
CODEBOOK-BASED SCALABLE MUSIC TAGGING WITH
POISSON MATRIX FACTORIZATION

Dawen Liang, John Paisley, Daniel P. W. Ellis
Department of Electrical Engineering

Columbia University
{dliang, dpwe}@ee.columbia.edu, jpaisley@columbia.edu

ABSTRACT

Automatic music tagging is an important but challenging
problem within MIR. In this paper, we treat music tagging
as a matrix completion problem. We apply the Poisson
matrix factorization model jointly on the vector-quantized
audio features and a “bag-of-tags” representation. This ap-
proach exploits the shared latent structure between seman-
tic tags and acoustic codewords. Leveraging the recently-
developed technique of stochastic variational inference, the
model can tractably analyze massive music collections. We
present experimental results on the CAL500 dataset and
the Million Song Dataset for both annotation and retrieval
tasks, illustrating the steady improvement in performance
as more data is used.

1. INTRODUCTION

Automatic music tagging is the task of analyzing the audio
content (waveform) of a music recording and assigning to
it human-relevant semantic tags [16] – which may relate to
style, genre, instrumentation, or more subtle aspects of the
music, such as those contributed by users on social media
sites. Such “autotagging” [5] relies on labelled training
examples for each tag, and performance typically improves
with the number of training examples consumed, although
training schemes also take longer to complete. In the era
of “Big Data”, it is necessary to develop models which can
rapidly handle massive amount of data; a starting point for
music data is the Million Song Dataset [2], which includes
user tags from Last.fm [1].

In this paper, we treat the automatic music tagging as
a matrix completion problem, and use the techniques of
stochastic variational inference to be able to learn from
large amounts of data presented in an online fashion [9].
The “matrix completion” problem treats each track as a
row in a matrix, where the elements describe both the acous-
tic properties (represented, for instance, as a histogram of
occurrences of vector-quantized acoustic features) and the
relevance of a large vocabulary of tags: We can regard the

c© Dawen Liang, John Paisley, Daniel P. W. Ellis.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Dawen Liang, John Paisley, Daniel
P. W. Ellis. “Codebook-based scalable music tagging with
Poisson matrix factorization”, 15th International Society for Music Infor-
mation Retrieval Conference, 2014.

tag information as incomplete or missing for some of the
rows, and seek to “complete” these rows based on infor-
mation inferred from the complete, present rows.

1.1 Related work

There have been a large number of papers on automatic
tagging of music audio in recent years. In addition to the
papers mentioned above, work particularly relevant to this
paper includes the Codeword Bernoulli Average (CBA) ap-
proach of Hoffman et al. [7], which uses a similar VQ his-
togram representation of the audio to build a simple but
effective probabilistic model for each tag in a discrimina-
tive fashion. Xie et al. [17] directly fits a regularized logis-
tic regression model to the normalized acoustic codeword
histograms to predict each tag and achieves state-of-the-art
results, and Ellis et al. [6] further improves tagging accu-
racy by employing multiple generative models that capture
different characteristics of a music piece, which are com-
bined in an optimized “bag-of-systems”.

Much of the previous work has been performed on the
CAL500 dataset [16] of 502 Western popular music tracks
that were carefully labelled by at least three human an-
notators with their relevance to 149 distinct labels span-
ning instrumentation, genre, emotions, vocal characteris-
tics, and use cases. This small dataset tends to reward ap-
proaches that can maximize the information extracted from
the sparse data regardless of the computational cost. A rel-
atively larger dataset in this domain is CAL10k [15] with
over 10,000 tracks described by over 500 tags, mined from
Pandora’s website 1 . However, neither of these datasets
can be considered industrial scale, which implies handling
millions of tracks and tens of thousands of tags.

Matrix factorization techniques, in particular, nonnega-
tive matrix factorization (NMF), have been widely used to
analyze music signals [8, 11] in the context of source sep-
aration. Paisley et al. [12] derived scalable Bayesian NMF
for topic modeling, which we develop here. To our knowl-
edge, this is the first application of matrix factorization to
VQ acoustic features for automatic music tagging.

2. DATA REPRESENTATION

For our automatic tagging system, the data comes from
two sources: vector-quantized audio features and a “bag-

1 http://www.pandora.com/

of-tags” representation.

• Vector-quantized audio features Instead of directly
working with audio features, we vector quantize all
the features following the standard procedure: We
run the K-means algorithm on a subset of randomly
selected training data to learn J cluster centroids
(codewords). Then for each song, we assign each
frame to the cluster with the smallest Euclidean dis-
tance to the centroid. We form the VQ feature yVQ ∈
NJ by counting the number of assignments to each
cluster across the entire song.

• Bag-of-tags Similar to the bag-of-words represen-
tation, which is commonly used to represent docu-
ments, we represent the tagging information (whether
or not the tag applies to a song) with a binary bag-
of-tags vector yBoT ∈ {0, 1}|V |, where V is the set
of all tags.

For each song, we will simply concatenate the VQ fea-
ture yVQ and the bag-of-tags vector yBoT, thus the dimen-
sion of the data isD = J+ |V |. When we apply the matrix
factorization model to the data, the latent factors we learn
will exploit the shared latent structure between semantic
tags and acoustic codewords. Therefore, we can utilize the
shared latent structure to predict tags when only given the
audio features.

3. POISSON MATRIX FACTORIZATION

We adopt the notational convention that bold letters (e.g.
y,θ,β) denote matrices. i ∈ {1, · · · , I} is used to index
songs. d ∈ {1, · · · , D} is used to index feature dimen-
sions. k ∈ {1, · · · ,K} is used to index latent factors from
the matrix factorization model. Given the data y ∈ NI×D
as described in Section 2, the Poisson matrix factorization
model is formulated as follows:

θik ∼ Gamma(a, ac),

βkd ∼ Gamma(b, b),

yid ∼ Poisson(
∑K
k=1 θikβkd),

(1)

where βk ∈ RD+ denote the kth latent factors and θi ∈ RK+
denote the weights for song i. a and b are model hyper-
parameters. c is a scalar on the weights that we tune to
maximize the likelihood.

There are a couple of reasons to choose a Poisson model
over a more traditional Gaussian model [14]. First, the
Poisson distribution is a more natural choice to model count
data. Secondly, real-world tagging data is extremely noisy
and sparse. If a tag is not associated with a song in the
data, it could be either because that tag does not apply to
the song, or simply because no one has labelled the song
with the tag yet. The Poisson matrix factorization model
has the desirable property that it does not penalize values
of 0 as strongly as the Gaussian distribution [12]. There-
fore, even weakly labelled data can be used to learn the
Poisson model.

4. VARIATIONAL INFERENCE

To learn the latent factors β and the corresponding decom-
position weights θ from the training data y, we need to
compute the posterior distribution p(θ,β|y). However, no
closed-form expression exists for this hierarchical model.
We therefore employ mean-field variational inference to
approximate this posterior [10].

The basic idea behind mean-field variational inference
is to choose a factorized family of variational distributions,

q(θ,β) =

K∏
k=1

(I∏
i=1

q(θik)
)(D∏

d=1

q(βkd)
)
, (2)

to approximate the posterior p(θ,β|y), so that the Kullback-
Leibler (KL) divergence between the variational distribu-
tion and the true posterior is minimized. Following a fur-
ther approximation discussed in the next section, the fac-
torized distribution allows for a closed-form expression of
this variational objective, and thus tractable inference. Here
we choose variational distributions from the same family
as the prior:

q(θik) = Gamma(θik; γik, χik),

q(βkd) = Gamma(βkd; νkd, λkd).
(3)

Minimizing the KL divergence is equivalent to maximizing
the following variational objective:

L = Eq[ln p(y,θ,β)] +H(q), (4)

where H(q) is the entropy of the variational distribution
q. We can optimize the variational objective using coor-
dinate ascent via two approaches: batch inference, which
requires processing of the entire dataset for every iteration;
or stochastic inference, which only needs a small batch of
data for each iteration and can be potentially scale to much
larger datasets where batch inference is no longer compu-
tationally feasible.

4.1 Batch inference

Although the model in Equation (1) is not conditionally
conjugate by itself, as demonstrated in [4] we can intro-
duce latent random variables zidk ∼ Poisson(θikβkd) with
the variational distribution being q(zidk) = Multi(zid;φid),
where zid ∈ NK , φidk ≥ 0 and

∑
k φidk = 1. This

makes the model conditionally conjugate, which means
that closed-form coordinate ascent updates are available.

Following the standard results of variational inference
for conditionally conjugate model (e.g. [9]), we can obtain
the updates for θik:

γik = a+

D∑
d=1

yidφidk,

χik = ac+

D∑
d=1

Eq[βkd].

(5)

The scale c is updated as c−1 = 1
IK

∑
i,k Eq[θik].

Similarly, we can obtain the updates for βkd:

νkd = b+

I∑
i=1

yidφidk,

λkd = b+

I∑
i=1

Eq[θik].

(6)

Finally, for the latent variables zidk, the following update
is applied:

φidk ∝ exp{Eq[ln θikβkd]}. (7)

The necessary expectations for θik are:

Eq[θik] = γik/χik,

Eq[ln θik] = ψ(γik)− lnχik,
(8)

where ψ(·) is the digamma function. The expectations for
βkd have the same form, but use νkd and λkd.

4.2 Stochastic inference

Batch inference will alternate between updating θ and β
using the entire data at each iteration until convergence to
a local optimum, which could be computationally inten-
sive for large datasets. We can instead adopt stochastic
optimization by selecting a subset (mini-batch) of the data
at iteration t, indexed by Bt ⊂ {1, · · · , I}, and optimizing
over a noisy version of the variational objective L:

Lt =
I

|Bt|
∑
i∈Bt

Eq[ln p(yi, θi|β)] + Eq[ln p(β)] +H(q).

(9)
By optimizing Lt, we are optimizing L in expectation.

The updates for weights θik and latent variables zidk are
essentially the same as batch inference, except that now we
are only inferring weights for the mini-batch of data for
i ∈ Bt. The optimal scale c is updated accordingly:

c−1 =
1

|Bt|K
∑
i∈Bt,k

Eq[θik]. (10)

After alternating between updating weights θik and la-
tent variables zidk until convergence, we can take a gradi-
ent step, preconditioned by the inverse Fisher information
matrix of variational distribution q(βkd), to optimize βkd
(see [9] for more technical details),

ν
(t)
kd = (1− ρt)ν(t−1)kd + ρt

(
b+

I

|Bt|
∑
i∈Bt

yidφidk

)
,

λ
(t)
kd = (1− ρt)λ(t−1)kd + ρt

(
b+

I

|Bt|
∑
i∈Bt

Eq[θik]
)
,

(11)

where ρt > 0 is a step size at iteration t. To ensure conver-
gence [3], the following conditions must be satisfied:∑∞

t=1 ρt =∞,
∑∞
t=1 ρ

2
t <∞. (12)

One possible choice of ρt is ρt = (t0 + t)−κ for t0 > 0
and κ ∈ (0.5, 1]. It has been shown [9] that this update
corresponds to stochastic optimization with a natural gra-
dient step, which better fits the geometry of the parameter
space for probability distributions.

4.3 Generalizing to new songs

Once the latent factor β ∈ RK×D+ is inferred, we can natu-
rally divide it into two blocks: the VQ part βVQ ∈ RK×J+ ,
and the bag-of-tags part βBoT ∈ RK×|V |+ .

Given a new song, we can first obtain the VQ feature
yVQ and fit it with βVQ to compute posterior of the weights
p(θ|yVQ,βVQ). We can approximate this posterior with the
variational inference algorithm in Section 4.1 with β fixed.
Then to predict tags, we can compute the expectation of
the dot product between the weights θ and βBoT under the
variational distribution:

ŷBoT = Eq[θTβBoT]. (13)

Since for different songs the weights θ may be scaled dif-
ferently, before computing the dot product we normalize
Eq[θ] so that it lives on the probability simplex. To do au-
tomatic tagging, we could annotate the song with top M
tags according to ŷBoT. To compensate for a lack of diver-
sity in the annotations, we adopt the same heuristic used
in [7] by introducing a “diversity factor” d: For each pre-
dicted score, we subtract d times the mean score for that
tag. In our system, we set d = 3.

5. EVALUATION

We evaluate the model’s performance on an annotation task
and a retrieval task using CAL500 [16] and Million Song
Dataset (MSD) [2]. Unlike the CAL500 dataset where
tracks are carefully-annotated, the Last.fm dataset [1] asso-
ciated with MSD comes from real-world user tagging, and
thus contains only weakly labelled data with a tagging vo-
cabulary that is much larger and more diverse. We compare
our results on these tasks with two other sets of codebook-
based methods: Codeword Bernoulli Average (CBA) [7]
and `2 regularized logistic regression [17]. Like the Pois-
son matrix factorization model, both methods are easy to
train and can scale to relatively large dataset on a single
machine. However, since both methods perform optimiza-
tion in a batch fashion, we will later refer to them as “batch
algorithms”, along with the Poisson model with batch in-
ference described in Section 4.1.

For the hyperparameters of the Poisson matrix factor-
ization model, we set a = b = 0.1, and the number of
latent factors K = 100. To learn the latent factors β, we
followed the procedure in Section 4.1 for batch inference
until the relative increase on the variational objective is less
than 0.05%. For stochastic inference, we used a mini-batch
size |Bt| = 1000 unless otherwise specified and took a full
pass of the randomly permuted data. As for the learning
rate, we set t0 = 1 and κ = 0.6. All the source code in
Python is available online 2 .

5.1 Annotation task

The purpose of annotation task is to automatically tag un-
labelled songs. To evaluate the model’s ability for anno-
tation, we computed the average per-tag precision, recall,

2 http://github.com/dawenl/stochastic_PMF

and F-score on a test set. Per-tag precision is defined as
the average fraction of songs that the model annotates with
tag v that are actually labelled v. Per-tag recall is defined
as the average fraction of songs that are actually labelled
v that the model also annotates with tag v. F-score is the
harmonic mean of precision and recall, and is one overall
metric for annotation performance.

5.2 Retrieval task

The purpose of the retrieval task is, when given a query tag
v, to provide a list of songs which are related to tag v. To
evaluate the models’ retrieval performance, for each tag in
the vocabulary we ranked each song in the test set by the
predicted score from Equation (13). We evaluated the area
under the receiver-operator curve (AROC) and mean aver-
age precision (MAP) for each ranking. AROC is defined
as the area under the curve, which plots the true positive
rate against the false positive rate, and MAP is defined as
the mean of the average precision (AP) for each tag, which
is the average of the precisions at each possible level of
recall.

5.3 Results on CAL500

Following the procedure similar to that described in [7,
17], we performed a 5-fold cross-validation to evaluate
the annotation and retrieval performance on CAL500. We
selected the top 78 tags, which are annotated more than
50 times in the dataset, and learned a codebook of size
J = 2000. For the annotation task, we labelled each song
with the top 10 tags based on the predicted score. Since
CAL500 is a relatively small dataset, we only performed
batch inference for Poisson matrix factorization model.

The results are reported in Table 1, which shows that
the Poisson model has comparable performance on the an-
notation task, and does slightly worse on the retrieval task.
As mentioned in Section 3, the Poisson matrix factoriza-
tion model is particularly suitable for noisy and sparse data
where 0’s are not necessarily interpreted as explicit obser-
vations. However, this may not be the case for CAL500, as
the vocabulary was well-chosen and the data was collected
from a survey where the tagging quality is understandably
higher than the actual tagging data in the real world, like
the one from Last.fm. Therefore, this task cannot fully ex-
ploit the advantage brought by the Poisson model. Mean-
while, the amount of data in CAL500 is fairly small – the
data y fit to the model is simply a 502-by-2078 matrix.
This prevents us from adopting stochastic inference, which
will be shown being much more effective than batch infer-
ence even on a 10,000-song dataset in Section 5.4.

5.4 Results on MSD

To demonstrate the scalability of the Poisson matrix factor-
ization model, we conducted experiments using MSD and
the associated Last.fm dataset. To our knowledge, there
has not been any previous work where music tagging re-
sults are reported on the MSD.

Model Prec Recall F-score AROC MAP
CBA 0.41 0.24 0.29 0.69 0.47

`2 LogRegr 0.48 0.26 0.34 0.72 0.50
PMF-Batch 0.42 0.23 0.30 0.67 0.45

Table 1. Results for the top 78 popular tags on CAL500,
for Codeword Bernoulli Average (CBA), `2 regularized lo-
gistic regression (`2 LogRegr), and Poisson matrix factor-
ization with batch inference (PMF-Batch). The results for
CBA and `2 LogRegr are directly copied from [17].

Since the Last.fm dataset contains 522,366 unique tags,
it is not realistic to build the model with all of them. We
first selected the tags with more than 1,000 appearances
and removed those which do not carry discriminative in-
formation (e.g. “my favorite”, “awesome”, “seen live”,
etc.). Then we ran the stemming algorithm implemented
in NLTK 3 to further reduce the potential duplications and
correct for alternate spellings (e.g. “pop-rock” v.s. “pop
rock”, “love song” v.s. “love songs”), which gave us a vo-
cabulary of 561 tags. Using the default train/test artist split
from MSD, we filtered out the songs which have been la-
belled with tags from the selected vocabulary. This gave us
371,209 songs for training. For test set, we further selected
those which have at least 20 tags (otherwise, it is likely that
this song is very weakly labelled). This gave us a test set of
2,757 songs. The feature we used is the Echo Nest’s timbre
feature, which is very similar to MFCC.

We randomly selected 10,000 songs as the data which
can fit into the memory nicely for all the batch algorithms,
and trained the following models with different codebook
sizes J ∈ {256, 512, 1024, 2048}: Codeword Bernoulli
Average (CBA), `2 regularized logistic regression (`2 Lo-
gRegr), Poisson matrix factorization with batch inference
(PMF-Batch) and stochastic inference by a single pass of
the data (PMF-Stoc-10K). Here we used batch size |Bt| =
500 for PMF-Stoc-10K, as otherwise there will only be
10 mini-batches from the subset. However, given enough
data, in general larger batch size will lead to relatively su-
perior performance, since the variance of the noisy varia-
tional objective in Equation (9) is smaller. To demonstrate
the effectiveness of the Poisson model on massive amount
of data (exploiting the stochastic algorithm’s ability to run
without loading the entire dataset into memory), we also
trained the model with the full training set with stochas-
tic inference (PMF-Stoc-full). For the annotation task, we
labelled each song with the top 20 tags based on the pre-
dicted score.

The results are reported in Table 2. In general, the
performance of Poisson matrix factorization is compara-
bly better for smaller codebook size J . Specifically, for
stochastic inference, even if the amount of training data is
relatively small, it is not only significantly faster than batch
inference, but can also help improve the performance by
quite a large margin. Finally, not surprisingly, PMF-Stoc-
full dominates all the metrics, regardless of the size of the
codebook, because it is able to learn from more data.

3 http://www.nltk.org/

Codebook size Model Precision Recall F-score AROC MAP

J = 256

CBA 0.112 (0.007) 0.121 (0.008) 0.116 0.695 (0.005) 0.112 (0.006)
`2 LogRegr 0.091 (0.008) 0.093 (0.006) 0.092 0.692 (0.005) 0.110 (0.006)
PMF-Batch 0.113 (0.007) 0.105 (0.006) 0.109 0.647 (0.005) 0.094 (0.005)

PMF-Stoc-10K 0.116 (0.007) 0.127 (0.007) 0.121 0.682 (0.005) 0.105 (0.006)
PMF-Stoc-full 0.127 (0.008) 0.143 (0.008) 0.134 0.704 (0.005) 0.115 (0.006)

J = 512

CBA 0.120 (0.007) 0.127 (0.008) 0.124 0.689 (0.005) 0.117 (0.006)
`2 LogRegr 0.096 (0.008) 0.108 (0.007) 0.101 0.693 (0.005) 0.113 (0.006)
PMF-Batch 0.111 (0.007) 0.108 (0.006) 0.109 0.645 (0.005) 0.098 (0.005)

PMF-Stoc-10K 0.112 (0.007) 0.128 (0.007) 0.120 0.687 (0.005) 0.110 (0.006)
PMF-Stoc-full 0.130 (0.008) 0.154 (0.008) 0.141 0.715 (0.005) 0.122 (0.006)

J = 1024

CBA 0.118 (0.007) 0.126 (0.007) 0.122 0.692 (0.005) 0.117 (0.006)
`2 LogRegr 0.113 (0.008) 0.129 (0.008) 0.120 0.698 (0.005) 0.115 (0.006
PMF-Batch 0.112 (0.007) 0.109 (0.006) 0.111 0.635 (0.005) 0.098 (0.006)

PMF-Stoc-10K 0.111 (0.007) 0.127 (0.007) 0.118 0.687 (0.005) 0.111 (0.006)
PMF-Stoc-full 0.127 (0.008) 0.146 (0.008) 0.136 0.712 (0.005) 0.120 (0.006)

J = 2048

CBA 0.124 (0.007) 0.129 (0.007) 0.127 0.689 (0.005) 0.117 (0.006)
`2 LogRegr 0.115 (0.008) 0.137 (0.008) 0.125 0.698 (0.005) 0.118 (0.006)
PMF-Batch 0.109 (0.007) 0.110 (0.006) 0.110 0.637 (0.005) 0.098 (0.006)

PMF-Stoc-10K 0.107 (0.007) 0.124 (0.007) 0.115 0.682 (0.005) 0.106 (0.006)
PMF-Stoc-full 0.120 (0.007) 0.147 (0.008) 0.132 0.712 (0.005) 0.118 (0.006)

Table 2. Annotation (evaluated using precision, recall, and F-score) and retrieval (evaluated using area under the receiver-
operator curve (AROC) and mean average precision (MAP)) performance on the Million Song Dataset with various code-
book sizes, from Codeword Bernoulli Average (CBA), `2 regularized logistic regression (`2 LogRegr), Poisson matrix
factorization with batch inference (PMF-Batch) and stochastic inference by a single pass of the subset (PMF-Stoc-10K)
and full data (PMF-Stoc-full). One standard error is reported in the parenthesis.

0 50 100 150 200 250 300 350 400

batches

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

F-
S
co

re

0 50 100 150 200 250 300 350 400

batches

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

A
R

O
C

0 50 100 150 200 250 300 350 400

batches

0.07

0.08

0.09

0.10

0.11

0.12

0.13

A
P

Figure 1. Improvement in performance with the number of mini-batches consumed for the PMF-Stoc-full system with
J = 512. Red lines indicate the performance of PMF-Batch which is trained on 10k examples; that system’s performance
is exceeded after fewer than 5 mini-batches.

Figure 1 illustrates how the metrics improve as more
data becomes available for the Poisson matrix factoriza-
tion model, showing how the F-score, AROC, and MAP
improve with the number of (1000-element) mini-batches
consumed up to the entire 371k training set. We see that
initial growth is rapid, thanks to the natural gradient, with
much of the benefit obtained after just 50 batches. How-
ever, we see continued improvement beyond this; it is rea-
sonable to believe that if more data becomes available, the
performance can be further improved.

Table 3 contains information on the qualitative perfor-
mance of our model. The tagging model works by captur-
ing correlations between semantic tags and acoustic code-
words in each latent factor βk. As discussed, when a new
song arrives with missing tag information, only the portion
of βk corresponding to acoustic codewords is used, and the
semantic tag portion of βk is used to make predictions of
the missing tags. Similar to related topic models [9], we

can therefore look at the highly probable tags for each βk
to understand what portion of the acoustic codeword space
is being captured by that factor, and whether it is musically
coherent. We show an example of this in Table 3, where
we list the top 7 tags from 9 latent factors βk learned by
our model with J = 512. We sort the tags according to ex-
pected relevance under the variational distribution Eq[βkd].
This shows which tags are considered to have high proba-
bility for a song that has the given factor expressed. As is
evident, each factor corresponds to a particular aspect of a
music genre. We note that other factors contained similarly
coherent tag information.

6. DISCUSSION AND FUTURE WORK

We present a codebook-based scalable music tagging model
with Poisson matrix factorization. The system learns the
joint behavior of acoustic features and semantic tags, which

“Pop” “Indie” “Jazz” “Classical” “Metal” “Reggae” “Electronic” “Experimental” “Country”
pop indie chillout piano metal reggae house instrumental country

female vocal rock lounge instrumental death metal funk electro ambient classic country
dance alternative chill ambient thrash metal funky electronic experimental male vocal

electronic indie rock downtempo classic brutal death metal dance dance electronic blues
sexy post punk smooth jazz beautiful grindcore hip-hop electric house psychedelic folk
love psychedelic relax chillout heavy metal party techno progressive love songs

synth pop new wave ambient relax black metal sexy minimal rock americana

Table 3. Top 7 tags from 9 latent factors for PMF-Stoc-full with J = 512. For each factor, we assign the closest music
genre on top. As is evident, each factor corresponds to a particular aspect of a music genre.

can be used to infer the most appropriate tags given the au-
dio alone. The Poisson model is naturally less sensitive to
zero values than some alternatives, making it a good match
to “noisy” training examples derived from real users’ tag-
gings, where the fact that no user has applied a tag does
not necessarily imply that the term is irrelevant. By learn-
ing this model using stochastic variational inference, we
are able to efficiently exploit much larger training sets than
are tractable using batch approaches, making it feasible to
learn from an entire set of over 370k tagged examples. Al-
though much of the improvement comes in the earlier it-
erations, we see continued improvement implying this ap-
proach can benefit from much larger, effectively unlimited
sources of tagged examples, as might be available on a
commercial music service with millions of users.

There are a few areas where our model can be easily de-
veloped. For example, stochastic variational inference re-
quires we set the learning rate parameters t0 and κ, which
is application-dependent. By using adaptive learning rates
for stochastic variational inference [13], model inference
can converge faster and to a better local optimal solution.
From a modeling perspective, currently the hyperparam-
eters for weights θ are fixed, indicating that the sparsity
level of the weight for each song is assumed to be the
same a priori. Alternatively we could put song-dependent
hyper-priors on the hyperparameters of θ to encode the in-
tuition that some of the songs might have denser weights
because more tagging information is available. This would
offer more flexibility to the current model.

7. ACKNOWLEDGEMENTS
The authors would like to thank Matthew Hoffman for help-
ful discussion. This work was supported in part by NSF
grant IIS-1117015.

8. REFERENCES

[1] Last.fm dataset, the official song tags and song similarity col-
lection for the Million Song Dataset. http://labrosa.
ee.columbia.edu/millionsong/lastfm.

[2] T. Bertin-Mahieux, D. Ellis, B. Whitman, and P. Lamere. The
Million Song Dataset. In Proceedings of the International
Society for Music Information Retrieval Conference, pages
591–596, 2011.

[3] L. Bottou. Online learning and stochastic approximations.
On-line learning in neural networks, 17(9), 1998.

[4] A. T. Cemgil. Bayesian inference for nonnegative matrix
factorisation models. Computational Intelligence and Neuro-
science, 2009.

[5] D. Eck, P. Lamere, T. Bertin-Mahieux, and S. Green. Auto-
matic generation of social tags for music recommendation. In
Advances in Neural Information Processing Systems, pages
385–392, 2007.

[6] K. Ellis, E. Coviello, A. Chan, and G. Lanckriet. A bag
of systems representation for music auto-tagging. Audio,
Speech, and Language Processing, IEEE Transactions on,
21(12):2554–2569, 2013.

[7] M. Hoffman, D. Blei, and P. Cook. Easy as CBA: A simple
probabilistic model for tagging music. In Proceedings of the
International Society for Music Information Retrieval Con-
ference, pages 369–374, 2009.

[8] M. Hoffman, D. Blei, and P. Cook. Bayesian nonparametric
matrix factorization for recorded music. In Proceedings of the
27th Annual International Conference on Machine Learning,
pages 439–446, 2010.

[9] M. Hoffman, D. Blei, C. Wang, and J. Paisley. Stochastic
variational inference. The Journal of Machine Learning Re-
search, 14(1):1303–1347, 2013.

[10] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul.
An introduction to variational methods for graphical models.
Machine learning, 37(2):183–233, 1999.

[11] D. Liang, M. Hoffman, and D. Ellis. Beta process sparse non-
negative matrix factorization for music. In Proceedings of the
International Society for Music Information Retrieval Con-
ference, pages 375–380, 2013.

[12] J. Paisley, D. Blei, and M.I. Jordan. Bayesian nonnegative
matrix factorization with stochastic variational inference. In
E.M. Airoldi, D. Blei, E.A. Erosheva, and S.E. Fienberg, edi-
tors, Handbook of Mixed Membership Models and Their Ap-
plications. Chapman and Hall/CRC, 2015.

[13] R. Ranganath, C. Wang, D. Blei, and E. Xing. An adaptive
learning rate for stochastic variational inference. In Proceed-
ings of The 30th International Conference on Machine Learn-
ing, pages 298–306, 2013.

[14] R. Salakhutdinov and A. Mnih. Probabilistic matrix factoriza-
tion. In Advances in Neural Information Processing Systems,
pages 1257–1264, 2008.

[15] D. Tingle, Y.E. Kim, and D. Turnbull. Exploring automatic
music annotation with acoustically-objective tags. In Pro-
ceedings of the international conference on Multimedia in-
formation retrieval, pages 55–62. ACM, 2010.

[16] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet. Se-
mantic annotation and retrieval of music and sound effects.
IEEE Transactions on Audio, Speech and Language Process-
ing, 16(2):467–476, 2008.

[17] B. Xie, W. Bian, D. Tao, and P. Chordia. Music tagging with
regularized logistic regression. In Proceedings of the Inter-
national Society for Music Information Retrieval Conference,
pages 711–716, 2011.

