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Abstract
It is common to be carrying an advanced computational device
with a microphone – a smartphone – on your person at virtu-
ally all times. One application this makes possible is to auto-
matically detect when individuals are in close proximity by de-
tecting the similarity between the acoustic ambience recorded
by body-worn mics. This paper investigates two techniques for
proximity detection on a database of personal audio recordings
made by six participants in a poster presentation session. We
show that cross-correlation between 10 s windows is effective
for detecting when individuals are close enough to be in conver-
sation, and that using a fingerprinting approach based on acous-
tic landmarks is comparably accurate for this task, while at the
same time being much more efficient, privacy-preserving, and
viable for detecting proximity between a large number of body-
worn devices.
Index Terms: personal audio, proximity detection, correlation,
acoustic landmark, fingerprinting

1. Introduction
The huge uptake of smartphones leads to many new opportu-
nities, both for presenting data to users but also for collecting
information about users’ daily lives and activities. Smartphones
already include high-quality microphones and audio input elec-
tronics, so it is natural and often very power-efficient to use
them to monitor or record ambient audio “lifelogs”. A modern
iPhone can record continuously for many hours and still have
enough battery life to continue operating as a phone.

Of the many possible applications of continuous personal
audio stream analysis [1], in this paper we consider the au-
tomatic detection of when two people are near to each other,
for instance when they are close enough to be having a con-
versation. In this case, we would expect audio collected by
each participant’s body-worn recorder to have a large amount
of common content – not only the voices that are part of the
conversation, but also any background ambient sounds which
will be more similar as the recording positions are more closely
spaced. In this work, we compare two mechanisms for detect-
ing this similarity: short-time cross-correlation over relatively
long windows (e.g., 10 s), and acoustic landmark-based finger-
printing [2, 3].

The task of automatically detecting personal proximity and
interaction has been previously approached in several differ-
ent ways. Lamming & Flynn [4] describe their “forget-me-
not” memory prosthesis as a device to record many events of
daily life including personal encounters. Their implementation
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used infra-red (IR) “active badge” beacons [5] transmitting to
room-specific sensors to detect proximity. Holmquist et al. [6]
describe their “Hummingbird” Interpersonal Awareness Device
that sends and receives identification codes on the unrestricted
433 MHz band, to alert the user to other users within a range
of up to 100 m, despite intervening walls etc. Thiel et al. [7]
use a combination of radios and near-ultrasonic acoustic bea-
cons (emitted by each device) to track proximity of individu-
als. Pentland and Eagle [8] describe a long-term study of 100
users over 9 months each carrying modified mobile phones us-
ing BlueTooth to track the proximity of peer devices within an
approx. 10 m radius every 5 min. They used this data to map
the daily behavior patterns and social networks of the subjects.

Using the mobile phone’s microphone to monitor the nat-
ural acoustic ambience is advocated by Lu et al. [9] who de-
scribe their “SoundSense” framework for classifying user con-
text. Tarzia et al. [10] describe a more discriminant “finger-
printing” of particular spaces based on details of their ambient
sound. The “Neary” system [11] uses ambient background au-
dio features averaged over 6 s windows to cluster users in com-
mon acoustic neighborhoods, and Satoh et al. [12] use a similar
cross-correlation on transformed ambient acoustic spectra to es-
timate both the location and proximity of mobile phones.

Naaman and Kennedy [13] use audio fingerprints to identify
and organize simultaneous recordings made by multiple users
attending live concerts; [3] uses a similar technique to match
and synchronize web-shared videos of other kinds of public
events. Wirz et al [14] use the same landmark-based finger-
printing technique and conduct controlled experiments on its
ability to estimate proximity, but do not apply this to dynamic,
user-collected recordings.

Our contribution in this work is to use the audio channel
to track personal proximity and interaction in an environment
where radio or IR signals would be insufficiently precise, since
in a crowded room separation of only a few meters is sufficient
to provide an “isolated” conversational channel. We evaluate
the viability of correlation to detect this proximity, then show
that matching via acoustic-landmark-based fingerprinting is an
effective, scalable, and efficient alternative to correlation. In
addition, we release Matlab code to fully recreate our experi-
ments1.

2. Data
The experiments were conducted on data recorded during a
poster session held as part of a regional technical meeting at
Columbia on January 25th, 2014. Approximately 40 people

1http://labrosa.ee.columbia.edu/projects/
coherence/



Figure 1: Screenshot from video of the recording session. In-
dividuals carrying recorders are wearing red hats, circled in the
image.

were having discussions and viewing posters hung on the walls
of a room approximately 8 m × 16 m. Six of the attendees
carried recording devices (four iPhones, one iPod nano with an
external mic, and one Zoom H1 recorder) and made simultane-
ous recordings for about 30 minutes. (All attendees had been
warned in advance that the recording would be performed, and
those carrying recorders wore red hats to remind other atten-
dees that they were being recorded2). A video camera captured
an overhead view during the same period; the red hats made it
possible to manually verify the approximate locations of each
recorder-carrying participant, except for a small corner of the
room which was out of view. Fig. 1 shows an example frame
from the video, with the red hats circled.

When all six recordings were assembled after the session,
they were manually aligned by reference to the time stamps im-
posed by the recording devices (mostly reliable to within a few
seconds), checked against the video, then verified and corrected
for clock drift as described in the next section. This resulted in
29 minutes with complete coverage from 5 of 6 recorders with
the sixth also present for the first 19 minutes. Synchronization
was better than 0.1 s across all recordings.

2.1. Alignment with skewview

We have developed a program called skewview [15] to visu-
alize and correct small time shift and clock skew differences be-
tween contemporaneous, similar recordings. It can be used, for
instance, to perform after-the-fact synchronization between a
lapel mic recording and the soundtrack of a simultaneous video
shot from the back of a classroom. skewview takes the two
waveforms, and first makes one long cross correlation of the
entire tracks (possibly decimated to reduce the computational
burden) to estimate the approximate global time shift. Then the
signal to be aligned is cut into frames of typically between 1 and
30 s, with typically half-window hops, and is cross-correlated
with longer segments cut from the same time centers in the ref-
erence recording, such that full-length correlations are calcu-
lated over a range of shifts. The cross-correlation is calculated
by DFT with appropriate zero-padding. Each point is divided by
the harmonic mean of the norms of contents the two windows,
making it a true correlation coefficient with magnitude smaller
than 1 and with no intrinsic tapering towards the edges. The
cross-correlations are plotted as a grayscale image, with rela-

2Despite this consent, we regretfully consider this raw audio data
too sensitive to release openly.
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Figure 2: Short-time normalized cross-correlation between
camera microphone and one of the participant recordings. Cor-
relations are calculated over 30 s windows every 15 s; the peak
in each frame is highlighted with a red dot. The participant
recording started around 80 s later than the camera, and exhib-
ited a drift of approx. 0.2 s over the 2400 s recording (83 ppm).

tive lag on the vertical axis versus window center time on the
horizontal axis, as shown in fig. 2, which compares the camera
audio to one of the participant mic signals (before alignment)
using 30 s windows every 15 s. The largest absolute value in
each vertical slice is highlighted with a dot if it is larger than
0.2× the largest correlation seen in any frame. The system at-
tempts to find an outlier-insensitive best-fit line segment to these
points, where the vertical offset corresponds to fixed time skew
and the slope indicates clock drift; optionally, skewview will
trim and resample the input file according to the best-fit line
to write a new version of the input file correctly aligned to the
reference. We find recordings from different devices can show
clock drift of several hundred parts per million, which would
lead to desynchronization of up to a second or more in an hour-
long recording were it not corrected.

By cross-correlating relatively long windows, any underly-
ing common signal components will eventually come to dom-
inate the noisy, chance correlations of unrelated sounds. We
find that resampling both signals to as low as 1 kHz reduces the
computational burden without impacting the ability to identify
the correlation. When clock drift is large (say 0.1% or more)
it can be detrimental to use very long windows since the non-
negligible drift within the span of the window itself (e.g. 10
ms across a 10 s window) can significantly blur, and thus lower,
the cross-correlation peak. In this case, several stages of esti-
mated alignment and resampling, starting with shorter windows
to minimize within-window drift, but progressing to longer win-
dows as the effective sampling clocks are brought more closely
in sync, can be effective.

As another example of its robustness to uncorrelated added
signals, we have successfully used skewview to align indi-
vidual tracks from a multitrack studio recording (such as an a
capella version) to the full mix [16].

3. Approach
3.1. Cross-correlation

The natural way to detect similarities between recordings is via
short-time cross-correlation. The closer two microphones are,
the greater the correlation between their recorded signals, with
the precise relationship of correlation to separation depending
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Figure 3: Comparison between the two methods for identifying proximity. Left pane: Local cross-correlations between all six record-
ings. Each subpane shows the peak normalized cross-correlation between 10 s windows for each subject against the five remaining
recordings. Subject HP ceased recording at 19 min, the remaining signals extend to 29 or 30 min. Right pane: Proximity estimation by
shared acoustic landmark detection; gray density shows the number of matching acoustic landmark hashes within a 5 sec window. The
vertical stripe corresponds to fig 1.

on the spatial coherence of the ambient soundfield, which itself
depends on the diversity of the incident sound sources, and the
dominant wavelengths in the sources.

We used the short-time cross-correlation functions of
skewview to identify periods of correlation between the dif-
ferent subjects. Since we were interested in the time-variation
of correlation, we used shorter 10 s windows (instead of the 30 s
windows used for alignment) evaluated every 2 s, then took the
largest normalized cross-correlation value within a ±1 s max-
imum lag as an indication of the proximity between the sub-
jects. (Since the recordings were already synchronized, it was
not necessary to search a wider range of lags, although in prin-
ciple this could have been included). The data were downsam-
pled to 2 kHz before calculating correlations; this reduces the
computational expense substantially, but in our experience does
not hurt the ability to identify correlations in noise, which are
perhaps mainly carried by energetic low-frequency voicing.

3.2. Fingerprinting

As an alternative to cross-correlation similarity, and following
[14], we used fingerprinting based on acoustic landmarks as an
alternative approach to gauging proximity. The algorithm we
used was initially developed for identifying music being played
in potentially noisy environments and captured via a mobile
phone [2], and as such is highly tolerant of added noise and
distortion, as well as being able to scale efficiently to millions
of reference recordings. The method works by identifying the
most prominent energy peaks in a time-frequency analysis of a
particular recording, then encoding the pattern of these promi-
nent peaks into quantized “hashes” describing the time and fre-
quency relationship of pairs of nearby landmarks. Since noise
and acoustic channel distortion will most likely only add extra
peaks and/or change the amplitude of the existing peaks, but
not shift or delete them, a sufficient density of recorded hashes
will, in principle, include some hashes that match the origi-
nal, undistorted background music being played. To identify
background music, query audio is converted to the quantized
hashes; a database is accessed to identify all reference tracks
that include any of these hashes, then the candidate matches
with the most hashes in common are evaluated to see if they in-
clude those hashes at consistent relative timings. Depending on

the number of distinct, quantized hashes (typically 1M or more,
corresponding to 8 or 9 bit quantization of frequencies and 6
or 7 bit quantization of time differences), and the precision re-
quired in confirming relative timings (typically 30-100 ms over
a 5-20 s query), the probability of chance matches can be made
very low, and matches can be made even if only a tiny fraction
of reference hashes – 1 % or fewer – are correctly identified in
the query. True match probability increases with the length of
the query, and also with the density of landmarks recorded and
the number of hashes derived from each landmark. However,
the computational expense of matching and reference database
storage requirements also increase with hash density, so the pre-
cise parameters chosen will depend on the application.

We used audfprint, an open-source implementation of
landmark-based fingerprinting for these experiments [17]. We
adjusted the default parameters to better suit our application
consisting of a relatively small number of long-duration record-
ings, and we used a density of around 30 hashes per second
(four times the default) to improve performance in noise. Our
six recordings, comprising 10,030 s (167 min) of total audio, re-
sulted in 371,294 hashes. Note that fingerprint matching is not
entirely symmetric: the query audio is generally analyzed with
a larger hash density than the reference items, in the interests of
limiting the size of the reference database.

When detecting a match between two tracks, fingerprint-
ing simply counts the number (or average rate) of common
hashes with consistent relative timing between two tracks. To
recover the finer time variation of proximity between two in-
dividuals desired in this application, we take all the common,
temporally-consistent hash matches between two tracks, and
represent them as a single function counting the number of com-
mon hashes occurring within each 23 ms time step. This count
is then smoothed over a 5 s window to get a moving average
of the number of matching hashes per second. This is a more
smoothly-varying score that can be directly compared to the lo-
cal correlation scores.

4. Experiments
Figure 3 presents the results of proximity estimation based on
cross-correlation (left pane) and fingerprinting (right). In both
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Figure 4: Detection Error Tradeoff (DET) curve for predict-
ing the thresholded cross-correlation peaks from the smoothed
matching hash counts. The curve flattens out at Pmiss = 6.6%
because of stretches where zero matching hashes were recorded
despite supra-threshold correlation.

cases, we performed a full set of 6 × 6 pairwise comparisons
between the signals, thus comparing each pair twice, once as a
source and once as a destination. The plots show, for each sub-
ject, the respective proximity features (normalized correlation,
or matching hash count within a 5 s window) against all subjects
on a 2 s resolution. Self-comparisons are excluded for clarity.

4.1. Evaluation

We informally evaluated the accuracy of the cross-correlation
proximity detection by reviewing the video for the major prox-
imity events indicated by the correlation. For instance, fig. 1
shows the video at time 5:38; in fig. 3, we see at this time
high correlations between BM and DE (the red-hatted figures
in the foreground), another high-mutual-correlation clique be-
tween DL, HP, and ZC (the three figures in the back of the pic-
ture), and CR largely uncorrelated to the other signals (the iso-
lated hat in the picture). Shorter, less pronounced events, such
as the correlation peak between CR and DE around minute 10
are also backed up by brief exchanges visible in the video.

Based on these observations, we thresholded the cross-
correlation scores at 0.15 to get a binary ground-truth (of
high normalized cross-correlation) against which to evaluate the
smoothed fingerprint matching hash counts. Excluding the self-
to-self comparison rows this gives an overall prior of 4.8% of
two frames counting as “near”. We then sweep a threshold on
the hash counts to obtain a Detection Error Tradeoff (DET)
curve [18] shown in fig. 4, illustrating the trade-off between
false alarms (frames judged close according to cross correlation
but not detected by fingerprinting) and misses (frames judged
close by fingerprinting but not by cross correlation). (We used
the software from [19]). Although the equal-error rate of 13.4%
is quite high, in practice the more important operating point
is to have low false alarms (since in most applications we ex-
pect many more time frames without proximity), and to tolerate
the relatively high miss probability this dictates (since a given
“proximal encounter” may persist for several minutes, giving
multiple opportunities for detection).

In terms of performance, on this dataset, and using these
implementations which were not optimized for the task, com-
putation time is roughly comparable: To process the entire
10,030 s dataset (including 6 × 6 pairwise comparisons) takes
427 s using cross correlation, with the core comparison between
a pair of 30 min tracks taking around 11 s. The total computa-
tion time of the fingerprint technique is 317 s, which breaks

down as 12 s per track to analyze and build the hash database,
then 41 s per query to find the matches against all the reference
items. (Most of this time is consumed calculating landmarks at
small frame offsets, to mitigate framing effects). For 6 users,
then, the computational advantage of the fingerprint technique
is not outstanding. However, for cross-correlation, the compu-
tational expense of exhaustive comparison among a group of
recordings grows as the square of the amount of data being con-
sidered; if we had been comparing recordings from all 40 par-
ticipants in the poster session instead of just 6, our computation
would have taken 44× longer. With fingerprinting, the retrieval
of matching tracks is, to first-order, a constant-time operation
for each query, since the technique was developed to efficiently
match samples against a very large number of reference items.
Thus, running 40 users would take only ≈ 7× longer (depend-
ing on the impact of the more densely-populated fingerprint in-
dex). Moreover, our cross-correlation relies on reasonable syn-
chronization between the tracks being compared (to avoid hav-
ing to search over a wide range of lags), whereas the fingerprint-
ing intrinsically searches over all possible time skews between
recordings and will automatically identify the correct relative
timing between two tracks – useful if the recordings have not
been collected with reference to a common clock.

5. Discussion and Conclusions
Our main purpose has been to show that a fingerprint-based ap-
proach is able to detect changing proximity between individ-
uals based on similarities identified within their “personal au-
dio” recordings. We further sought to show that fingerprinting is
able detect these similarities as effectively as cross-correlation,
but with far better potential for scaling and computational effi-
ciency. Another consideration in this scenario is privacy: con-
tinuous recording of audio may be unacceptable to certain users
or in certain situations. The fingerprint technique, however,
does not rely on full audio, but only on the drastically reduced
representation of the individual landmark hashes. Even for
high-density landmark recording, the reference database for the
entire 167 min of audio was only 4.1 MB on disk, compared
to 80 MB for the full audio – even when stored as 64 Mbps
compressed MP3 files. Because only a sparse sampling of the
spectral peaks are retained in fingerprinting, it is impossible to
recover intelligible audio from this representation, giving this
approach distinct advantages from a privacy standpoint.

Given the ease with which ambient personal audio can be
collected and processed by the powerful smartphones that are
now so common, we believe it is inevitable that this data stream
will be increasingly exploited for a variety of applications. We
have shown that tracking episodes of personal proximity in a
real-world, high-noise environment is quite feasible from this
data, leading to interesting and rich maps of interpersonal in-
teractions. We have further shown that an existing landmark-
based audio fingerprinting approach is successful at approxi-
mating the proximity results obtained by more expensive cross-
correlation. We foresee many such applications for a privacy-
preserving continuous summary of daily acoustic environment
provided by the acoustic landmark stream.
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