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Abstract— Although the process of analyzing an audio record-
ing of a music performance is complex and difficult even for a
human listener, there are limited forms of information that may
be tractably extracted and yet still enable interesting applications.
We discuss melody – roughly, the part a listener might whistle
or hum – as one such reduced descriptor of music audio, and
consider how to define it, and what use it might be. We go
on to describe the results of full-scale evaluations of melody
transcription systems conducted in 2004 and 2005, including an
overview of the systems submitted, details of how the evaluations
were conducted, and a discussion of the results. For our definition
of melody, current systems can achieve around 70% correct
transcription at the frame level, including distinguishing between
the presence or absence of the melody. Melodies transcribed at
this level are readily recognizable, and show promise for practical
applications.

I. INTRODUCTION

Listeners respond to a wealth of information in music audio,
and can be very sensitive to the fine details and nuances
that can distinguish a great performance. Ever since the
emergence of digital signal processing, researchers have been
using computers to analyze musical recordings, but it has
proven more challenging than expected to recognize the kinds
of aspects, such as notes played and instruments present, that
are usually trivial for listeners. Among these tasks, automatic
transcription – converting a recording back in to the musical
‘score’, or list of note times and pitches, that the performer
may have been reading – is a popular task: music students can
perform transcription very effectively (after suitable training),
but, despite a pretty clear understanding of the relationship
between harmonics in the signal and perceived pitches, full
transcription of multiple, overlapping instruments has proven
elusive. Stretching back into the 1970s, a long thread of
research has gradually improved transcription accuracy and
reduced the scope of constraints required for success ([24],
[21], [19], [28], [20], [22] among many others), but we are
still far from a system that can automatically and accurately
convert a recording back into a set of commands that would
replicate it on a music synthesizer.

The basic problem is that while the pitch of a single musical
note is consistently represented as a waveform with a more or
less stable periodicity (giving rise to a set of harmonics at
integer multiples of a fundamental under Fourier analysis),
ensemble music will frequently include episodes where four
or more notes are overlapping in time, and moreover the

fundamentals of these notes may be in simple integer ratios,
meaning their harmonics actually coincide, giving complex
patterns of constructive and destructive interference in a nar-
rowband spectral analysis; this harmonic mingling appears to
be at the core of musical harmony. In view of this difficulty,
researchers have considered alternative formulations that might
be more practical than full transcription while still supporting
some of the applications that transcription would enable. Goto
suggested identifying just a single, dominant periodicity over
the main spectral range of music (plus one more in the
low frequencies, corresponding to the bass line), which he
referred to as “Predominant-F0 Estimation” or PreFEst [16],
[13]. This restriction allowed both a tractable implementation
(running in real-time even in 1999) and a musically-interesting
description that gave recognizable ‘sketches’ of many popular
music examples.

Although Goto was careful not to blur the distinction, in
most cases his predominant pitch was recognizable as the
melody of the music, and this paper is concerned specifically
with the problem of extracting the melody from music audio.
Providing a strict definition of the melody is, however, no sim-
ple task: it is a musicological concept based on the judgment of
human listeners, and will not, in general, be uniquely defined
for all recordings. Roughly speaking, the melody is the single
(monophonic) pitch sequence that a listener might reproduce
if asked to whistle or hum a piece of polyphonic music, and
that a listener would recognize as being the ‘essence’ of that
music when heard in comparison. In many cases, listeners find
it easy to identify the melody; in particular, much of popular
music has a ‘lead vocal’ line, a singer whose voice is the
most prominent source in the mixture, and who is singing the
melody line. But even in classical orchestral music, or richly
polyphonic piano compositions, in very many cases a single,
prominent melody line can be agreed upon by most listeners.
Thus, while we are in the dangerous position of setting out
to quantify the performance of automatic systems seeking to
extract something that is not strictly defined, there is some
hope we can conduct a meaningful evaluation.

Figure 1 gives an example of what we mean by a melody,
and illustrates some of the difficulties of the problem of
melody transcription. As discussed in section III, we have
obtained a small number of recordings where the vocal line
is presented alone (from the original multitrack recordings
made in the studio). We assume this lead vocal constitutes the
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Fig. 1. Illustration of melody in polyphonic music. Top pane: narrowband
spectrogram of vocal line (i.e. melody) from original multi-track recording.
Middle pane: corresponding spectrogram of the full polyphonic recording,
when all accompaniment has been mixed in. Bottom pane: Power of melody
relative to full mix.

melody; its spectrogram (using a 100ms window in order to
emphasize the harmonic structure of the lead voice) is shown
in the top pane. The spectrogram below, however, is the full
polyphonic recording with all the accompaniment instruments
present. Clearly, the melody line is much less prominent, as
confirmed by the bottom pane which shows the power of the
melody signal compared to the full mix, as a function of time.

Accurate melody transcription would make possible nu-
merous applications: One obvious direction arises from the
popular paradigm of “Query-by-humming” [10], [2] which
aims to help users find a particular piece of music based
on a hummed or sung extract. By our definition, we can
assume that the queries will be fragments of melody, but
if the database consists of full, polyphonic recordings we
cannot expect the query to resemble the recording in any broad
sense. Melody transcription would allow us to describe each
database item in terms of its melody, and match queries in that
domain. In fact, for this application, melody transcription may
be preferable to full, polyphonic transcription, since it also
provides a necessary solution to the problem of identifying
the melody line within the full set of notes being played.

Other applications for melody transcription include any-
where that a reduced, simplified representation of music might
be advantageous, such as clustering different variations of the
same piece, or analyzing common musicological primitives.
Melodies can also be a kind of thumbnail or cartoon of a
full recording e.g. for limited-capacity devices such as some
cellphones. Score following, where a complex recording is
temporally aligned to a known performance score, might also
be easier and more successful in such a reduced, but still
informative, domain.

The remainder of this paper is organized as follows: In
the next section, we present an overview of the different ap-
proaches taken to melody transcription, based on the submis-
sions made to the two annual evaluations of this task we have
conducted. Section III then gives details of these evaluations,
describing both how the materials were prepared, and what
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Fig. 2. Basic processing structure underlying all melody transcription
systems.

metrics we used. Then, in section IV we present the results
of the evaluations, and, as far as possible, make observations
concerning the performance of the different approaches. We
mention future directions and draw conclusions in section V.

II. APPROACHES TO MELODY TRANSCRIPTION

Melody transcription is strongly related to pitch tracking,
which itself has a long and continuing history (for reviews,
see [18], [17], [3]). In the context of identifying melody
within multi-instrument music, the pitch tracking problem is
further complicated because although multiple pitches may be
present at the same time, at most just one of them will be the
melody. Thus, all approaches to melody transcription face two
problems: identifying a set of candidate pitches that appear to
be present at a given time, then deciding which (if any) of
those pitches belongs to the melody. Note that the task of
detecting whether the melody is active or silent at each time,
although seemingly secondary, turned out to be a major factor
in differentiating performance in the evaluations. Finally, a
sequence of melody estimates can be post-processed, typically
to remove spurious notes or otherwise increase smoothness.
Figure 2 shows the basic processing sequence that more or
less covers all the algorithms we will discuss.

The audio melody transcription competitions conducted in
2004 and 2005 (described in section III) attracted a total of 14
submissions – four in 2004 and ten in 2005. Of the algorithms
evaluated in 2004, all but one were also represented in 2005,
the exception being the autocorrelation-based scheme of Bello.
Of the ten submissions in 2005, two were ‘contrast’ variants
of other submissions, and one never delivered interpretable
results due to system issues, leaving seven main algorithms
to compare. These are listed in table I, which attempts to
break down the description of the algorithms into several key
dimensions. Systems are referred to by their first authors only,
for brevity. The ordering of the algorithms in the table aims
merely to highlight their similarities.

The first column, “Front end”, concerns the initial signal
processing applied to input audio to reveal the pitch content.
The most popular technique is to take the magnitude of the
short-time Fourier transform (STFT) – the Fourier transform
of successive, windowed, snippets of the original waveform
– denoted |STFT | in the table, and commonly visualized as
the spectrogram. Pitched notes appear as a ‘ladder’ of more-
or-less stable harmonics on the spectrogram, a clear visual
representation that suggests the possibility of automatic de-
tection. Unlike the time waveform itself, |STFT | is invariant
to relative or absolute time or phase shifts in the harmonics
because the STFT phase is discarded. This is convenient since
perceived pitch has essentially no dependence on the relative
phase of (resolved) harmonics, and it makes the estimation
invariant to alignment of the analysis time frames. Since the
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TABLE I
PRINCIPAL MELODY TRANSCRIPTION ALGORITHMS. SEE TEXT FOR DETAILS.

System Front end Multi-pitch # pitches Onset events Post-processing Voicing
Dressler [6] |STFT | + sines Harmonic model fit 5 Fragments Streaming rules Melody + local thresh.
Marolt [23] |STFT | + sines EM fit of tone models > 2 Fragments Proximity rules Melody grouping
Goto [14] Hier. |STFT | + sines EM fit of tone models > 2 – Tracking agents (continuous)
Ryynänen [29] Auditory + |STFT | Harmonic Sieve 2 Note onsets HMM Background model
Poliner [27] |STFT | SVM Classifier 1 – – Global threshold
Paiva [26] Auditory correlogram Summary autocorrelation > 2 Pitches Pruning rules Melody grouping
Vincent [35] YIN / Time windows Gen. model inference 5 / 1 – HMM (continuous)

frequency resolution of the STFT improves with temporal
window length, these systems tend to use long windows,
from 46 ms for Dressler, to 128 ms for Poliner. Goto uses
a hierarchy of STFTs to achieve a multiresolution Fourier
analysis, downsampling his original 16 kHz audio through 4
factor-of-2 stages to have a 512 ms window at his lowest 1 kHz
sampling rate. Since musical semitones are logarithmically
spaced with a ratio between adjacent fundamental frequencies
of 21/12 ≈ 1.06, to preserve semitone resolution down to the
lower extent of the pitch range (below 100 Hz) requires these
longer windows. Ryynänen uses an auditory model front-end
to enhance and balance information across the spectrum, but
then calculates the |STFT | for each subband and combines
them. Dressler, Marolt, and Goto further reduce their mag-
nitude spectra by recording only the sinusoidal frequencies
estimated as relating to prominent peaks in the spectrum, using
a variety of techniques (such as instantaneous frequency [9])
to exceed the resolution of the STFT bins.

Two systems do not use the STFT: Paiva uses the Lyon-
Slaney auditory model up to the summary autocorrelation
[32], and Vincent uses a modified version of the YIN pitch
tracker [4] to generate candidates for his later time-domain
model inference. Both these approaches use autocorrelation,
which also achieves phase invariance (being simply the inverse
Fourier transform of |STFT |2) but also has the attractive
property of summing all harmonics relating to a common
period into a peak at that period. The Lyon-Slaney system
actually calculates autocorrelation on an approximation of the
auditory nerve excitation, which separates the original signal
into multiple frequency bands, then sums their normalized
results; Paiva’s multi-pitch detection involves simply choosing
the largest peaks from this summary autocorrelation. Although
YIN incorporates autocorrelation across the full frequency
band, Vincent calculates this from the STFT representation,
and reports gains from some degree of across-spectrum energy
normalization. Interestingly, because the resolution of auto-
correlation depends on the sampling rate and not the window
length, Paiva uses a significantly shorter window of 20 ms,
and considers periods only out to 9 ms lag (110 Hz).

The next column, “Multi-pitch”, addresses how the systems
deal with distinguishing the multiple periodicities present in
the polyphonic audio, and the following column, “# pitches”,
attempts to quantify how many simultaneous pitches can be
reported at any time. For systems based on |STFT |, the
problem is to identify the sets of harmonics and properly
credit the energy or salience of each harmonic down to the
appropriate fundamental – even though there need not be

any energy at that fundamental for humans to perceive the
pitch. This generally reduces to a ‘harmonic sieve’ [11],
[8], which, in principal at least, considers every possible
fundamental and integrates evidence from every predicted
harmonic location. One weakness with this approach is its
susceptibility to reporting a fundamental one octave too high,
since if all the harmonics of a fundamental frequency f0 are
present, then the harmonics of a putative fundamental 2f0 will
also be present. Ryynänen implements a harmonic sieve more
or less directly, but identifies lower fundamentals first, then
modifies the spectrum to remove the energy associated with the
low pitch, thereby removing evidence for octave errors. Goto
proposed a technique for estimating weights over all possible
fundamentals to jointly explain the observed spectrum, which
effectively lets different fundamentals compete for harmonics,
based on Expectation-Maximization (EM) re-estimation of the
set of unknown harmonic-model weights; this is largely suc-
cessful in resolving octave ambiguities [14]. Marolt modifies
this procedure slightly to consider only fundamentals that are
equal to, or one octave below, actual observed frequencies,
and then integrates nearby harmonics according to perceptual
principles. The results of these (and an apparently similar
procedure in Dressler) are weights assigned to every possible
pitch, most of which are very small; the few largest values are
taken as the potential pitches at each frame, with typically 2
to 5 simultaneous pitches being considered.

Poliner takes a radical approach of feeding the entire
Fourier transform magnitude at each time slice, after some
local normalization, into a Support Vector Machine (SVM)
classifier. This classifier has previously been trained on many
thousands of example spectral slices for which the appropri-
ate melody note is known (e.g. through manual or human-
corrected transcription of the original audio), and thus it can be
assumed to have learned both the way in which pitches appear
as sets of harmonics, and also how melody is distinguished
from accompaniment, to the extent that this is evident within
a single short-time window. This approach willfully ignores
prior knowledge about the nature of pitched sounds, on the
principle that it is better to let the machine learning algorithm
figure this out for itself, where possible. The classifier is
trained to report only one pitch – the appropriate melody –
for each frame, quantized onto a semitone scale, and this was
used, without further processing, as the pitch estimate in the
evaluated system.

Although Vincent starts with an autocorrelation to get up to
5 candidate periods for consideration, the core of his system
is a generative model for the actual time-domain waveform
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within each window that includes parameters for fundamental
frequency, overall gain, amplitude envelope of the harmonics,
the phase of each harmonic, and a background noise term
that scales according to local energy in a psychoacoustically-
derived manner. The optimal parameters are inferred for each
candidate fundamental, and the one with the largest posterior
probability under the model is chosen as the melody pitch at
that frame.

The next column, “Onset events”, reflects that only some
of the systems incorporate sets of distinct objects – individual
notes or short strings of notes – each with a distinct start and
end time, internal to their processing. Three systems, Goto,
Poliner, and Vincent, simply decide a single best melody pitch
at every frame and do not attempt to form them into higher
note-type structures. Dressler and Marolt, however, take sets
of harmonics similar to those in Goto’s system, but track
the amplitude variation to form distinct fragments of more-
or-less continuous pitch and energy that are then the basic
elements used in later processing (since there may still be
multiple elements active at any given time). Paiva goes further
to carefully resolve his continuous pitch tracks into piecewise-
constant frequency contours, thereby removing effects such as
vibrato (pitch modulation) and slides between notes to get
something closer to the underlying, discrete melody sequence
(the evaluation, however, was against ground truth giving the
actual fundamental rather than the intended note, so Paiva’s
system eventually reported this earlier value).

Ryynänen uses a hidden Markov model (HMM) providing
distributions over features including an ‘onset strength’ related
to the local temporal derivative of total energy associated with
a pitch. The first, “attack”, state models the sharp jump in onset
characteristics expected for new notes, although a bimodal
distribution also allows for notes that begin more smoothly; the
following “sustain” state is able to capture the greater salience
(energy), narrower frequency spread, and lesser onset strength
associated with continuing notes. Thus, new note events can be
detected simply by noting transitions through the onset state
for a particular note model in the best-path (Viterbi) decoding
of the HMM.

The second-to-last column, “Post-processing”, looks at how
raw (multi) pitch tracks are further cleaned up to give the
final melody estimates. In the systems of Dressler, Marolt,
and Paiva, this involves choosing a subset of the note or note
fragment elements to form a single melody line, including
gaps where no melody note is selected. In each case, this is
achieved by sets of rules that attempt to capture the continuity
of good melodies in terms of energy and pitch (i.e. avoiding or
deleting large, brief, frequency jumps). Rules may also include
some musical insights, such as preference for a particular
pitch range, and for the highest or lowest (outer) voices in
a set of simultaneous pitches (a polyphony). Although Goto
does not have an intermediate stage of note elements, he does
have multiple pitch candidates to choose between, which he
achieves via a set of interacting “tracking agents” – alternate
hypotheses of the current and past pitch – which compete
to acquire the new pitch estimates from the current frame,
and live or die based on a continuously-updated penalty that
reflects the total strength of the past pitches they represent;

the strongest agent determines the final pitch reported.
Ryynänen and Vincent both use HMMs to limit the dynam-

ics of their pitch estimates i.e. to provide a degree of smooth-
ing that favors slowly-changing pitches. Ryynänen simply con-
nects his per-note HMMs through a third, noise/background,
state, and also has the opportunity to include musicologically-
informed transition probabilities that vary depending on an
estimate of the current chord or key [34]. Vincent uses an
HMM simply to smooth pitch sequences, training the tran-
sition probabilities as a function of interval size from the
ground-truth melodies in the 2004 evaluation set.

The final column, “Voicing”, considers how, specifically,
the systems distinguish between intervals where the melody is
present and those where it is silent (gaps between melodies).
Goto and Vincent simply report their best pitch estimate at
every frame and do not admit gaps. Poliner’s basic pitch
extraction engine is also continuous, but this is then gated by
a separate melody detector; a simple global energy threshold
over an appropriate frequency range was reported to work as
well as a more complex scheme based on a trained classifier.
As discussed above, the selection of notes or fragments in
Dressler, Marolt, and Paiva naturally leads to gaps where no
suitable element is selected; Dressler augments this with a
local threshold to discount low-energy notes.

III. THE MELODY EVALUATIONS

As described above, there are many approaches to the
melody transcription problem. Until recently though, a number
of obstacles such as the lack of a standarized test set or
consensus regarding evaluation metrics impeded an objective
comparison of these systems. In 2004, the Music Technology
Group at the University of Pompeu Fabra proposed and hosted
a number of audio description contests in conjunction with the
International Conference on Music Information Retrieval (IS-
MIR). These evaluations which included contests for melody
transcription, genre classification/artist identification, tempo
induction, and rhythm classification evolved into the Mu-
sic Information Retrieval Evaluation Exchange (MIREX) [5]
which took place during the summer of 2005, organized and
run by Columbia University and the University of Illinois at
Urbana-Champaign. In this section, we examine the steps that
have been taken toward an objective comparison of melody
transcription systems.

A. Evaluation Material

Although a great deal of music is available in a digital
format, the number of corresponding transcriptions time-
aligned to the audio is rather limited. Recently, Goto et al.
prepared the Real World Computing (RWC) Music Database
[15] which contains 315 recordings of musical pieces along
with accompanying standard MIDI files – descriptions of the
note events rounded to the nearest semitone. Although the
RWC database has proven to be a very valuable resource,
discretizing audio to the nearest semitone omits a significant
amount of the expressive detail (e.g. vibrato and glide tran-
sitions) that is critical to musicological analysis. In addition,
the problem of identifying the predominant melody given a
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complete transcription is still an open research problem [25],
[30]. As such, novel sets of recording-transcription pairs were
required in order to perform real-world melody transcription
evaluations.

Trained musicians are capable of generating detailed tran-
scriptions from recorded audio; however, the process is often
difficult and time consuming for ensemble pieces. As an
alternative to labeling the audio by hand, standard recording
conventions may be exploited in order to facilitate the creation
of reference transcriptions. In many cases, music recordings
are made by layering a number of independently recorded
audio tracks. In some instances, artists (or their record com-
panies) distribute the full set of multi-track recordings, or a
reduced set (e.g. separate vocal and instrumental tracks), as
part of a single release. The monophonic lead voice recordings
can be used to create ground truth for the melody in the full
ensemble music, since the solo voice can usually be tracked
with high accuracy by standard pitch tracking systems [33],
[1], [4]. In both evaluations the test sets were supplemented
with synthesized audio (e.g. MIDI); however, the contest
organizers sought to limit the inclusion of these recordings
wherever possible since the the reduced acoustic complexity
may lead to poor generalization on commercial recordings.

A description of the data used in the 2004 evaluation is
displayed in table II. The test set is made up of 20 monaural
audio segments (44.1 kHz sampling rate, 16 bit PCM) across
a diverse set of musical styles. The corresponding reference
data was created by using SMSTools [1] to estimate the
fundamental frequency of the isolated, monophonic, melody
track at 5.8 ms steps. As a convention, the frames in which the
main melody is unvoiced are labeled 0 Hz. The transcriptions
were manually verified and corrected in order to ensure the
quality of the reference transcriptions. Prior to the evaluation,
half of the test set was released for algorithm development,
and the remainder was released shortly after the competition.

TABLE II
SUMMARY OF THE TEST DATA USED IN THE 2004 MELODY EVALUATION.

EACH CATEGORY CONSISTS OF 4 EXCERPTS, EACH ROUGHLY 20 S IN

DURATION. THE 8 SEGMENTS IN THE Daisy AND MIDI CATEGORIES WERE

GENERATED USING A SYNTHESIZED LEAD MELODY VOICE, AND THE

REMAINING CATEGORIES WERE GENERATED USING MULTI-TRACK

RECORDINGS.

Category Style Melody Instrument
Daisy Pop Synthesized voice
Jazz Jazz Saxophone
MIDI Folk (2), Pop (2) MIDI instruments
Opera Classical opera Male voice (2), Female voice (2)
Pop Pop Male Voice

Since the 2004 data was distributed after the competition, an
entirely new test set of 25 excerpts was collected for the 2005
evaluation. The same audio format was used as in the 2004
evaluation; however, the ground-truth melody transcriptions
were generated at 10 ms steps using the ESPS get f0 method
implemented in WaveSurfer [31]. The fundamental frequency
estimates were manually verified and corrected using the
graphical user interface as displayed in figure 3. Prior to

Fig. 3. Screenshot of the semi-automatic melody annotation process. Minor
corrections were made to the output of a monophonic pitch tracker on the
isolated melody track, and the reference transcriptions were time-aligned to
the full ensemble recording by identifying the maximum cross-correlation
between the melody track and the ensemble.

the contest, a representative set of 3 segments was provided
for algorithm tuning; however, the 25 test songs have been
reserved for future evaluations and, therefore, have not been
publicly distributed.

TABLE III
SUMMARY OF THE TEST DATA USED IN THE 2005 MELODY EVALUATION.

Melody Instrument Style
Human voice (8 f, 8 m) R&B (6), Rock (5), Dance/Pop (4), Jazz (1)
Saxophone (3) Jazz
Guitar (3) Rock guitar solo
Synthesized Piano (3) Classical

As displayed in table III, the 2005 test data was more heav-
ily biased toward a pop-based corpora rather than uniformly
weighting the segments across a number of styles/genres as
in the 2004 evaluation. The shift in the distribution was
motivated both by the relevance of commercial applications
for music organization, and by the availability of multi-track
recordings in the specified genres. Since the 2005 test set is
more representative of real-world recordings, it is inherently
more complex than the preceeding test set.

B. Evaluation Metrics

Algorithms submitted to the contests were required to es-
timate the fundamental frequency of the predominant melody
on a regular time grid. An attempt was made to evaluate
the lead voice transcription at the lowest level of abstraction,
and as such, the concept of segmenting the fundamental
frequency predictions into notes has been largely omitted from
consideration. The metrics used in each of the evaluations
were agreed upon by the participants in a discussion period
prior to algorithm submission. In this subsection, we present
an evolutionary description of the evaluation metrics.

1) 2004 Evaluation Metrics: For the 2004 evaluation, the
submitted algorithms output a single prediction combining
fundamental frequency estimation and voicing detection at
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each instant. The submissions were evaluated against two met-
rics: raw transcription concordance, and chroma transcription
concordance1. A final ranking of the submitted algorithms
was determined by averaging the scores of the fundamental
frequency and chroma transcription concordance.

The raw transcription concordance is a frame-based compar-
ison of the estimated fundamental frequency to the reference
fundamental frequency on a logarithmic scale. Both the esti-
mated and reference fundamental frequency are converted to
the cent scale:

fcent = 1200 ·
(

log2

(
fHz

13.75 Hz

)
− 0.25

)
, (1)

in order to compare the estimated fundamental to the reference
pitch on a logarithmic scale, and the frame concordance error
in frame n is measured by the absolute difference between the
estimated and reference pitch value:

errn =

{
100 for |fest

cent[n]− fref
cent[n]| ≥ 100

|fest
cent[n]− fref

cent[n]| otherwise
.

(2)
Thus, the overall transcription concordance for a specific
segment is given by the average concordance over all frames:

score = 100− 1
N

N∑
n=1

errn. (3)

Unvoiced frames are included in the overall concordance score
by binary assignment.

Octave transpositions and other errors in which the esti-
mated pitch is off by an integer (sub)multiple of the reference
pitch, are generally common in fundamental frequency estima-
tion. As such, the chroma transcription concordance forgives
octave errors by folding both the estimated and reference pitch
into a single octave of 12 semitones before calculating the
absolute difference score as above.

2) 2005 Evaluation Metrics: The structure of the melody
competition was updated in 2005 to enable participants to
perform pitch estimation and voicing detection independently
i.e. each algorithm could give its best guess for a melody pitch
even for frames that it reported as unvoiced. This modification
to the evaluation allowed for more detailed insight into the
structure of each system and encouraged participation by
systems that do not consider melody voicing detection. In
addition, the scoring metric for the voiced frames was relaxed
to account for the precision limits in generating the reference
transcription. A brief description of the updated evaluation
metrics is provided below:

• The algorithms were ranked according to the overall
transcription accuracy, a measure that combines the
pitch transcription and voicing detection tasks. It is de-
fined as the proportion of frames correctly labeled with
both raw pitch accuracy and voicing detection.

• The raw pitch accuracy is defined as the proportion
of voiced frames in which the estimated fundamental
frequency is within ±1/4 tone of the reference pitch

1An additional metric evaluating note-level melodic similarity was pro-
posed; however, the results of the evaluation are not discussed in this paper
owing to a lack of participation.

(including the pitch estimates for frames detected as
unvoiced). Whereas the 2004 metric penalized slight
deviations from the reference frequency, the updated pitch
accuracy metric grants equal credit to all estimations
within a quarter tone of the reference frequency in order
to account for small frequency variations in the reference
transcriptions.

• The raw chroma accuracy is defined in the same manner
as the raw pitch accuracy; however, both the estimated
and reference frequencies are mapped into a single octave
in order to forgive octave transpositions.

• The voicing detection rate is the proportion of frames
labeled voiced in the reference transcription that are
estimated to be voiced by the algorithm.

• The voicing false alarm rate is the proportion of frames
that are not voiced (melody silent) according to the
reference transcription that are estimated to be voiced by
the algorithm.

• The discriminability d′ is a measure of a detector’s
sensitivity that attempts to factor out the overall bias
toward labeling any frame as voiced (which can move
both detection and false alarm rates up and down in
tandem). Any combination of detection rate and false
alarm rate can arise from setting a particular threshold on
a scalar decision variable generated by two overlapping
unit-variance Gaussians; d′ is the separation between
the means of those Gaussians required to achieve the
given detection rates. A larger value indicates a detec-
tion scheme with better discrimination between the two
classes [7].

The performance of each algorithm was evaluated on the 25
test songs, and the results of the evaluation are presented in
the next section.

IV. RESULTS AND DISCUSSION

In order to reflect the most recent research, we present
only the melody transcription results from the 2005 evaluation;
detailed results from the 2004 evaluation are available in [12].

The results of the melody transcription evaluation are pro-
vided in table IV. Looking first at the overall accuracy metric,
we note that system proposed by Dressler outperformed the
other submissions by a significant margin. As displayed in
the top pane of figure 7, the Dressler system was the best
algorithm on 17 of the 25 test songs and performed consis-
tently across all musical styles. Figure 7 also illustrates how
inconsistent transcription accuracy significantly affected the
overall scoring for a few of the participants, most notably
Marolt and Vincent. We summarize the relevant statistics
pertaining to the overall accuracy of each system in figure
4. Recall that the submissions made by Goto and Vincent did
not include voicing detection and as such cannot be directly
compared to the other systems on overall accuracy.

If instead we examine the transcription stages indepen-
dently, the results of the evaluation are more equivocal. With
respect to the raw pitch accuracy, three systems performed
within a statistically insignificant margin, and all of the sub-
missions performed within 10% of each other. Considering



7

TABLE IV
RESULTS OF THE FORMAL MIREX 2005 AUDIO MELODY EXTRACTION EVALUATION. SUBMISSIONS MARKED WITH A * ARE NOT DIRECTLY

COMPARABLE TO THE OTHERS FOR THE VOICING METRICS AND OVERALL ACCURACY BECAUSE THOSE SYSTEMS DID NOT PERFORM VOICED/UNVOICED

DETECTION.

Overall Raw Raw Voicing Voicing Voicing Runtime
Rank Participant Accuracy Pitch Chroma Detection FA d′ / s

1 Dressler 71.4% 68.1% 71.4% 81.8% 17.3% 1.85 32
2 Ryynänen 64.3% 68.6% 74.1% 90.3% 39.5% 1.56 10970
3 Poliner 61.1% 67.3% 73.4% 91.6% 42.7% 1.56 5471
3 Paiva 2 61.1% 58.5% 62.0% 68.8% 23.2% 1.22 45618
5 Marolt 59.5% 60.1% 67.1% 72.7% 32.4% 1.06 12461
6 Paiva 1 57.8% 62.7% 66.7% 83.4% 55.8% 0.83 44312
7 Goto * 49.9% 65.8% 71.8% 99.9% 99.9% 0.59 211
8 Vincent 1 * 47.9% 59.8% 67.6% 96.1% 93.7% 0.23 62760
9 Vincent 2 * 46.4% 59.6% 71.1% 99.6% 96.4% 0.86 251
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Fig. 4. Statistical summary of the overall accuracy results. The horizontal
lines of the boxes denote the interquartile range and median. The star indicates
the mean. The whiskers show the extent of the data, and outliers are indicated
by + symbols.

pitch estimation alone, Ryynänen’s system was the best on
average, and the Goto submission was the top performing
algorithm on 12 of the 16 songs for which the lead melody
instrument is the human voice. The raw pitch accuracy results
for each song are displayed in the bottom pane of figure 7,
and the summary statistics for the submissions are displayed in
figure 5. In her MIREX submission, Dressler did not estimate
a fundamental frequency for frames she labeled unvoiced,
and as such, we can not make a direct comparison between
her submission and the other systems on raw pitch accuracy.
However, shortly after the results of the competition were
released, Dressler submitted a modified algorithm that output
fundamental frequency predictions for the unvoiced frames
which resulted in a 1% improvement in raw pitch transcription
accuracy over the value in table IV.

The raw chroma metric indirectly evaluates the candi-
date note identification stage and hints at the potential for
improvment in post-processing. We note that the systems
with |STFT | based front end generally resulted in a higher
raw chroma average, and that the rule-based post-processing
implementations such as Dressler and Paiva minimized the
difference between raw pitch and chroma accuracy. At this
point, it seems as though the machine learning post-processing
approaches do not sufficiently model the melody note transi-
tions. In general, we expect the transitions to be limited to
local steps; therefore, large jumps with short duration may
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Fig. 5. Statistical summary of the raw pitch accuracy results. Symbols as
for figure 4.

be indicative of erroneous octave transpositions that could be
filtered by post-processing.

Figure 6 displays note error histograms for a few of
the submissions on training song #2, the song “Frozen” by
Madonna. We observe that many of the errors are due to
octave transpositions and harmonically related notes; however,
these errors tend to be system specific. For instance, funda-
mental frequency tracking |STFT | systems such as Dressler’s
submission tend to incorrectly estimate melody frequencies
at twice the reference frequency – that is the reference note
number plus 12 semitones. Although Ryynänen uses a similar
front end system to Dressler, the errors generated by the
musically constrained HMM were distributed over a two
octave range and were often harmonically related notes on the
circle of fifths. These systems contrast with the classification
approach which exhibits a significant number of adjacent note
errors due to discretizing estimates to the nearest semitone.

Upon examining example transcriptions, the stylistic dif-
ferences between the different approaches become very pro-
nounced. In Figure 8, we provide representative transcriptions
from a few of the algorithms on the Madonna training file.
Again we see that algorithms that track the fundamental
frequency of the lead melody voice (e.g. Dressler) follow the
reference transcription quite closely and provide a clear repre-
sentation of the acoustic effects, whereas note modeling post-
processing approaches and the classification-based system
(Poliner) that discretize each estimate to the nearest semitone
provide a representation that is more closely associated with
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Fig. 6. Transcription error histograms where the relative frequency of errors is plotted against the number of semitones deviation from the reference pitch.

the note level of abstraction.

We can also identify a number of trends by looking at
the raw pitch accuracy results across the different melody
instruments. In general, the algorithms perform more similarly
across the sung excerpts with average standard deviations
of 7 and 6 on the female and male recordings respectively.
In contrast, there is a large variance across the instrumental
excerpts which highlights both the contextual difficulty of
identifying the lead melody voice within an ensemble of
similar instruments and the apparent overtraining bias toward
sung melodies. The transcription results are consistently higher
on songs for which the melody is well structured with a
high foreground-to-background energy ratio such as the jazz
excerpts, and many of the algorithms performed poorly on
excerpts in which the lead voice is performed on a non-
traditional melody instrument such as the guitar solos. The
low piano transcription averages seem to support the notion
that timbral variation may provide additional insight into the
lead melodic voice.

While the voicing detection stage was somewhat of an
afterthought for a number of the submissions (when it was
considered at all), it proved to be the deciding feature in the
evaluation. Dressler’s approach of grouping melody phrases
combined with a local energy threshold significantly out-
performed the systems which considered either of the two
independently. Using a fixed energy threshold alone generates
false alarms when the melody is a smaller fraction of the total
signal and false negatives when the melody is a larger fraction
of the total signal. Conversely, the schemes that implemented
melody grouping alone underestimated the total percentage
of voiced frames in the evaluation. The key advantage in
combining the melody grouping and threshold features appears
to be a detection threshold that is invariant to the proportion of
voiced melody frames. We note that the voicing detection and
false alarm rate deviate slightly from 100% for the algorithms
that did not consider voicing detection due to duration scaling
artifacts.

Although it was not proposed as an evaluation metric,
algorithm run-time is often of critical practical importance.
The majority of the front end stages systems are quite similar
in terms of complexity; however, the candidate pitch identifi-
cation and post-processing stages vary significantly in terms
of computational cost. The submitted algorithms differed in

implementation from compiled code to functions in MATLAB.
Although many of the submissions have not been optimized
for efficiency, we see an enormous variation of over 1000:1
between the fastest and slowest systems – with the top ranked
system also the fastest at under 0.1 times real time. This result
underscores the feasability of using melody transcription as a
tool for analyzing large music databases.

The results of the evaluation may also be used to gain
insight into the quality of the test set. We expect, in general,
a high degree of correlation between intersong performance
as an indication of the discriminability of a given test song.
For example, the first of the three Saxophone test samples
provides a high degree of discriminability which is consistent
with the overall results, while the third of the Guitar samples
appears to provide a low degree of discriminability and is
largely uncorrelated with the overall results of the evaluation
– potentially an indication that the melody is ambiguous in the
given context. We might hope to improve the quality of the
test set for future evaluations by including additional songs
across a more diverse set of genres.

V. CONCLUSIONS

The evaluations conducted as part of the 2004 and 2005
ISMIR conferences allowed a wide range of labs that had been
independently studying melody transcriptions to come together
and make a quantitative comparison of their approaches. As
we have outlined, there were some significant algorithmic
variations between the submissions, in terms of front-end, mul-
tipitch identification strategy, and post-processing. However,
by factoring out the differences arising from the inclusion
or omission of voicing detection, the raw pitch accuracy
results show a surprisingly consistent performance, with all
systems scoring between 60 and 70%. This perhaps suggests
a distribution in the test set between 60% of frames which are
quite easy, some intermediate difficulty, and a core of 30% of
frames which are much harder, leading to a possible plateau
in performance at this level.

At a more abstract level, the benefits of common, standard-
ized evaluation are clearly shown by this effort and analysis.
We aim to repeat the evaluation in 2006, and we are working
to enhance the test set, metrics, and diagnostic analysis in light
of our experiences to date.
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