllable boundaries inferred
from the TIMIT transcription.

40 subjects participated in the evaluation, totaling over
1,500 judgments. Table 1 shows that individuals are able to
distinguish the original from the linear stylization 59.6% of
the time compared with 74.0% for Momel. While some in-



Table 1. Percentage of times subjects were able to correctly
identify the original speech sample from the stylized one. The
‘Preference’ column shows the number of subjects, of the
subset who heard both stylizations, who more often preferred
each stylization type.

System | Ability to distinguish  Preference
Linear 59.6% 26
Momel 74.0% 8
20 —
Linear
Momel |

number of subjects
o

o

10 20 30 40 50 60 70 80 90
Percentage of time subject correctly
identified original sample

Fig. 3. Histograms of the proportion of trials in which the
original was considered more natural, broken down by sub-
ject. 100% indicates perfect preference for original, and 50%
indicates an inability to distinguish the versions. Light bars
are the Linear model, dark bars are Momel.

dividuals are clearly able to distinguish between the original
and the linear stylization, the results show that this is only
for a minority of cases. Figure 3 is a histogram which shows
the distribution of per-user average preference for the original
over each of the stylizations. This graph shows that a major-
ity of subjects correctly identified the original speech sample
over the linear stylization only 50-60% of the time (i.e. close
to guessing), while for Momel the highest concentration of
subjects scored between 90-100% or 60-70%. The linear styl-
ization is clearly perceived as more natural than Momel.

4. CONCLUSIONS AND FUTURE WORK

While the linear stylization seems to produce speech samples
indistinguishable from the original a large percentage of the
time, listeners are still able to discern differences between the
original and stylized tracks in at least some of the samples.
Looking back at figure 1, we notice that while most of the
pitch track seems to be well fit by a syllabic linear segments, a
few syllables such as the first half of “carry” show significant
deviations from linearity. We have experimented with fitting
274 order functions when the mean-squared error between
the linear stylization and original pitch track reaches a cer-
tain threshold, but have not evaluated this approach. Speakers
in TIMIT database tend to pronounce words clearly using rel-
atively wide pitch variation; perhaps the reduced intonation

of conversational speech would affect subjects’ ability to dis-
tinguish between pitch stylizations. Finally, it would very in-
teresting to perform these tests using a tonal language such as
Mandarin to determine whether native speakers of such lan-
guages have a different sensitivity to pitch contour.

In conclusion, the results show that native English speak-
ers are to a large extent insensitive to microprosody within a
syllable. Even a crude fit, such as the linear regression we
used, seems adequate for realizing natural speech, with lis-
teners able to distinguish stylized from original pitch in only
a small proportion of cases. We believe this has important im-
plications for representations of speech, and the exploitation
of intonation information in speech systems.

Examples of the pitch stylizations described in this pa-
per can be heard at http://labrosa.ee.columbia.edu/
projects/pitchcontour/.
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