ABSTRACT
Onset detection forms the critical first stage of most beat tracking algorithms. While common spectral-difference onset detectors can work well in genres with clear rhythmic structure, they can be sensitive to loud, asynchronous events (e.g., off-beat notes in a jazz solo), which limits their general efficacy. In this paper, we investigate methods to improve the robustness of onset detection for beat tracking. Experimental results indicate that simple modifications to onset detection can produce large improvements in beat tracking accuracy.

Index Terms— Music information retrieval, beat tracking

1. INTRODUCTION
Beat-tracking — the detection of “pulse” or salient, rhythmic events in a musical performance — is a fundamental problem in music content analysis. Automatic beat-detection methods are often used for chord recognition, cover song detection, structural segmentation, transcription, and numerous other applications. A large body of literature has developed over the past two decades, and each year sees numerous submissions to the Music Information Retrieval Evaluation eXchange (MIREX) beat tracking evaluation [1].

A common general strategy for beat tracking operates in two stages. First, the audio signal is processed by an onset strength function, which measures the likelihood that a musically salient change (e.g., note onset) has occurred at each time point. The tracking algorithm then selects the beat times from among the peaks of the onset strength profile.

As we will demonstrate, the behavior of standard onset detectors tends to be dominated by the loudest events, typically produced by predominant or foreground instruments and performers. In many styles of western, popular music — e.g., rock, dance, or pop — this presents no difficulty. Often, the beat is unambiguously driven by percussion or foreground instrumentation, resulting in clear rhythmic patterns which are amenable to signal analysis.

The assumption that beat derives from the predominant foreground instrumentation does not hold in general across diverse categories of music. As a concrete example, a soloist in a jazz combo may play a syncopated rhythm, or off-beat for aesthetic or expressive purposes, while the accompaniment maintains a steady pulse in the background. In such cases, we would hope that a beat tracker would adaptively tune out the foreground instrumentation and focus on the rhythmically salient portion of the signal.

Reliable detection and separation of rhythmic elements in a recording can be quite difficult to achieve in practice. Humans can tap along to a performance and adapt to sudden changes in instrumentation (e.g., a drum solo), but this behavior is difficult for an algorithm to emulate.

1.1. Our contributions
In this work, we investigate two complementary techniques to improve the robustness of beat tracking and onset detection. First, we propose median onset aggregation, which captures temporally synchronous onsets, and is robust to spurious, large deviations in spectral flux. Second, we examine two spectrogram decomposition methods to separate the signal into distinct components, allowing the onset detector to suppress noisy or arrhythmic events.

2. RELATED WORK
Onset detection is a well-studied problem in music information retrieval, and a full summary of recent work on the subject lies well beyond the scope of this paper. Within the context of beat-tracking, the surveys by Bello et al. [2] and Collins [3] provide general introductions to the topic, and evaluate a wide variety of different approaches to detecting onset events.

Escalona-Espinosa applied harmonic-percussive separation to beat-tracking, and derived beat times from the self-similarity over features extracted from the different components [4]. The approach taken in this work is rather different, as we evaluate onset detectors derived from a single component of a spectrogram decomposition.

Peeters [5] and Wu et al. [6] highlight tempo variation as a key challenge in beat tracking. While tempo variation is indeed a challenge, our focus here is on improving the detection of salient onset events; the tracking algorithm used in this
work maintains a fixed tempo estimate for the duration of the track, but allows for deviation from the tempo.

Alonso et al. [2] and Bello et al. [3] propose using temporal median-filtering of the onset strength envelope to reduce noise and suppress spurious onset events. Temporal smoothing differs from the median-aggregation method proposed in this work, which instead filters across frequencies at each time step prior to constructing the onset envelope.

This article addresses the early stages of beat tracking. Rather than develop a new framework from scratch, we chose to modify the method proposed by Ellis [8], which operates in three stages:

1. compute an onset strength envelope \(\omega(t) \),
2. estimate the tempo by picking peaks in the windowed auto-correlation of \(\omega(t) \), and
3. select beats consistent with the estimated tempo from the peaks of \(\omega(t) \) by dynamic programming.

Keeping steps 2–3 fixed allows us to evaluate the contribution to accuracy due to the choice of onset strength function. We expect that improvements to onset detection can be applied to benefit other beat tracking architectures.

3. MEDIUM ONSET AGGREGATION

The general class of onset detector functions we consider is based on spectral difference, i.e., measuring the change in spectral energy across frequency bands in successive spectrogram frames [2]. The tracker of Ellis [8] uses the sum across bands of thresholded log-magnitude difference to determine the onset strength at time \(t \):

\[
\omega_s(t) := \sum_f \max(0, \log S_{f,t} - \log S_{f,t-1}),
\]

where \(S \in \mathbb{R}_+^{d \times T} \) denotes the (Mel-scaled) magnitude spectrogram. This function effectively measures increasing spectral energy over time across any frequency band \(f \), and its magnitude scales in proportion to the difference.

Note that \(\omega_s \) can respond equally to either a large fluctuation confined to a single frequency band, or many small fluctuations spread across multiple frequency bands. The latter case typically arises from either a percussive event or multiple synchronized note onset events, both of which can be strong indicators of a beat. However, the former case can only arise when a single source plays out of sync with the other sources, such as a vocalist coming in late for dramatic effect.

To better capture temporally synchronous onset events, we propose to replace the sum across frequency bands with the median operator:

\[
\omega_m(t) := \text{median} \max(0, \log S_{f,t} - \log S_{f,t-1}).
\]

This simple modification improves the robustness of the onset strength function to loud, asynchronous events. The resulting onset envelope tends to be sparser, since it can only produce non-zero values if more than half of the frequency bins increase in energy simultaneously.

4. SPECTROGRAM DECOMPOSITION

In a typical musical recording, multiple instruments will play simultaneously. When all instruments (generally, sound sources) are synchronized, computing onsets directly from the spectrogram is likely to work well. However, if one or more sources play out of sync from each other, it becomes difficult to differentiate the rhythmically meaningful onsets from the off-beat events. This motivates the use of source separation techniques to help isolate the sources of beat events. In this work, we applied two different source-separation techniques which have been demonstrated to work well for musical signals.

4.1. Harmonic-percussive source separation

Harmonic-percussive source separation (HPSS) describes the general class of algorithms which decompose the magnitude spectrogram as \(S = H + P \), where \(H \) denotes harmonics — sustained tones concentrated in a small set of frequency bands — and \(P \) denotes percussives — transients with broad-band energy [9].

In this work, we used the median-filtering method of Fitzgerald [10]. Let \(\eta \) and \(\pi \) denote the harmonic- and percussive-enhanced spectrograms:

\[
\begin{align*}
\pi &= M(S, w_p, 1) \\
\eta &= M(S, 1, w_h),
\end{align*}
\]

where \(M(\cdot, w_p, w_h) \) denotes a two-dimensional median filter with window size \(w_p \times w_h \). The percussive component \(P \) is then recovered by soft-masking \(S \):

\[
P_{f,t} = S_{f,t} \left(\frac{\pi_{f,t}^p}{\pi_{f,t}^p + \eta_{f,t}^p} \right),
\]

where \(p > 0 \) is a scaling parameter (typically \(p = 1 \) or 2). Given \(P \), the harmonic component \(H \) is recovered by \(H = S - P \).

In the context of beat tracking, it may be reasonable to use either \(H \) or \(P \) as the input spectrogram, depending on the particular instrumentation. While percussive instruments reliably indicate the beat in many genres (rock, dance, pop, etc.), this phenomenon is far from universal, particularly when the signal lacks percussion (e.g., a solo piano).

1In preliminary experiments, alternative quantile estimators (25th and 75th percentiles) were found to be inferior to median aggregation.
4.2. Robust principal components analysis

In contrast to a fixed decomposition (i.e., HPSS), it may be more effective to apply an adaptive decomposition which exploits the structure of the spectrogram in question. Recently, Yang demonstrated that robust principal components analysis (RPCA) can be effective for separating vocals from accompanying instrumentation \[11,12\]. In this setting, RPCA finds a low-rank matrix \(L \approx S \) which approximates \(S \) by solving the following convex optimization problem

\[
L \leftarrow \text{argmin}_L \|L\|_* + \lambda\|S - L\|_1,
\]

where \(\| \cdot \|_* \) denotes the nuclear norm, \(\| \cdot \|_1 \) is the element-wise 1-norm, and \(\lambda > 0 \) is a trade-off parameter.

In practice, the low-rank approximation tends to suppress pitch bends and vibrato, which are both common characteristics of vocals and may account for some of its success at vocal separation. Pitch bends can trigger spurious onset detections due to lack of temporal continuity within each frequency band, and should therefore be suppressed for beat tracking.

5. EVALUATION

To evaluate the proposed methods, we measured the alignment of detected beat events to beat taps generated by human annotators. Following previous work, we report the following standard beat tracking metrics \[13\]:

- AMLt (range: \([0, 1]\), larger is better) is a continuity-based metric that resolves predicted beats at different allowed metrical levels (AML), and is therefore robust against doubling or halving of detected tempo;
- F-measure (range: \([0, 1]\), larger is better) measures the precision and recall of ground truth beat events by the predictor;
- Information gain (range: \([0, \infty]\), larger is better) measures the mutual information (in bits) between the predicted beat sequence and the ground truth annotations.

Because different human annotators may produce beat sequences at different levels of granularity for the same track, meter-invariant measures such as AMLt and Information Gain are generally preferred; we include F-measure for completeness.

Algorithms were evaluated on SMC Dataset2 \[14\], which contains 217 40-second clips from a wide range of genres and instrumentations (classical, chanson, blues, jazz, solo guitar, etc.). This dataset was designed to consist primarily of difficult examples, and represents the most challenging publicly available dataset for beat tracking evaluation. We include comparisons to the best-performing methods reported by Holzapfel et al. \[14\], and to the original implementation described by Ellis \[8\].

5.1. Implementation

Each track was sampled at 22050Hz, and Mel-scaled magnitude spectrograms were computed with a Hann-windowed short-time Fourier transform with 2048 samples (\(\approx 93 \text{ms} \)), hop of 64 samples (\(\approx 3 \text{ms} \)), \(d = 128 \) Mel bands, and a maximum frequency cutoff of 8000Hz. The HPSS window sizes were set as \(w_p = w_h = 19 \), and the power parameter was set to \(p = 1.0 \). Following Candès et al. \[12\], the RPCA parameter was set to \(\lambda = \sqrt{T} \), where \(T \) denotes the number of frames. All algorithms were implemented in Python using librosa\[3\].

5.2. Results

Table \[1\] lists the average scores achieved by the proposed methods on SMC Dataset2. We first observe the gap in performance between sum-Full and Ellis \[8\], which differ only in their choice of parameters: the original implementation used a lower sampling rate (8000Hz), smaller window (256 samples) and hop (32 samples, 4ms), and fewer Mel bands (\(d = 32 \))\[3\]. Regardless of spectrogram decomposition method, all sum-based methods (first group of results) perform comparably well, and although there are slight degradations, each give a modest improvement over the original implementation.

Replacing sum onset aggregation with median aggregation (second group of results) boosts performance uniformly: for each decomposition and each metric, median aggregation only improves the score. The largest improvement is observed on the percussive-component, which achieved the lowest scores with sum aggregation, but the highest with median. Indeed, the combination of median aggregation with the percussive component outperforms the best-performing methods reported by Holzapfel et al. for both the AMLt and Information Gain metrics, and is within the range of statistically equivalent scores for F-measure (0.346–0.401) \[14\].

The RPCA method (Low-rank) did not yield improvements over either the full spectrogram or HPSS methods. This may be due to the fact that the dataset a large number of single-instrument recordings, where there is less obvious benefit to source separation methods.

6. CONCLUSION

We evaluated two complementary techniques for improving beat tracking. The proposed median-based onset aggregation yields substantial improvements in beat tracker accuracy over the previous, sum-based method.

\[3\]http://github.com/bmcfee/librosa/

\[3\]The present implementation also includes a small constant timing correction, which improves performance for some metrics, but is known to not affect the information gain score \[13\].
Table 1. Beat tracker performance on SMC Dataset2.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>AMLt</th>
<th>F-measure</th>
<th>Inf. gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum-Full</td>
<td>0.312</td>
<td>0.362</td>
<td>0.84</td>
</tr>
<tr>
<td>sum-Harmonic</td>
<td>0.313</td>
<td>0.363</td>
<td>0.84</td>
</tr>
<tr>
<td>sum-Percussive</td>
<td>0.304</td>
<td>0.357</td>
<td>0.81</td>
</tr>
<tr>
<td>sum-Low-rank</td>
<td>0.310</td>
<td>0.357</td>
<td>0.84</td>
</tr>
<tr>
<td>med-Full</td>
<td>0.336</td>
<td>0.374</td>
<td>0.92</td>
</tr>
<tr>
<td>med-Harmonic</td>
<td>0.329</td>
<td>0.368</td>
<td>0.92</td>
</tr>
<tr>
<td>med-Percussive</td>
<td>0.364</td>
<td>0.381</td>
<td>0.95</td>
</tr>
<tr>
<td>med-Low-rank</td>
<td>0.331</td>
<td>0.376</td>
<td>0.90</td>
</tr>
<tr>
<td>Ellis[8]</td>
<td>0.208</td>
<td>0.352</td>
<td>0.62</td>
</tr>
<tr>
<td>Böck & Schedl[15]</td>
<td>0.261</td>
<td>0.401</td>
<td>0.91</td>
</tr>
<tr>
<td>Klapuri et al.[16]</td>
<td>0.339</td>
<td>0.362</td>
<td>0.92</td>
</tr>
</tbody>
</table>

7. REFERENCES

