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Support Vector Machine Active Learning for Music Retrieval

Abstract Searching and organizing growing digital music
collections requires a computational model of music simi-
larity. This paper describes a system for performing flexi-
ble music similarity queries using SVM active learning. We
evaluated the success of our system by classifying 1210 pop
songs according to mood and style (from an online music
guide) and by the performing artist. In comparing a number
of representations for songs, we found the statistics of mel-
frequency cepstral coefficients to perform best in precision-
at-20 comparisons. We also show that by choosing training
examples intelligently, active learning requires half as many
labeled examples to achieve the same accuracy as a standard
scheme.
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1 Introduction

As the size of digital music libraries grows, identifying mu-
sic to listen to from a personal collection or to buy from an
online retailer becomes increasingly difficult. Since finding
songs that are similar to each other is time consuming and
each user has unique opinions, we would like to create a
flexible, open-ended approach to music retrieval.

Our solution is to use relevance feedback, specifically
Support Vector Machine (SVM) active learning, to learn a
classifier for each query. A search is then a mapping from
low level audio features to higher level concepts, customized
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to each user. To begin a search, the user presents the system
with one or more examples of songs of interest or “seed”
songs. The system then iterates between training a new clas-
sifier on labeled songs and soliciting new labels from the
user for informative examples. Search proceeds quickly, and
at every stage the system supplies its best estimate of appro-
priate songs. Since it takes a significant amount of time to
listen to each song returned by a search, our system attempts
to minimize the number of songs that a user must label for a
query.

Active learning has two main advantages over conven-
tional SVM classification. First, by presenting the user with
and training on the most informative songs, the algorithm
can achieve the same classification performance with fewer
labeled examples. Second, by allowing the user to dynam-
ically label the set of instances, a single system may per-
form any number of classification and retrieval tasks using
the same precomputed set of features and classifier frame-
work. For example, the system may be used to search for
female artists, happy songs, or psychedelic music.

This flexibility depends on the information the acous-
tic feature vectors make explicit, leading to our comparison
of various features for these tasks. On a collection of 1210
pop songs, the features that produced the most accurate artist
classifier were the statistics of MFCCs calculated over en-
tire songs. These same features achieved the best precision
on the top 20 ranked results for music categorizations culled
from allmusic.com.

We have also developed an automatic tester for our SVM
active learning system, showing that an SVM active learner
trained with half as many examples can perform as well as
a normal SVM or, alternately, can increase its precision by
ten percentage points with the same number of labeled ex-
amples.

1.1 Music Similarity

The idea of judging the similarity of music by a direct com-
parison of audio content was proposed by [13]. For computa-
tional simplicity, his system used discrete distributions over
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vector-quantizer symbols and was evaluated on a database of
a few hundred 7-second excerpts. [21] was able to compare
continuous distributions over thousands of complete songs,
using the Earth Mover’s Distance to calculate dissimilarity
between mixtures of Gaussians. There have followed a num-
ber of papers refining the features, distance measures, and
evaluation techniques, including our own work [3–5,12]; [2]
provides an excellent review, where they characterize these
approaches as “timbre similarity” to emphasize that they are
based on distributions of short-term features and ignore most
temporal structure.

Particular tasks for music similarity are largely defined
by the availability of ground truth. [30] popularized the use
of genre classification, whereas [31] proposed artist identifi-
cation as a more interesting task, with the attraction of hav-
ing largely unambiguous ground-truth. Here, we consider
versions of both these tasks.

Most work has sought to define a low-dimensional fea-
ture space in which similarity is simply Euclidean distance,
or measured by the overlap of feature distributions. Here, we
use a more complex classifier (the SVM) on top of an im-
plicit feature space of very high dimension; the related regu-
larized least squares classifier was used for music similarity
by [32]. The Fisher Kernel technique we use was introduced
for audio classification by [22].

1.2 Relevance Feedback

While the idea of relevance feedback had been around for
a number of years, [28] first described using support vec-
tor machines for active learning. [29] discussed the version
space of all possible hyperplanes consistent with labeled
data along with methods for reducing it as quickly as possi-
ble to facilitate active learning. [27,28] applied SVM active
learning to text and image retrieval.

Recently, improvements in SVM active learning have
been made in the areas of sample selection, scalability, and
multimodal search. [7] described a number of methods for
selecting the most informative database items to label, with
the angle diversity selection criterion producing the best ac-
tive retrieval results. The same paper describes a multimodal
search in which the user can limit the pool of images to
search by supplying relevant keywords. In order to scale to
large databases, [19] describes methods for disambiguating
search concepts and using a hierarchical data structure to
more efficiently find data points.

[15,16] used relevance feedback for music retrieval, but
their approach suffers from some limitations. Their system
was based on the TreeQ vector quantization from [13], with
which they must re-quantize the entire music database for
each query. Relevance feedback was incorporated into the
model by modifying the quantization weights of desired vec-
tors. Our approach calculates the features of a song offline
and uses SVM active learning, which has a strong theoretical
justification, to incorporate user feedback.

1. Seed the search with representative song(s).
2. Acquire initial negative examples by e.g. presenting randomly

selected songs for labeling
3. Train an SVM on all labeled examples
4. Present the user with the most relevant songs (those with the

greatest positive distance to the decision boundary)
5. If the user wishes to refine the search further, present the most

informative songs (those closest to the decision boundary) for
labeling and repeat 3-5.

Fig. 1 Summary of SVM active learning algorithm.

2 SVM Active Retrieval

SVM active learning combines the maximum margin classi-
fication of SVMs with ideas from relevance feedback. See
Figure 1 for a summary of the active learning algorithm,
which lends itself to both direct user interaction and auto-
mated testing.

2.1 Support Vector Machines

The support vector machine (SVM) is a supervised classi-
fication system that minimizes an upper bound on its ex-
pected error. It attempts to find the hyperplane separating
two classes of data that will generalize best to future data.
Such a hyperplane is the so called maximum margin hyper-
plane, which maximizes the distance to the closest points
from each class.

More concretely, given data points {X0, . . .XN} and class
labels {y0, . . .yN}, yi ∈ {−1,1}, any hyperplane separating
the two data classes has the form

yi(wT Xi +b) > 0 ∀i. (1)

Let {wk} be the set of all such hyperplanes. The maximum
margin hyperplane is defined by

w =
N

∑
i=0

αiyiXi, (2)

and b is set by the Karush Kuhn Tucker conditions [6] where
the {α0,α1, . . . ,αN} maximize

LD =
N

∑
i=0

αi −
1
2

N

∑
i=0

N

∑
j=0

αiα jyiy jXT
i X j, (3)

subject to

N

∑
i=0

αiyi = 0 αi ≥ 0 ∀i. (4)

For linearly separable data, only a subset of the αis will
be non-zero. These points are called the support vectors and
all classification performed by the SVM depends on only
these points and no others. Thus, an identical SVM would
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result from a training set that omitted all of the remaining ex-
amples. This makes SVMs an attractive complement to rele-
vance feedback: if the feedback system can accurately iden-
tify the critical samples that will become the support vectors,
training time and labeling effort can, in the best case, be re-
duced drastically with no impact on classifier accuracy.

Since the data points X only enter calculations via dot
products, one can transform them to another feature space
via a function Φ(X). The representation of the data in this
feature space need never be explicitly calculated if there is
an appropriate Mercer kernel operator for which

K(Xi,X j) = Φ(Xi) ·Φ(X j). (5)

Data that is not linearly separable in the original space, may
become separable in this feature space. In our implementa-
tion, we selected a radial basis function (RBF) kernel

K(Xi,X j) = e−γD2(Xi,X j), (6)

Where D2(Xi,X j) could be any distance function. See Ta-
ble 1 for a list of the distance functions used in our experi-
ments and Section 4 for a discussion of them. Thus the space
of possible classifier functions consists of linear combina-
tions of weighted Gaussians around key training instances
[9].

2.2 Active Learning

In an active learning system, the user becomes an integral
part of the learning and classification process. As opposed
to conventional (“passive”) classification where a classifier
is trained on a large pool of randomly selected labeled data,
an active learning system asks the user to label only those
instances that would be most informative to classification.
Learning proceeds based on the feedback of the user and
relevant responses are determined by the individual user’s
preferences and interpretations.

The duality between points and hyperplanes in feature
space and parameter space enables SVM active learning.
Notice that that Equation (1) can be interpreted with Xi as
points and wk as hyperplanes normals, but it can also be in-
terpreted with wk as points and Xi as normals. This second
interpretation of the equation is known as parameter space.
Within parameter space, the set {wk} is known as version
space, a convex region bounded by the hyperplanes defined
by the Xi. Finding the maximum margin hyperplane in the
original space is equivalent to finding the point at the center
of the largest hypersphere in version space.

The user’s desired classifier corresponds to a point in pa-
rameter space that the SVM active learner would like to lo-
cate as quickly as possible. Labeled data points place con-
straints in parameter space, reducing the size of the version
space. The fastest way to shrink the version space is to halve
it with each labeled example, finding the desired classifier
most efficiently. When the version space is nearly spherical,
the most informative point to label is that point closest to

the center of the sphere, i.e. closest to the decision boundary
[29]. In pathological cases, this is not true, nor is it true that
the greedy strategy of selecting all of the points closest to the
decision boundary shrinks the version space most quickly.

In practice, however, we find that these simple strategies
perform well. [7] described a number of heuristics for find-
ing the most informative points to label and determines that
the angle diversity strategy performs best. Angle diversity
balances closeness to the decision boundary with coverage
of the feature space, while avoiding extra classifier retrain-
ings. The sparseness of our songs in feature space might ob-
viate the need for an explicit enforcement of diversity in the
examples chosen for labeling.

Since the user only seeds the system with positive ex-
amples, the first set of songs to be labeled cannot be chosen
by a classifier. While there are many methods for choosing
these first songs, we find the simplest, random selection, to
work well in practice. Since positive examples are relatively
rare in the database, many of the randomly chosen examples
will be negative. Other selection methods include choosing
songs that maximally cover the feature space, songs farthest
from the seeds, songs closest to the seeds, and so forth.

Any active retrieval system may suffer from certain limi-
tations. The small training set means that performance could
suffer from poor seeding or insufficient sampling of the data.

3 Audio Feature Components

Since the flexibility of an SVM active learner depends on
the descriptive power of the features on which it operates, we
experimented with a number of features for song representa-
tion. All of these features have the property that they reduce
every song, regardless of its original length, into a fixed-
size vector. They are all based on Gaussian mixture models
(GMMs) of mel-frequency cepstral coefficients (MFCCs).

3.1 Mel-Frequency Cepstral Coefficients

MFCCs are a short-time spectral decomposition of audio
that convey the general frequency characteristics important
to human hearing. While originally developed to decouple
vocal excitation from vocal tract shape for automatic speech
recognition [24], they have found applications in other audi-
tory domains including music retrieval [13,20].

In order to calculate MFCCs, the signal is first broken
into overlapping frames, each approximately 25ms long, a
time scale at which the signal is assumed to be stationary.
The log-magnitude of the discrete Fourier transform of each
window is warped to the Mel frequency scale, imitating hu-
man frequency and amplitude sensitivity. The inverse dis-
crete cosine transform decorrelates these “auditory spectra”
and the so called “high time” portion of the signal, corre-
sponding to fine spectral detail, is discarded, leaving only
the general spectral shape. The MFCCs we calculated for
the songs in our database contain 13 coefficients each and,
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Fig. 2 Cross-validation of Gaussian mixture models using different
numbers of Gaussians and different training sets.

at a rate of 100 per second, a typical five minute song will
generate 30,000 temporal frames.

3.2 Gaussian Mixture Models

Certain features were based on a single Gaussian mixture
model trained on samples from all of the songs in the train-
ing set, while others built individual GMMs for each song.
In the former case, we trained a GMM with diagonal covari-
ances on 0.2% of the MFCC frames selected at random from
every song.

In order to estimate the correct number of Gaussians
for our mixture, we measured the log-likelihood of mod-
els with different numbers of Gaussians on our validation
dataset. Results of this test can be seen in Figure 2. The three
lines in that figure correspond to three different methods for
collecting training samples. While keeping the total number
of samples the same, the number of songs sampled and the
number of samples per song was varied. From the figure it
is clear that the model that best fits the data is a mixture of
somewhere between 50 and 100 Gaussians, independent of
the number of songs used in training. This result probably
does not hold beyond the case of pop music MFCCs mod-
eled with Gaussian Mixtures, but it is interesting to see such
a consistent result even for this case. The jumps in likelihood
for GMMs with more Gaussians are due to overfitting of cer-
tain sound files that were broken in a characteristic way.

4 Audio Features

See Table 1 for a summary of features evaluated in the ex-
periments. Each feature uses its own distance function in the
RBF kernel of Equation (6). We go into detail on each of
them in the following sections. The first three use Gaussian
models trained on individual songs, while second three re-
late each song to a global Gaussian mixture model of the

entire corpus. Both of these approaches only model station-
ary spectral characteristics of music, averaged across time,
and ignore the higher-order temporal structure.

In the following sections, X denotes matrices of MFCCs,
xt denotes individual MFCC frames. Songs are indexed by i
and j, GMM components by k. MFCC frames are indexed
in time by t and MFCC frames drawn from a probability
distribution are indexed by n.

4.1 MFCC Statistics

This first feature is based on the mean and covariance of the
MFCC frames of individual songs. In fact, it models a song
as just a single Gaussian, but uses a non-probabilistic dis-
tance measure between songs. The feature itself is the con-
catenation of the mean and the unwrapped covariance matrix
of a song’s MFCC frames. These features are commonly
used in speech processing e.g. for segmenting a recording
according to speaker turns [8,14]. These low order statistics
can only represent simple relationships between MFCCs, but
our experiments show that they contain much useful infor-
mation about artists, styles, and moods.

The feature vector is shown in Table 1, where the vec(·)
function unwraps or rasterizes an N×N matrix into a N2×1
vector. Feature vectors are compared to one another using a
Mahalanobis distance, where the Σµ and ΣΣ variables are di-
agonal matrices containing the variances of the feature vec-
tors over all of the songs.

4.2 Song GMMs

The second feature listed in Table 1, models songs as sin-
gle Gaussians. The maximum likelihood Gaussian describ-
ing the MFCC frames of a song is parameterized by the sam-
ple mean and sample covariance. To measure the distance
between two songs, one can calculate the Kullback-Leibler
(KL) divergence between the two Gaussians. While the KL
divergence is not a true distance measure, the symmetrized
KL divergence is, and can be used in the RBF kernel of
Equation (6) [23].

For two distributions, p(x) and q(x), the KL divergences
is defined as,

KL(p ||q) ≡
∫

p(x) log
p(x)
q(x)

dx = Ep

{

log
p(X)

q(X)

}

. (7)

There is a closed form for the KL divergence between two
Gaussians, p(x) = N (x; µp,Σp) and q(x) = N (x; µq,Σq),
[25]

2KL(p ||q) = log
|Σq|

|Σp|
+Tr(Σ−1

q Σp)

+(µp −µq)
T Σ−1

q (µp −µq)−d, (8)

Where d is the dimensionality of the Gaussians. The sym-
metrized KL divergence shown in Table 1 is simply

D2(Xi,X j) = KL(Xi ||X j)+KL(X j ||Xi) (9)
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Table 1 Summary of the features compared in the experiments. See text for explanation of variables.

GMM over Feature Parameters Representation Distance measure D2(Xi,X j)

MFCC Stats 104 [µT vec(Σ)T ] (µi −µ j)
T Σ−1

µ (µi −µ j)+vec(Σi −Σ j)
T Σ−1

Σ vec(Σi −Σ j)

Song KL 1G 104 µ,Σ tr(Σ−1
i Σ j +Σ−1

j Σi)+(µi −µ j)
T (Σ−1

i +Σ−1
j )(µi −µ j)−2d

KL 20G 520 {µk,Σk}k=1...20
1
N ∑N

n=1 log pi(xni)
p j(xni)

+ 1
N ∑N

n=1 log p j(xn j)
pi(xn j)

GMM Posteriors 100 { 1
T ∑T

t=1 log p(k |xt)}k=1...50 ∑50
k=1 log2 p(Xi |k)1/Ti

p(X j |k)
1/Tj

Corpus Fisher 650 {∇µk}k=1...50 ∑50
k=1

[

∇µk log p(Xi |µk)−∇µk log p(X j |µk)
]2

Fisher Mag 50 {|∇µk |}k=1...50 ∑50
k=1

[

|∇µk log p(Xi |µk)|− |∇µk log p(X j |µk)|
]2

The third feature models songs as mixture of Gaussians
learned using the EM algorithm and still compares them
using the KL divergence. Unfortunately, there is no closed
form for the KL divergence between GMMs, so it must be
approximated using Monte Carlo methods. The expectation
of a function over a distribution, p(x), can be approximated
by drawing samples from p(x) and averaging the values of
the function at those points. In this case, by drawing samples
x1, . . . ,xN ∼ p(x), we can approximate

Ep

{

log
p(x)

q(x)

}

≈
1
N

N

∑
i=1

log
p(xi)

q(xi)
. (10)

The distance function shown in Table 1 for the “KL 20G”
features is the symmetric version of this expectation, where
appropriate functions are calculated over N samples from
each distribution. We used the Kernel Density Estimation
toolbox from [17] for these calculations. As the number of
samples used for each calculation grows, variance of the KL
divergence estimate shrinks. We use N = 2500 samples for
each distance estimate to balance computation time and ac-
curacy.

4.3 Anchor Posteriors

The fourth feature listed in Table 1 compares each song to
the GMM modeling our entire music corpus. If the Gaus-
sians of the global GMM correspond to clusters of related
sounds, one can characterize a song by the probability it
came from each of these clusters. This feature corresponds
to measuring the posterior probability of each Gaussian in
the mixture, given the frames from each song. To calculate
the posterior over the whole song from the posteriors for
each frame,

P(k |X) ∝ p(X |k)P(k) = P(k)
T

∏
t=1

p(xt |k) (11)

This feature tends to saturate, generating a nonzero posterior
for only a single Gaussian. In order to prevent this satura-
tion, we take the geometric mean of the frame probabilities
instead of the product. This does not give the true class pos-
teriors, but only a “softened” version of them

f (k) = P(k)
T

∏
t=1

p(xt |k)1/T ∝
T

∏
t=1

p(k |xt)
1/T . (12)

Since they are not proper probability functions, there is little
justification for comparing them with anything but the Eu-
clidean distance.

4.4 Fisher Kernel

The final two features are based on the Fisher kernel, which
[18] described as a method for summarizing the influence
of the parameters of a generative model on a collection of
samples from that model. In this case, the parameters we
consider are the means of the Gaussians in the global GMM.
This process describes each song by the partial derivatives of
the log likelihood of the song with respect to each Gaussian
mean. From [22],

∇µk logP(X |µk) =
T

∑
t=1

P(k |xt)Σ−1
k (xt −µk). (13)

where P(k |xt) is the posterior probability of the kth Gaus-
sian in the mixture given MFCC frame xt , and µk and Σk
are the mean and variance of the kth Gaussian. This process
then reduces arbitrarily sized songs to 650 dimensional fea-
ture vectors (50 means with 13 dimensions each).

Since the Fisher kernel is a gradient, it measures the par-
tial derivative with respect to changes in each dimension of
each Gaussian’s mean. A more compact feature is the mag-
nitude of the gradient with respect to each Gaussian’s mean.
While the full Fisher kernel creates a 650 dimensional vec-
tor, the Fisher kernel Magnitude is only 50 dimensional.

5 Experiments

In order to thoroughly test the SVM active music retrieval
system, we compared the various features to one another
and, using the best feature, examined the relationship be-
tween precision at 20 and number of examples labeled per
active retrieval round.

5.1 Dataset

We ran our experiments on a subset of the uspop2002 col-
lection [5,11]. To avoid the so called “producer effect” [31]
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Table 2 The moods and styles with the most songs

Mood Songs Style Songs
Rousing 527 Pop/Rock 730
Energetic 387 Album Rock 466
Playful 381 Hard Rock 323
Fun 378 Adult Contemporary 246
Passionate 364 Rock & Roll 226

in which songs from the same album share overall spec-
tral characteristics that could overwhelm any similarities be-
tween albums, we designated all of the songs from an al-
bum as training, testing, or validation. To be able to separate
albums in this way, we chose artists who had at least five
albums in uspop2002, three albums for training and two for
testing, each with at least eight tracks. The validation set was
made up of any albums the selected artists had in uspop2002
in addition to those five and used for tuning model parame-
ters. In total there were 18 artists (out of 400) with enough
albums, see Table 5 for a complete list of the artists and al-
bums included in our experiments. In total, we used 90 al-
bums by those 18 artists, containing 1210 songs divided into
656 training, 451 testing, and 103 validation songs.

5.2 Evaluation

Since the goal of SVM active learning is to quickly learn an
arbitrary classification, any binary categorization of songs
can be used as ground truth. The categories we tested our
system on were AMG moods, AMG styles, and artists.

The All Music Guide (AMG) is a website and book that
reviews, rates, and categorizes music and musicians [1]. Two
of our ground truth categorizations came from AMG, the
“mood” and “style” of the music. In their glossary, AMG
defines moods as “adjectives that describe the sound and
feel of a song, album, or overall body of work,” for example
acerbic, campy, cerebral, hypnotic, rollicking, rustic, silly,
and sleazy. While AMG never explicitly defines them, styles
are sub-genre categories such as “punk-pop,” “prog-rock/art
rock,” and “speed metal.” In our experiments, we used styles
and moods that included 50 or more songs, which amounted
to 32 styles and 100 moods. See Table 2 for a list of the most
popular moods and styles.

Due to the diversity of the 18 artists chosen for evalu-
ation, some moods contain identical categorizations of our
music, leaving 78 distinct moods out of the original 100. For
the same reason, 12 of the 32 styles contain all of the work
of only a single artist.

While AMG in general only assigns moods and styles to
albums and artists, for the purposes of our testing, we as-
sumed that all of the songs on an album could be described
by the same moods and styles, namely those attributed to
that album. This assumption does not necessarily hold, for
example with a ballad on an otherwise upbeat album. We are
looking into ways of inferring these sorts of labels for indi-
vidual songs from collections of album labels and a measure
of acoustic similarity.

Artist identification is the task of identifying the per-
former of a song given only the audio of that song. While
a song can have many styles and moods, it can have only
one artist, making this the ground truth of choice for our N-
way classification test of the various feature sets. Note that a
system based on this work, using conventional SVM classi-
fication of single Gaussian KL divergence, outperformed all
other artist identification systems at an international compe-
tition, MIREX 2005 [10].

5.3 Experiments

The first experiment compared the features on passive artist,
mood, and style retrieval to determine if one clearly domi-
nated the others. For the artist ground truth, the system pre-
dicted the unique performing artist (out of the possible 18)
for each song in the test set, after training on the entire train-
ing set. Instead of a binary SVM, it used a DAGSVM to
perform the multi-class learning and classification [26]. We
provide these results to compare against other authors’ sys-
tems and to compare features to one another, but they are not
directly applicable to the SVM active learning task, which
only learns one binary categorization at a time.

For the mood and style ground truth and for the active
retrieval tasks, we evaluated the success of retrieval by the
precision on the top 20 songs returned from the test set. In
order to rank songs, they were sorted by their distance from
the decision boundary, as in [27]. Precision-at-20 focuses on
the positive examples of each class, because for sparse cate-
gories a classifier that labels everything as negative is quite
accurate, but neither helpful in retrieving music nor interest-
ing. Scores are aggregated over all categories in a task by
taking the mean, for example, the mood score is the mean of
the scores on all of the individual mood.

One justification for this evaluation metric is that when
searching large databases, users would like the first results to
be most relevant (precision), but do not care whether they see
all of the relevant examples (recall). We chose the number 20
because the minimum number of songs in each ground truth
category was 50, and the training set contains roughly 40%
of the songs, giving a minimum of approximately 20 cor-
rect results in each test category. This threshold is of course
adjustable and one may vary the scale of the measured per-
formance numbers by adjusting it. It also happens that these
features’ precision-at-20 scores are quite distinct from one
another, facilitating meaningful comparison.

The second experiment compares different sized training
sets in each round of active learning on the best-performing
features, MFCC Statistics. Active learning should require
fewer labeled examples to achieve the same accuracy as pas-
sive learning because it chooses more informative examples
to be labeled first. To measure performance, we compared
mean precision on the top 20 results on the same separate
test albums.

In this experiment we compared five different training
group sizes. In each trial, an active learner was randomly
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Fig. 3 Active Learning Graphical User Interface.

seeded with 5 elements from within the class, corresponding
to a user supplying initial exemplars. The learner then per-
formed simulated relevance feedback with 2, 5, 10, and 20
songs per round. A final classifier performed only one round
of learning with 50 examples, equivalent to conventional
SVM learning. The simulations stopped once the learner had
labeled 50 results so that the different training sets could be
compared.

5.4 User Interface

In addition to testing the system with fixed queries, we also
developed a graphical interface for users to interact with the
system in real time with real queries. A few colleagues were
encouraged to evaluate the system (on a different database
of songs) with queries of their choosing, including jazz, rap,
rock, punk, female vocalists, etc.

The graphical user interface is displayed in Figure 3. The
user selects a representative seed song to begin the search.
The system presents six songs to label as similar or dissimi-
lar to the seed song according to the categorization the user
has in mind. A song may be left unlabeled, in which case it
will not affect the classifier, but will be excluded from fu-
ture labeling. Labeled songs are displayed at the bottom of
the interface, and the best ranked songs are displayed in the
list to the right. At any time, the user may click on a song to
hear a representative segment of it. After each classification
round, the user is presented with six new songs to label and
may perform the process as many times as desired.

5.5 Results

The results of the feature comparison experiment can be
seen in Table 3. In general, the MFCC statistics outperform
the other features. In the mood identification task, the Fisher
kernel’s precision-at-20 is slightly higher, but the results are
quite comparable. The single Gaussian KL divergence fea-
tures worked well for multi-class classification, but less well

Table 3 Comparison of various audio features: accuracy on 18-way
artist classification and precision-at-20 for mood and style identifica-
tion.

Accuracy Precision-at-20
Feature Artist 18-way Mood ID Style ID
MFCC Stats .682 .497 .755
Fisher Kernel .543 .508 .694
KL 1G .640 .429 .666
Fisher Ker Mag .398 .387 .584
KL 20G .386 .343 .495
GMM Posterior .319 .376 .463

Table 4 Precision-at-20 on test set of classifiers trained with different
numbers of examples per round or conventional (passive) training, all
trained with 50 examples total.

Examples per round
Ground Truth 2 5 10 20 Conv.
Style .691 .677 .655 .642 .601
Artist .659 .667 .637 .629 .571
Mood .444 .452 .431 .395 .405

for the binary tasks which are more relevant to active learn-
ing.

The results of the active retrieval experiments can be
seen in Figure 4. The figure shows that, as we expected, the
quality of the classifier depends on the number of rounds
of relevance feedback, not only on the absolute number of
labeled examples. Specifically, a larger number of retrain-
ings with fewer new labels elicited per cycle leads to a better
classifier, since there are more opportunities for the system
to choose the examples that will be most helpful in refin-
ing the classifier. This shows the power of active learning
to select informative examples for labeling. Notice that the
classifiers all perform at about the same precision below 15
labeled examples, with the smaller examples-per-round sys-
tems actually performing worse than the larger ones. Since
the learner is seeded with five positive examples, it may take
the smaller sample size systems a few rounds of feedback
before a reasonable model of the negative examples can be
built.

Comparing the ground truth sets to one another, it ap-
pears that the system performs best on the style identifi-
cation task, achieving a maximum mean precision-at-20 of
0.691 on the test set, only slightly worse than the conven-
tional SVM trained on the entire training set which requires
more than 13 times as many labels. See Table 4 for a full
listing of the precision-at-20 of all of the classifiers on all
of the datasets after labeling 50 examples. On all of the
ground truth sets, the active learner can achieve the same
mean precision-at-20 with only 20 labeled examples that a
conventional SVM achieves with 50.

6 Discussion and Future Work

As expected, labeling more songs per round suffers from di-
minishing returns; performance depends most heavily on the
number of rounds of active learning instead of the number of
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Fig. 4 Performance increase due to active learning for (a) artist identification, (b) mood classification, and (c) style classification. The plots show
the mean precision in the top 20 results over the test set as the number of examples per round is varied. The solid line without symbols shows
the performance of conventional SVMs trained on the same number of examples.

labeled examples. This result is a product of the suboptimal
division of the version space when labeling multiple songs
simultaneously.

Small feedback sets, however, do suffer from the initial
lack of negative examples. Using few training examples per
round of feedback can actually hurt performance initially
because the classifier has trouble identifying examples that
would be most discriminative to label. It might be advanta-
geous, then, to begin training on a larger number of exam-
ples – perhaps just for the “special” first round – and then,
once enough negative examples have been found, to reduce
the size of the training sets in order to increase the speed of
learning.

It is also interesting that the KL divergence features did
not perform as well as either the Fisher kernel or the MFCC
statistics. This is especially surprising because KL diver-
gence between single Gaussians uses exactly the same fea-
ture vector to characterize each song as MFCC statistics and
is more mathematically justified. Even more surprising is the
performance degradation of GMMs with 20 components as
compared to single Gaussians. This discrepancy could be
due to inadequate Monte Carlo sampling when measuring
the KL divergence between GMMs. More likely, however,
is that the off-diagonal elements in the single Gaussian’s full
covariance matrix aid discrimination more than being able
to use a mixture of diagonal covariance Gaussians.

We have also created a java demonstration of an alter-
native interface to the system, an automatic playlist gener-
ator. A screen shot can be seen in Figure 5, and the demo
can be downloaded from our website1. This playlist gener-
ator seamlessly integrates relevance feedback with normal
music-listening habits, for instance by interpreting the skip-
ping of a song as a negative label for the current search,
while playing it all the way through would label it as de-
sirable. The classifier is retrained after each song is labeled,
converging to the best classifier as quickly as possible.

Using this playlist generator can give quite startling re-
sults as the system accurately infers the user’s criteria. It also

1 http://labrosa.ee.columbia.edu/projects/
playlistgen/

Fig. 5 Screen shot of the SVM active learning automatic playlist gen-
erator.

highlights how neatly the active learning paradigm matches
a music listening activity in two ways. First, the the user’s
labels can be obtained transparently from their choice over
whether to skip a song. And second, for music, listening to
the selected examples is not just a chore undertaken to su-
pervise classifier training, but can also be the goal of the
process.

MFCC statistics serve as a flexible representation for
songs, able to adequately describe musical artists, moods,
and styles. Moreover, we have shown that SVM active learn-
ing can improve the results of music retrieval searches by
finding relevant results for a user’s query more efficiently
than conventional SVM retrieval.
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Table 5 Artists and albums from uspop2002 included in experiments. Note that D1, D2, etc. refer to the first and second disc in a multidisc set.

Artist Training Testing Validation
Aerosmith A Little South of Sanity D1, Nine Lives,

Toys in the Attic
A Little South of Sanity D2, Live Bootleg

Beatles Abbey Road, Beatles for Sale, Magical
Mystery Tour

1, A Hard Day’s Night Revolver

Bryan Adams Live Live Live, Reckless, So Far So Good On a Day Like Today, Waking Up the
Neighbors

Creedence Clearwater
Revival

Live in Europe, The Concert, Willy and the
Poor Boys

Cosmo’s Factory, Pendulum

Dave Matthews Band Live at Red Rocks D1, Remember Two
Things, Under the Table and Dreaming

Before These Crowded Streets, Live at Red
Rocks D2

Crash

Depeche Mode Music for the Masses, Some Great Reward,
Ultra

Black Celebration, People are People Violator

Fleetwood Mac London Live ’68, Tango in the Night, The
Dance

Fleetwood Mac, Rumours

Garth Brooks Fresh Horses, No Fences, Ropin’ the Wind In Pieces, The Chase Garth Brooks
Genesis From Genesis to Revelations, Genesis,

Live: The Way We Walk Vol 1
Invisible Touch, We Can’t Dance

Green Day Dookie, Nimrod, Warning Insomniac, Kerplunk
Madonna Music, You Can Dance, I’m Breathless Bedtime Stories, Erotica Like A Prayer
Metallica Live S—: Binge and Purge D1, Reload,

S&M D1
Live S—: Binge and Purge D3, Load S&M D2

Pink Floyd Dark Side of the Moon, Pulse D1, Wish You
Were Here

Delicate Sound of Thunder D2, The Wall
D2

The Wall D1

Queen Live Magic, News of the World, Sheer
Heart Attack

A Kind of Magic, A Night at the Opera Live Killers D1

Rolling Stones Get Yer Ya-Ya’s Out, Got Live if You Want
It, Some Girls

Still Life: American Concert 1981, Tattoo
You

Roxette Joyride, Look Sharp, Tourism Pearls of Passion, Room Service
Tina Turner Live in Europe D1, Twenty Four Seven,

Wildest Dreams
Private Dancer, Live in Europe D2

U2 All That You Can’t Leave Behind, Rattle
and Hum, Under a Blood Red Sky

The Joshua Tree, The Unforgettable Fire Zooropa
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