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Abstract 
 

Marine mammal vocalizations have always presented an intriguing topic for researchers not only because they provide 
an insight on their interaction, but also because they are a way for scientists to extract information on their location, number 
and various other parameters needed for their monitoring and tracking. In the past years field researchers have used 
submersible microphones to record underwater sounds in the hopes of being able to understand and label marine life. One of 
the emerging problems for both on site and off site researchers is the ability to detect and extract marine mammal 
vocalizations automatically and in real time given the copious amounts of existing recordings. In this paper, we offer a 
method based on Sine wave modeling and Bayesian inference that will automatically detect and extract possible 
vocalizations belonging to marine mammals while minimizing human interference. The procedure presented in this paper is 
based on global characteristics of calls thus rendering it a species independent call detector/extractor. 

 
1. Introduction 
 
In recent years, new ideas, new questions emerged and scientists who are now equipped with innovative technological tools 
are trying to acquire a deeper understanding of inter and intra species interactions. Marine mammals have become an 
important link in the history and comprehension of life, as we know it. 

In 1958, W. A. Watkins and W. E. Schevill made the first audio recordings we know of [4]. Thus, started a long journey 
of collecting observations and information on marine mammals. For various reasons, certain species such as whales and 
dolphins became commercially popular and attracted enormous public interest. 

In the mid-1950s, Kenneth S. Norris [3], with his first experiments on echolocation, together with the navy 
acknowledged the possibility of intelligence within marine mammals. Further scientific exploration as well as the need to 
protect sea life led to more organized and joint collaborations of researchers from different fields. 

In recent years, marine biologists as well as engineers have come together as teams and work on or off site collecting 
multimodal data such as audio, video etc. The technological advances have allowed researchers to track, monitor and analyze 
marine mammals not only in loco, but also in silico. 

In terms of engineering, three major categories of research have emerged: i. Call detection/extraction within recordings, 
ii. Localization and iii. Echolocation. This paper proposes a method that belongs in the first category. Call 
detection/extraction is the first step needed in order to analyze marine mammal vocalizations. However, the amount of 
collected data as well as the diversity of the species requires a robust technique that will alleviate manual handling and 
labeling. 

Moreover, the ability to have an automatic system that will detect and extract marine mammal vocalizations, is needed 
for both localization, the ability to track groups of marine mammals, as well as echolocation e.g. sonar. 



 

Figure 1: System Overview 

This paper is organized as follows: section 2 provides the overview of the system, which is comprised of two parts. 
Section 2.1 explains the front end of the system. Section 2.2 describes the back end of the system. In section 3 experimental 
results are provided and finally section 4 consists of concluding remarks as well as future work. 

 
 
 
 
 
 
 
 
 
2. Overview of the automatic call detection/extraction system 
 

Figure 1 presents the schematic overview of the proposed system for automatic call detection and extraction. As seen in 
the figure, the system is comprised of two subsystems: the front-end and the back-end. 

Marine mammal vocalizations e.g. dolphins, whales can be roughly classified into two big categories: i. Whistles and ii. 
Clicks. Whistles can be considered as calls that promote interaction and “communication” between marine mammals and 
other species, as indicated by their harmonic structure. Clicks on the other hand are used mostly for under-water navigation. 
The system can be utilized for the detection and extraction of whistle calls found in various marine mammal recordings. Our 
methodology utilizes sinewave modeling and a probabilistic framework that is based on Bayesian inference [5]. 

In the general case, whistles can be viewed as frequency modulated signals that could be periodic in time and could also 
have a clear harmonic structure, Eq.1. 

    ttftAty ))(2sin()()( π⋅=  (1) 

Where A(t) is some kind of amplitude function and f(t) is the modulating signal.  
The existing literature, such as work done by Mellinger and Clark [1,2], deals with species specific calls of high SNR 

and with no overlaps between calls. 
It is based on kernel matching/correlation that is sensitive to specified calls. This approach provides a solid first step in 

call detection. However, it fails to generalize and to capture the diversity of calls that an on-site researcher would encounter. 
Our method is based on a Bayesian probabilistic framework, which can be described as follows. 
We are trying to find the most probable call structure, C given our observations, recordings, o as seen in Eq. 2 and as 

obtained from Bayes rule [5]. 
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Where p(o|C) is the likelihood of the actual observations given the hypothesized call parameters that define the call 

structure, and p(C) is the prior of that call. 
The recordings used can be defined as the observation signal given by Eq. 3. 
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Where o(t) is the observed signal, y(t) is the ideal track waveform and n(t) is the noise. This allows us to define the 

likelihood presented in Eq. 4, which indicates that the observation is normally distributed with mean equal to the underlying 
call, and variance given by the noise. 

As mentioned in Eq.2, C is the call structure as defined by a set of global characteristics e.g. smoothness in energy e.t.c. 
and is further explored in Section 2.2. We can define p(C) as the prior for these parameters described by a D-dimensional 
normal distribution given by Eq. 5. 

),()( DDDCp σµΝ=  (5) 



Figure 2: Front-end 

We can assume that our ideal waveform y(t) is randomly related to the call parameters C, thus including p(y|C) in our 
computations.  

Moreover, due to the sinewave modeling we can include a consistency measure of our complete observations given the 
ideal track waveform as p(o|y), which is seen in Eq. 4. 

Finally, we obtain the desired result as seen in Eq. 6. 
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As mentioned, the system is comprised of two subsystems. Eq. 3-4 describes the front-end of the system, where 
sinusoidal segments that are part of calls are extracted. 

Eq. 2-5 describes the back-end of the system where the segments extracted from the front-end need to be connected in 
order to extract the final calls. The decision concerning the possible connections is made according to some distribution that 
describes certain characteristics of the calls. 

These two parts of the system are combined in Eq. 6 where p(o|y) defines the sinewave modeling and p(y|C)p(C) defines 
the formation of the call based on global characteristics. 

 
 
 
 
 
 
 
 
 
 
2.1 The front end of the system: Extracting sinusoidal fragments 
 
Fig. 2 shows a detailed schematic of the front end of the system. The goal is to extract as many fragments of calls as possible 
while minimizing false positives-segments that are not part of the desired calls. 

In order to achieve that, we proceed by doing a column wise scan of the spectrogram and keeping all the regional 
maxima. Regional maxima can be defined as a set of connected points of constant value from which it is impossible to reach 
a point with a higher value without first descending. 

However, this definition will yield a high number of false positive segments due to the appearance of non-uniform 
colored noise within the recordings that can be attributed to bad recording conditions e.g. vehicle engine, other marine life, 
weather conditions, hydrophone responses e.t.c. 

In order to alleviate the above-mentioned problem a new hybrid regional maxima technique was employed. It can be 
described as an iterative algorithm based on the variance of the spectrum at each time frame. Eq. 6 can describe the 
methodology in a succinct way. 
For each time slice, t of the spectrogram we perform the following as described in Eq. 7. 
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(7) 
 

Where peakt,i  defines the extracted peaks from each time slice, t at every iteration i. Regmaxt,i defines the regional maxima of 
that time slice t at each iteration i. Θ is the threshold that determines the number of peaks that are extracted from each time 
slice. It cam be described as the drop of the variance at each iteration i. Finally, for the initialization of the algorithm for i=1 
the first peak extracted is the global maximum Mt of the time slice t. 



Empirical results have shown that the algorithm can extract the correct regional maxima for most recordings when 
θ=0.35. Basically, this method will separate the signal from the noisy background using the fact that the signal will appear as 
accentuated peaks in the spectrum of much larger amplitude than that of the existing noise. 

We then proceed by implementing a quadratic interpolation of the frequencies and amplitudes that correspond to the 
extracted hybrid regional maxima. This will provide a smoother effect to the extracted segments that will capture the existing 
calls more realistically. 

After extracting the regional maxima for a time frame of the spectrogram we need to decide whether they are connected 
to the ones extracted from the subsequent time frames. In order to do so we utilize two parameters: their frequency and their 
amplitude. 

Each regional max lies within a frequency bin and in order to connect it with a subsequent regional max they cannot be 
apart for more that a predetermined frequency “distance”, which we have set as five frequency bins. We perform an 
exhaustive search on the regional maxima and prefer the ones that have the smallest distance. 

A second level of decision is also employed through the use of the ratio of the amplitudes and making sure it doesn’t fall 
more than a pre-specified amount. This level of decision will deal with possible frequency ties. In the case where we have a 
tie in this level as well then the choice for continuation is made randomly. 

The whole procedure is continued and a segment is considered extracted if there is no continuation found after a number 
of time steps, which we call dead steps. In our experiments we consider that a segment is over when there has been more 
than three dead steps. 

Finally, we only consider valid segments the ones that satisfy a minimum length parameter, thus keeping only the 
segments that have more than two points. 
Fig. 3 presents an example of the final, resulting, segments of a sample recording. 

 
 
 
2.2 The back-end: Forming calls from segments 
 
Fig. 4 provides a detailed description of the back-end of the system. The theory is given in Eq. 3 where the main idea is to 
connect the extracted segments from the front-end of the system according to some decision made through maximum 
likelihood.  

After having extracted the segments using the methodology described in section 2.1 we proceed into defining the 
problem as one that can be divided into two categories: intra-call discontinuities and inter-call discontinuities. 

For the first category, we basically want to connect gaps that might appear within a segment. In order to accomplish that 
we define a time gap that signifies the maximum gap allowed within the segment. When such gaps are found we interpolate 
with the mean of the edges.  

Figure 3: Segment Extraction



Figure 4: Back-end 

This procedure will ensure the extraction of the calls even when there is a significant difference of amplitude within a call, 
but it is clear that the segments are part of some larger call. The second category is the core of the whole system since it tries 
to connect a segment with the best choice from a set of segments. 

 
 
 
 
 
 
 
 
We begin by defining a suitable search neighborhood for each segment. This neighborhood is adaptive ensuring that 

each segment has a neighbor. We utilize two parameters, frequency and time that indicate the final boundaries of the search 
area e.g. ±50 frequency bins, ±10 time steps. It is worth noting that each segment has two search areas, one for each tip.  We 
proceed by placing the restriction that the segments cannot be parallel overlapping to each other, which implies temporal 
consistency. 

In order to decrease the size of the search neighborhood even more we add a tip directionality criterion. For each tip of 
each segment within the search neighborhood we measure their slope. From training data we have extracted normal 
distributions from instances of pairs of segments with an upward or a downward directionality that belong to the same track. 
The slope of the tips is used to figure out the directionality likelihood for a pair of segments. We keep the segments that have 
the highest likelihood. This procedure can be seen more clearly in Eq. 8-10. 
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Where p(slup|Θup) describes the likelihood of a pair of segments belonging to the same call and have an upward 

directionality. The distribution is approximated through a 2D Gaussian whose parameters are the slopes of pairs of tips that 
belong to the same track. These values are obtained through training data. The same is applied for the downward 
directionality thus providing us with a smaller set of possible neighbors to a segment.  

After having extracted all the possible paths using the methodology described above we can assume that there exist three 
types of paths: 

 
1. Sure path: a segment that has one connection only 
2. Lonely path: a segment that has no connection 
3. Multiple paths: a segment that has multiple connections 

 
From the above definitions it is clear that the existence of multiple paths requires a way of deciding which ones form the 

actual calls. In order to make that decision we form a linear combination of 1D normal distributions from features that we 
have extracted from training data. The features we have chosen are smoothness in frequency and smoothness in energy as 
seen in Eq. 11-12. 
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By using maximum likelihood we perform a greedy search amongst the multiple paths and pick the one with the highest 

likelihood. The algorithm proceeds and only keeps the paths whose likelihood doesn’t drop more than a specific percentage 
e.g. 10%. Once the connections are established the two segments are then merged according to their mean value. 

In the case where the criterion is not met then the paths are set aside and the same algorithm is employed on them in 
order to extract possible new connections. 
 
 
3. Experimental results 
 

Fig. 5 shows the results of the system in two sample cases. Table 1 provides the success rates of the algorithm based on 
manual labeling. In total we used 5 minutes of audio recordings, which amounts to 400 calls of moderate difficulty as seen in 
Figs. 3, 5. All the recordings had a sampling frequency, Fs of 44,100Hz and were obtained from various recording hardware. 
The recordings were provided by Cornell University’s Macaulay Library.  

We utilized the STFT also known as spectrogram for visualization and computation purposes. The parameters for the 
STFT are 512 point FFT thus obtaining a frequency resolution of approximately 86.13Hz. Moreover, we used a 512 point 
Hanning window with 50% overlap, which yielded a time resolution of 11.6msec. 

In order to obtain the rates that are presented in Table 1 we had to approach the system’s performance in two levels. This 
need stems from the fact that we are implementing a two-stage system whose individual parts, as explained in Section 2 
contribute equally to the final results obtained from our system. We can then say that the overall success of the extraction 
algorithm depends not only on how well the front-end performs e.g. if a segment is not extracted then that call will not be 
represented, but also if the segments are connected corresponding to existing calls.  

In order to incorporate the above on the performance measure of the system, we provide an overall extraction success 
rate that is obtained on the frame level. Thus, for every track that is extracted we measure the number of points that it 
includes and compare that with the ground truth that is obtained through manual labeling. As seen in Table 1, the total 
extraction rate for the data was 82%. 

Moreover, we provide false positive and false negative rates on the segment level by obtaining the count of non-correct 
and correct connections respectively, thus taking into account the success of the sinewave modeling. The false positive rate 
that indicates a connection where there shouldn’t be a connection is 5%. Also, the false negative rate, which indicates 
connections that should have been made, is at 3%. The false positive rate appears to be higher due to the fact hat the system 
is created under the assumption that the extracted segments are more likely to be close to each other when belonging to the 
same call and thus their connection is desired. Finally, it is worth noting that the audio recordings come from different 
species of marine mammals and also that more than one of them are present during the analysis. This is an important factor 

Figure 5: Extracted Calls 



Figure 6: Overlap example

given that most existing experiments [1] are done on carefully selected recordings of one specific species and no overlaps of 
calls are present.  

FRAME LEVEL 
Extraction success rate 82% 

SEGMENT LEVEL 
False  

Positive rate 5% 
Negative rate 3% 

 
 

One of the innovations of our system is that it deals with one of the hardest tasks in call detection and extraction, which 
is the ability to handle overlapping calls. 

Fig. 6 is an example of the system disambiguating one case of overlapping calls while failing to disambiguate another. 
The success can be attributed to the parameters used for deciding amongst multiple paths, while the failure of the system on 
this particular example is due to click interference on the intersection of the calls thus confusing the system into forming a 
connection between them.  The aim of this work is to provide a general method of call extraction without altering the 
spectrogram, however future implementations will include either automatic or manual removal of click calls. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Finally, it is worth noting that the execution time on 4sec segments of moderate difficulty as shown in Figs. 3, 5, 6 is 
approximately 5sec on a 2.0GHz Pentium 4M laptop PC with 512M of RAM. For recordings of higher difficulty and 
complexity the execution time increases and the overall success rate decreases.  
 
4. Conclusions 
 
In this paper we presented a robust algorithm for detecting and extracting calls from marine mammals independent of species 
or number present in the recordings.  

The results are very promising and they indicate that a frame-by-frame extraction of regional maxima using a greedy 
algorithm is adequate for an on field researcher in order to obtain a first analysis. An exhaustive search of the possible paths 
would yield much better results, but would lead to a computationally expensive system. 

The innovation of the algorithm lies in the probabilistic framework where a connection is decided according to the 
parameters expressed in Section 2.2. 

Future developments could be to add more parameters that would describe the calls as a whole, thus rendering this 
methodology even more stable and minimizing the rates of false positives and/or negatives. Also, to provide the choice of  

Table 1



automatically extract interfering click calls. Moreover, it would be interesting to create a one stage system where the decision 
is made at the frame level and compare the overall extraction rate with the system presented in this work. 

Finally, an alternate approach would be to tune the algorithm by using species dependent parameters, which would yield 
a species-specific call detector/extractor. 

In this work we managed to formalize a generalized call detector/extractor for marine mammals that requires minimal 
manual interaction and is diverse enough to be utilized as a species detector. 
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