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Abstract

The melody of a musical piece – informally, the part you would hum along
with – is a useful and compact summary of a full audio recording. The extraction
of melodic content has practical applications ranging from content-based audio
retrieval to the analysis of musical structure. Whereas previous systems generate
transcriptions based on a model of the harmonic (or periodic) structure of musical
pitches, we present a classification-based system for performing automatic melody
transcription that makes no assumptions beyond what is learned from its training
data. We evaluate the success of our algorithm by predicting the melody of the
ADC 2004 Melody Competition evaluation set, and we show that a simple frame-
level note classifier, temporally smoothed by post processing with a hidden Markov
model, produces results comparable to state of the art model-based transcription
systems.

1 Introduction

Melody provides a concise and natural description of music. Even for complex, poly-
phonic signals, the perceived predominant melody is the most convenient and memo-
rable description, and can be used as an intuitive basis for communication and retrieval
e.g. through query-by-humming [e.g. Birmingham et al., 2001]. However, to deploy
large-scale music organization and retrieval systems based on melodic content, we need
mechanisms to automatically extract the melody from recorded audio. Such transcrip-
tion would also be valuable in musicological analysis as well as numerous potential
signal transformation applications.

Although automatic transcription of polyphonic music recordings (multiple instru-
ments playing together) has long been a research goal, it has remained elusive. In
Goto and Hayamizu [1999], the authors proposed a reduced problem of transcribing
polyphonic audio into a single melody line (along with a low-frequency bass line) as
a useful but tractable analysis of audio. Since then, a significant amount of research
has taken place in the area of predominant melody detection, including Goto [2004],
Eggink and Brown [2004], Marolt [2004], Paiva et al. [2004], Li and Wang [2005].

1



These methods, however, all rely on a core analysis that assumes a specific audio
structure, specifically that musical pitch is produced by periodicity at a particular fun-
damental frequency in the audio signal. For instance, the system of Goto and Hayamizu
[1999] extracts instantaneous frequencies from spectral peaks in the short-time analy-
sis frames of the music audio; Expectation-Maximization is used to find the most likely
fundamental frequency value for a parametric model that can accommodate different
spectra, but constrains all the frequency peaks to be close to integer multiples (harmon-
ics) of the fundamental, which is then taken as the predominant pitch. This assumption
that pitch arises from harmonic components is strongly grounded in musical acoustics,
but it is not necessary for transcription. In many fields (such as automatic speech recog-
nition) classifiers for particular events are built without any prior, explicit knowledge
of how they are represented in the features.

In this paper, we pursue this insight by investigating a machine learning approach
to automatic melody transcription. We propose a system that infers the correct melody
label based only on training with labeled examples. Our algorithm identifies a single
dominant pitch, assumed to be the melody note, for all time frames in which the melody
is judged to be sounding. The note is identified via a Support Vector Machine classifier
trained directly from audio feature data, and the overall melody sequence is smoothed
via a hidden Markov model, to reflect the temporal consistency of actual melodies.
This learning-based approach to extracting pitches stands in stark contrast to previous
approaches that all incorporate prior assumptions of harmonic or periodic structure
in the acoustic waveform. The main contribution of this paper is to demonstrate the
feasibility of this approach, as well as describing our solutions to various consequent
issues such as selecting and preparing appropriate training data.

Melody, or predominant pitch, extraction is an attractive task for the reasons out-
lined above, but melody does not have a rigorous definition. We are principally in-
terested in popular music which usually involves a lead vocal part – the singing in a
song. Generally, the lead vocal will carry a melody, and listeners will recognize a piece
they know based only on that melody alone. Similarly in jazz and popular instrumental
music, there is frequently a particular instrument playing the lead. By this definition,
there is not always a melody present – there are likely to be gaps between melody
phrases where only accompaniment will be playing, and where the appropriate output
of a melody transcriber would be nothing (unvoiced); we will refer to this problem
as voicing detection, to distinguish it from the pitch detection problem for the frames
containing melody. There will always be ambiguous cases – music in which several
instruments contend to be considered the ‘lead’, or notes which might be considered
melody or perhaps are just accompaniment. Of course, a classification system simply
generalizes from the training data, so to some extent we can crystallize our definition
of melody as we create our training ground truth. On the whole, we have tended to stay
away from borderline cases when selecting training data (and the standard test data we
use has been chosen with similar criteria), but this ambiguity remains a lurking prob-
lem. For the purposes of this paper, however, we evaluate melody transcription as the
ability to label music audio with either a pitch – a MIDI note number, or integer corre-
sponding to one semitone (one key on the piano) – or an “unvoiced” label. Resolving
pitch below the level of musical semitones has limited musical relevance and would fit
less cleanly into the classification framework.
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The remainder of this paper is structured as follows: Training data is the single
greatest influence on any classifier, but since this approach to transcription is unprece-
dented, we were obliged to prepare our own data, as described in the next section. Sec-
tion 3 then describes the acoustic features and normalization we use for classification.
In section 4 we describe and compare different frame-level pitch classifiers we tried
based on Support Vector Machines (SVMs), and section 5 describes the separate prob-
lem of distinguishing voiced (melody) and unvoiced (accompaniment) frames. Section
6 describes the addition of temporal constraints with hidden Markov models (HMMs)
by a couple of approaches. Finally, section 7 discusses the results, and presents some
ideas for future developments and applications of the approach.

2 Audio Data

Supervised training of a classifier requires a corpus of labeled feature vectors. In gen-
eral, greater quantities and variety of training data will give rise to more accurate and
successful classifiers. In the classification-based approach to transcription, then, the
biggest problem becomes collecting suitable training data. Although the availability of
digital scores aligned to real recordings is very limited, there are some other possible
sources for suitable data. We investigated using multi-track recordings and MIDI audio
files for training; for evaluation, we were able to use some recently-developed standard
test sets.

2.1 Multi-track Recordings

Popular music recordings are typically created by layering a number of independently-
recorded audio tracks. In some cases, artists (or their record companies) make available
separate vocal and instrumental tracks as part of a CD or 12” vinyl single release.
The ‘acapella’ vocal recordings can be used to create ground truth for the melody in
the full ensemble music, since solo voice can usually be tracked at high accuracy by
standard pitch tracking systems [Talkin, 1995, de Cheveigne and Kawahara, 2002]. As
long as we can identify the temporal alignment between the solo track and the full
recording (melody plus accompaniment), we can construct the ground truth. Note that
the acapella recordings are only used to generate ground truth; the classifier is not
trained on isolated voices since we do not expect to use it on such data.

A collection of multi-track recordings was obtained from genres such as jazz, pop,
R&B, and rock. The digital recordings were read from CD, then downsampled into
monaural files at a sampling rate of 8 kHz. The 12” vinyl recordings were converted
from analog to digital mono files at a sampling rate of 8 kHz. For each song, the
fundamental frequency of the melody track was estimated using fundamental frequency
estimator in WaveSurfer, which is derived from ESPS’s getf0 [Sjölander and Beskow,
2000]. Fundamental frequency predictions were calculated at frame intervals of 10 ms
and limited to the range 70–1500 Hz.

We used Dynamic Time Warping (DTW) to align the acapella recordings and the
full ensemble recordings, along the lines of the procedure described in Turetsky and
Ellis [2003]. This time alignment was smoothed and linearly interpolated to achieve a
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Figure 1: Examples from training data generation. The fundamental frequency of the
isolated melody track (top pane) is estimated and time-aligned to the complete audio
mix (center). The fundamental frequency estimates, rounded to the nearest semitone
are used as target class labels (overlaid on the spectrogram). The bottom panel shows
the power of the melody voice relative to the total power of the mix (in dB); if the mix
consisted only of the voice, this would be 0 dB.

frame-by-frame correspondence. The alignments were manually verified and corrected
in order to ensure the integrity of the training data. Target labels were assigned by
calculating the closest MIDI note number to the monophonic prediction. Example
signals from the training data are illustrated in figure 1.

We ended up with 12 training excerpts of this kind, ranging in duration from 20 s
to 48 s. Only the voiced portions were used for training (we did not attempt to include
an ‘unvoiced’ class at this stage), resulting in 226 s of training audio, or 22,600 frames
at a 10 ms frame rate.

2.2 MIDI Audio

MIDI was created by the manufacturers of electronic musical instruments as a digital
representation of the notes, times, and other control information required to synthesize
a piece of music. As such, a MIDI file amounts to a digital music score that can
easily be converted into an audio rendition. Extensive collections of MIDI files exist
consisting of numerous transcriptions from eclectic genres. Our MIDI training data is
composed of several frequently downloaded pop songs from www.findmidis.com. The
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training files were converted from the standard MIDI file format to monaural audio files
(.WAV) with a sampling rate of 8 kHz using the MIDI synthesizer in Apple’s iTunes.
Although completely synthesized (with the lead vocal line often assigned to a wind or
brass voice), the resulting audio is quite rich, with a broad range of instrument timbres,
and including production effects such as reverberation.

In order to identify the corresponding ground truth, the MIDI files were parsed
into data structures containing the relevant audio information (i.e. tracks, channels
numbers, note events, etc). The melody was isolated and extracted by exploiting MIDI
conventions: Commonly, the lead voice in pop MIDI files is stored in a monophonic
track on an isolated channel. In the case of multiple simultaneous notes in the lead
track, the melody was assumed to be the highest note present. Target labels were
determined by sampling the MIDI transcript at the precise times corresponding to the
analysis frames of the synthesized audio.

We used five MIDI excerpts for training, each around 30 s in length. After removing
the unvoiced frames, this left 125 s of training audio (12,500 frames).

2.3 Resampled Audio

In the case when the availability of a representative training set is limited, the quantity
and diversity of musical training data may be extended by re-sampling the recordings
to effect a global pitch shift. The multi-track and MIDI recordings were re-sampled at
rates corresponding to symmetric semitone frequency shifts over the chromatic scale
(i.e. ±1, 2, . . . 6 semitones); the expanded training set consisted of all transpositions
pooled together. The ground truth labels were shifted accordingly and linearly inter-
polated to maintain time alignment (because higher-pitched transpositions also acquire
a faster tempo). Using this approach, we created a smoother distribution of the train-
ing labels and reduced bias toward the specific pitches present in the training set. Our
classification approach relies on learning separate decision boundaries for each indi-
vidual melody note with no direct mechanism to ensure consistency between similar
note classes (e.g. C4 and C#4), or to improve the generalization of one note-class by
analogy with its neighbors in pitch. Using a transposition-expanded training restores
some of the advantages we might expect from a more complex scheme for tying the
parameters of pitchwise-adjacent notes: although the parameters for each classifier are
separate, classifiers for notes that are similar in pitch have been trained on transposi-
tions of many of the same original data frames. Resampling expanded our total training
pool by a factor of 13 to around 456,000 frames.

2.4 Validation and Test Sets

Research progress benefits when a community agrees a consistent definition of their
problem of interest, then goes on to define and assemble standard tests and data sets.
Recently, the Music Information Retrieval (MIR) community has begun formal evalua-
tions, starting with the Audio Description Contest at the 2004 International Symposium
on Music Information Retrieval (ISMIR/ADC 2004) [Gomez et al., 2004]. Its succes-
sor is the Music Information Retrieval Evaluation eXchange (MIREX 2005) [Downie
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et al., 2005]. Each consisted of numerous MIR-related evaluations including predomi-
nant melody extraction. The ADC 2004 test set is composed of 20 excerpts, four from
each of five styles, each lasting 10-25 s, for a total of 366 s of test audio. The MIREX
2005 melody evaluation created a new test set consisting of 25 excerpts ranging in
length from 10-40 s, giving 536 s total. Both sets include excerpts where the domi-
nant melody is played on a variety of musical instruments including the human voice;
the MIREX set has more of a bias to pop music. In this paper, all of our experiments
are conducted using the ADC 2004 data as a development set, since the MIREX set is
reserved for annual evaluations

3 Acoustic Features

Our acoustic representation is based on the ubiquitous and well-known spectrogram,
which converts a sound waveform into a distribution of energy over time and frequency,
very often displayed as a pseudocolor or grayscale image like the middle pane in figure
1; the base features for each time-frame can be considered as vertical slices through
such an image. Specifically, the original music recordings (melody plus accompani-
ment) are combined into a single (mono) channel and downsampled to 8 kHz. We
apply the short-time Fourier transform (STFT), usingN = 1024 point transforms (i.e.
128 ms), anN -point Hanning window, and a 944 point overlap of adjacent windows
(for a 10 ms hop between successive frames). Only the coefficients corresponding to
frequencies below 2 kHz (i.e. the first 255 bins) were used in the feature vector.

We compared different feature preprocessing schemes by measuring their influ-
ence on a baseline classifier. Our baseline pitch classifier is an all-versus-all (AVA)
algorithm for multiclass classification using SVMs trained by Sequential Minimal Op-
timization [Platt, 1998], as implemented in the Weka toolkit [Witten and Frank, 2000].
In this scheme, a majority vote is taken from the output of(N2 − N)/2 discriminant
functions, comparing every possible pair of classes. For computational reasons, we
were restricted to a linear kernel. Each audio frame is represented by a 256-element
input vector, withN = 60 classes corresponding to five-octaves of semitones from G2
to F#7. In order to classify the dominant melodic pitch for each frame, we assume the
melody note at a given instant to be solely dependent on the normalized frequency data
below 2 kHz. For these results, we further assume each frame to be independent of all
other frames. More details and experiments concerning the classifier will be presented
in section 4.

Separate classifiers were trained using six different feature normalizations. Of
these, three use the STFT, and three are based on (pseudo)autocorrelation. In the first
case, we simply used the magnitude of the STFT normalized such that the maximum
energy frame in each song had a value equal to one. For the second case, the magni-
tudes of the bins are normalized by subtracting the mean and dividing by the standard
deviation calculated in a 71-point sliding frequency window; there is no normalization
along time. The goal is to remove some of the influence due to different instrument
timbres and contexts in training and test data. The third normalization scheme applied
cube-root compression to the STFT magnitude, to make larger spectral magnitudes ap-
pear more similar; cube-root compression is commonly used as an approximation to
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Table 1: Effect of normalization: Frame accuracy percentages on the ADC 2004 held-
out test set for each of the normalization schemes considered, trained on either multi-
track audio alone, MIDI syntheses alone, or both data sets combined. (Training sets are
roughly balanced in size, so results are not directly comparable to others in the paper.)

Training data
Normalization Multi-track MIDI Both
STFT 56.4 50.5 62.5
71-pt norm 54.2 46.1 62.7
Cube root 53.3 51.2 62.4
Autocorr 55.8 45.2 62.4
Cepstrum 49.3 45.2 54.6
LiftCeps 55.8 45.3 62.3

the loudness sensitivity of the ear.
A fourth feature took the inverse Fourier transform (IFT) of the magnitude of the

STFT, i.e. the autocorrelation of the original windowed waveform. Taking the IFT of
the log-STFT-magnitude gives the cepstrum, which comprised our fifth feature type.
Because overall gain and broad spectral shape are separated into the first few cepstral
bins, whereas periodicity appears at higher indexes, this feature also performs a kind of
timbral normalization. We also tried normalizing these autocorrelation-based features
by liftering (scaling the higher-order cepstra by an exponential weight). Scaling of
individual feature dimensions can make a difference to SVM classifiers, depending on
the kernel function used.

Table 1 compares the accuracy, on a held-out test set, of classifiers trained on each
of the different normalization schemes. Here we show separate results for the classi-
fiers trained on multi-track audio alone, MIDI syntheses alone, or both data sources
combined. The frame accuracy results are for the ADC 2004 melody evaluation set
and correspond to melodic pitch transcription to the nearest semitone.

The most obvious result in table 1 is that all the features, with the exception of
Cepstrum, perform much the same, with a slight edge for the across-frequency local
normalization. This is perhaps not surprising since all features contain largely equiv-
alent information, but it also raises the question as to how effective our normalization
(and hence the system generalization) has been. It may be that a better normalization
scheme remains to be discovered.

Looking across the columns in the table, we see that the more realistic multi-track
data forms a better training set than the MIDI syntheses, which have much lower acous-
tic similarity to most of the evaluation excerpts. Using both, and hence a more diverse
training set, always gives a significant accuracy boost – up to 9% absolute improve-
ment, seen for the best-performing 71-point normalized features. (We will discuss
significance levels for these results in the next section.)

Table 2 shows the impact of including the replicas of the training set transposed
through resampling over±6 semitones. Resampling achieves a substantial improve-
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Table 2: Impact of resampling the training data: Frame accuracy percentages on the
ADC 2004 set for systems trained on the entire training set, either without any resam-
pling transposition, or including transpositions out to±6 semitones (500 frames per
transposed excerpt, 17 excerpts, 1 or 13 transpositions).

Training set # Training frames Frame acc %
No resampling 8,500 60.2

With resampling 110,500 67.7

ment of 7.5% absolute in frame accuracy, underlining the value of broadening the range
of data seen for each individual note.

4 Pitch Classification

In the previous section, we showed that classification accuracy seems to depend more
strongly on training data diversity than on feature normalization. It may be that the
SVM classifier we used is better able to generalize than our explicit feature normaliza-
tion. In this section, we examine the effects of different classifier types on classification
accuracy, as well as looking at the influence of the total amount of training data used.

4.1 N-way All-Versus-All SVM Classification

Our baseline classifier is the AVA-SVM described in section 3 above. Given the large
amount of training data we were using (over105 frames), we chose a linear kernel,
which requires training time on the order of the number of feature dimensions cubed
for each of theO(N2) discriminant functions. More complex kernels (such as Radial
Basis Functions, which require training time on the order of the number ofinstances
cubed) were computationally infeasible for our large training set. Recall that labels are
assigned independently to each time frame at this stage of processing.

Our first classification experiment was to determine the number of training in-
stances to include from each audio excerpt. The number of training instances selected
from each song was varied using both incremental sampling (taking a limited num-
ber of frames from the beginning of each excerpt) and random sampling (picking the
frames from anywhere in the excerpt), as displayed in figure 2. Randomly sampling
feature vectors to train on approaches an asymptote much more rapidly than adding
the data in chronological order. Random sampling also appears to exhibit symptoms of
overtraining.

The observation that random sampling achieves peak accuracy with only about
400 samples per excerpt (out of a total of around 3000 for a 30 s excerpt with 10 ms
hops) can be explained by both signal processing and musicological considerations.
Firstly, adjacent analysis frames are highly overlapped, sharing 118 ms out of a 128 ms
window, and thus their feature values will be very highly correlated (10 ms is an un-
necessarily fine time resolution to generate training frames, but is the standard used in
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Figure 2: Variation of classification accuracy with number of training frames per ex-
cerpt. Incremental sampling takes frames from the beginning of the excerpt; random
sampling takes them from anywhere. Training set does not include resampled (trans-
posed) data.

the evaluation). From a musicological point of view, musical notes typically maintain
approximately constant spectral structure over hundreds of milliseconds; a note should
maintain a steady pitch for some significant fraction of a beat to be perceived as well-
tuned. If we assume there are on average 2 notes per second (i.e. around 120 bpm)
in our pop-based training data, then we expect to see approximately 60 melodic note
events per 30 s excerpt. Each note may contribute a few usefully different frames to
tuning variation such as vibrato and variations in accompaniment. Thus we expect
many clusters of largely redundant frames in our training data, and random sampling
down to 10% (or closer to one frame every 100 ms) seems reasonable.

This also gives us a perspective on how to judge the significance of differences in
these results. The ADC 2004 test set consists of 366 s, or 36,600 frames using the
standard 10 ms hop. A simple binomial significance test can compare classifiers by es-
timating the likelihood that random sets ofindependenttrials could give the observed
differences in empirical error rates from an equal underlying probability of error. Since
the standard error of such an observation falls as1/

√
N for N trials, the significance

interval depends directly on the number of trials. However, the arguments and ob-
servations above show that the 10 ms frames are anything but independent; to obtain
something closer to independent trials, we should test on frames no less than 100 ms
apart, and 200 ms sampling (5 frames per second) would be a safer choice. This corre-
sponds to only 1,830 independent trials in the test set; a one-sided binomial significance
test suggests that differences in frame accuracies on this test of less than 2.5% are not
statistically significant at the accuracies reported in this paper.

A second experiment examined the incremental gain from adding novel training
excerpts. Figure 3 shows how classification accuracy increased as increasing numbers
of excerpts, from 1 to 16, were used for training. In this case, adding an excerpt con-
sisted of adding 500 randomly-selected frames from each of the 13 resampled transpo-

9



0 20k 40k 60k 80k 100k
35

40

45

50

55

60

65

70

75

Number of training frames (500 x 13 = 6500 per excerpt)

Training Data + Resampled Audio

Pooled
Per excerpt

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 / 

%

5 excerpts

10 excerpts

15 excerpts

Figure 3: Variation of classification accuracy with the total number of excerpts in-
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sitions described in section 2, or 6,500 frames per excerpt. Thus, the largest classifier
is trained on 104k frames, compared to around 15k frames for the largest classifier in
figure 2. The solid curve shows the result of training the same number of frames ran-
domly drawn from the pool of the entire training set; again, we notice that the system
appears to reach an asymptotes by 20k total frames, or fewer than 100 frames per trans-
posed excerpt. We believe, however, that the level of this asymptote is determined by
the total number of excerpts; if we had more novel training data to include, we believe
that the “per excerpt” trace will continue to climb upwards. We return to this point in
the discussion.

In figure 4, the pitched frame transcription success rates are displayed for the SVM
classifier trained using the resampled audio. An important weakness of the classifier-
based approach is that any classifier will perform unpredictably on test data that does
not resemble the training data. While model-based approaches have no problem in
principle with transcribing rare, extreme pitches as long as they conform to the explicit
model, by deliberately ignoring our expert knowledge of the relationship between spec-
tra and notes our system is unable to generalize from the notes it has seen to different
pitches. For example, the highest pitch values for the female opera samples in the ADC
2004 test set exceed the maximum pitch in all our training data. In addition, the ADC
2004 set contains stylistic genre differences (such as opera) that do not match our pop
music corpora. That said, many of the pitch errors turn out to be the right pitch chroma
class but at the wrong octave (e.g. F6 instead of F7). When scoring is done on chroma
class alone – i.e. using only the 12 classes A, A#, . . . G, and ignoring the octave num-
bers – the overall frame accuracy on the ADC 2004 test set improves from 67.7% to
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Figure 4: Variation in voiced transcription frame accuracy across the 20 excerpts of
the ADC 2004 evaluation set (4 examples from each of 5 genre categories, as shown).
Solid line shows the classification-based transcriber; dashed line shows the results of
the best-performing system from the 2004 evaluation. Top pane is raw pitch accuracy;
bottom pane folds all results to a single octave of 12 chroma bins, to ignore octave
errors.

72.7%.

4.2 Multiple One-Versus-All SVM Classifiers

In addition to the N-way melody classification, we trained 52 binary, one-versus-all
(OVA) SVM classifiers representing each of the notes present in the resampled training
set. We took the distance-to-classifier-boundary hyperplane margins as a proxy for a
log-posterior probability for each of these classes; pseudo-posteriors (up to an arbitrary
scaling power) were obtained from the distances by fitting a logistic model. Transcrip-
tion is achieved by choosing the most probable class at each time frame. While OVA
approaches are seen as less sophisticated, Rifkin and Klautau [2004] present evidence
that they can match the performance of more complex multiway classification schemes.
Figure 5 shows an example ‘posteriorgram’ (time-versus-class image showing the pos-
teriors of each class at each time step) for a pop excerpt, with the ground truth labels
overlaid.

Since the number of classifiers required for this task isO(N) (unlike theO(N2)
classifiers required for the AVA approach) it becomes computationally feasible to ex-
periment with additional feature kernels. Table 3 displays the best result classification
rates for each of the SVM classifiers. Both OVA classifiers perform marginally better
than the pairwise classifier, with the slight edge going to the OVA SVM using an RBF
kernel.
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Table 3: Frame Accuracy for multiway classifiers based on all-versus-all (AVA) and
one-versus-all (OVA) structures. Because there are fewer classifiers in an OVA struc-
ture, it was practical to try an RBF kernel. Accuracies are given for both raw pitch
transcription, and chroma transcription (which ignores octave errors).

Classifier Kernel Pitch Chroma
AVA SVM Linear 67.7 72.7
OVA SVM Linear 69.5 74.0
OVA SVM RBF 70.7 74.9

5 Voiced Frame Classification

Complete melody transcription involves not only deciding the note of frames where
the main melody is active, but also discriminating between melody and non-melody
(accompaniment) frames. In this section, we briefly describe two approaches for clas-
sifying instants as voiced (dominant melody present) or unvoiced (no melody present).

In the first approach, voicing detection is performed by simple energy thresholding.
Spectral energy in the range200 < f < 1800 Hz is summed for every 10 ms frame.
Each value is normalized by the median energy in that band for the given excerpt, and
instants are classified as voiced or unvoiced via a global threshold, tuned on develop-
ment data. Since the melody instrument is usually given a high level in the final musical
mix, this approach is quite successful (particularly after we have filtered out the low-
frequency energy of bass and drums). In keeping with our classifier-based approach,
we also tried a second mechanism of a binary SVM classifier based on the normal-
ized magnitude of the STFT, which could potentially learn particular spectral cues to
melody presence. We tried both linear and RBF kernels for this SVM. The voiced
melody classification statistics are displayed in table 4, which shows that the simple
energy threshold provides better results; however none of the classifiers achieves a
higher frame accuracy than simply labeling all frames as voiced. Because the test data
is more than 85% voiced, any classifier that attempts to identify unvoiced frames risks
making more mislabelings than unvoiced frames correctly detected. We also report
performance in terms ofd′, a statistic commonly used in evaluating detection systems
in an effort to discount the influence of trading false alarms for false rejects.d′ is the
separation, in units of standard deviation, between the means of two equal-variance
one-dimensional Gaussians that would give the same balance of false alarms to false
rejects if they were the underlying distributions of the two classes; ad′ of zero indicates
indistinguishable distributions, and larger is better.

While our voicing detection scheme is simple and not particularly accurate, it is
not the main focus of the current work. The energy threshold gave us a way to iden-
tify nearly 90% of the melody-containing frames, without resorting to the crude choice
of simply treating every frame as voiced. However, more sophisticated approaches to
learning classifiers for tasks with highly-skewed priors offer a promising future direc-
tion [Chawla et al., 2004].

12



time / sec

prob

fr
eq

 ./
 H

z

0 1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

1600

1800

2000

-30

-20

-10

0

10

20

30

M
ID

I n
ot

e 
nu

m
be

r

0 1 2 3 4 5 6 7 8
45

50

55

60

65

70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

pop3

dB

Figure 5: Spectrogram and posteriorgram (pitch probabilities as s function of time) for
the first 8 s of pop music excerpt “pop3” from the ADC 2004 test set. The ground-truth
labels, plotted on top of the posteriorgram, closely track the mode of the posteriors for
the most part. However, this memoryless classifier also regularly makes hare-brained
errors that can be corrected through HMM smoothing.

6 Hidden Markov Model Post Processing

The posteriorgram in figure 5 clearly illustrates both the strengths and weaknesses of
the classification approach to melody transcription. The success of the approach in
estimating the correct melody pitch from audio data is clear in the majority of frames.
However, the result also displays the obvious fault of the approach of classifying each
frame independently of its neighbors: the inherent temporal structure of music is not
exploited. In this section, we attempt to incorporate the sequential structure that may
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Table 4: Voicing detection performance. “Voicing Det” is the proportion of voiced
frames correctly labeled; “False Alarms” is the proportion of unvoiced frames incor-
rectly labeled, so labeling all frames as voiced scores 100% on both counts, the first
row. d′ gives a threshold-independent measure of the separation between two Gaussian
distributions that would exhibit this performance. “Vx Frame Acc” is the proportion of
all frames given the correct voicing label.

Classifier Voicing Det False Alarms d′ Vx Frame Acc
All Voiced 100% 100% 0 85.6%
Energy Threshold 88.0% 32.3% 1.63 78.4%
Linear SVM 76.1% 46.4% 0.80 73.0%
RBF SVM 82.6% 48.1% 0.99 78.3%

be inferred from musical signals. We use hidden Markov models (HMMs) as one of
the simplest yet most flexible approaches to capturing and using temporal constraints.

6.1 HMM State Dynamics

Similarly to our data driven approach to classification, we learn temporal structure
directly from the training data. Our HMM states correspond directly to the current
melody pitch, thus the state dynamics (transition matrix and state priors) can be esti-
mated from our ‘directly observed’ state sequences – the ground-truth transcriptions
of the training set. The note class prior probabilities, generated by counting all frame-
based instances from the resampled training data, and the note class transition matrix,
generated by observing all note-to-note transitions, are displayed in figure 6 (a) and (b)
respectively.

Note that although some bias has been removed in the note priors by symmetrically
resampling the training data, the sparse nature of a transition matrix learned from a
limited training set is likely to generalize poorly to novel data. In an attempt to mitigate
this lack of generalization, each element of the transition matrix is replaced by the mean
of the corresponding diagonal. This is equivalent to assuming that the probability of
making a transition between two pitches depends only on the interval between them
(in semitones), not on their absolute frequency. This normalized approach is close to
implementing a relative transition vector, and the resulting normalized state transition
matrix is displayed in figure 6 (c).

6.2 Smoothing discrete classifier outputs

We can use an HMM to apply temporal smoothing even if we only consider the labels
assigned by the frame-level classifier at each stage and entirely ignore any information
on the relatively likelihood of other labels that might have been available prior to the
final hard decision being made by the classifier. If the model state at timet is given by
qt, and the classifier output label isct, then the HMM will achieve temporal smoothing
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Figure 6: Hidden Markov parameters learned from the ground truth and confusion
matrix data. Top (pane (a)): class priors. Middle: state transition matrix, raw (pane (b)),
and regularized across all notes (pane (c)). Bottom: Observation likelihood matrix for
the discrete-label smoothing HMM, raw (pane (d)) and regularized across notes (pane
(e)).

by finding the most likely (Viterbi) state sequence i.e. maximizing∏
t

p(ct|qt)p(qt|qt−1) (1)

p(qt|qt−1) is the transition matrix estimated from ground-truth melody labels in the
previous subsection, but we still needp(ct|qt), the probability of seeing a particular
classifier labelct given a true pitch stateqt. We estimate this from the confusion matrix
of classifier frames – i.e. counts normalized to givep(ct, qt) – from some development
corpus. In this case, we reused the training set, which might lead to an overoptimistic
belief about how wellct will reflect qt, but was our only practical option. Figure 6
(d) shows the raw confusion matrix normalized by columns (qt) to give the required
conditionals; pane (e) shows this data again regularized by setting all values in a diag-
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Table 5: Melody transcription frame accuracy percentages for different systems with
and without HMM smoothing. “Voicing Acc” is the proportion of frames whose voic-
ing state is correctly labeled. “Pitch Acc” is the proportion of pitched frames assigned
the correct pitch label. “Total Acc” is the proportion of all frames assigned both the
correct voicing label, and, for voiced frames, the correct pitch label. All results are
based on the all-versus-all SVM classifier using an RBF kernel. The “Memoryless”
classifier simply takes the most likely label from the frame classifier after gating by the
voicing detector; “MemlessAllVx” ignores the voicing detection and reports a pitch for
all frames (to maximize pitch accuracy). “Discrete” applies HMM smoothing to this
label sequence without additional information, “Posteriors” uses the pseudo-posteriors
from the OVA SVM to generate observation likelihoods in the HMM, and “PostAllVx”
is the same except the unvoiced state is excluded (by setting its frame posterior to zero).

Classifier Voicing Acc Pitch Acc Total Acc
Memoryless 85.1 71.2 70.7
MemlessAllVx 86.1 76.8 66.1
Discrete 83.6 71.9 71.6
Posteriors 86.2 74.5 73.2
PostAllVx 86.1 79.4 68.3

onal to be equal, except for the zero (unvoiced) state, which is smoothed a little by a
moving average, but otherwise retained. From the confusion (observation) matrix, we
can see that the most frequently confused classifications are between members of the
same chroma (i.e. separated by one or more octaves in pitch) and between notes with
adjacent pitches (separated by one semitone).

For the total transcription problem (dominant melody transcription plus voicing
detection), our baseline (memoryless) transcription is simply the pitch classifier output
gated by the binary energy threshold. If at each instant we use the corresponding
column of the observation matrix in our Viterbi decoder dynamic-programming local-
cost matrix, we can derive a smoothed state sequence that removes short, spurious
excursions of the raw pitch labels. Despite the paucity of information obtained from
the classifier, table 5 shows that this approach results in a small but robust improvement
of 0.9% absolute in total frame accuracy.

6.3 Exploiting classifier posteriors

We constructed the OVA classifier to give us an approximation to log-posteriors for
each pitch class, and we can use this detailed information to improve our HMM de-
coding. Rather than guessing the local likelihood of a particular note given the single
best note, we can look directly at the likelihood of each note according to the classi-
fiers. Thus, if the acoustic data at each time isxt, we may regard our OVA classifier as
giving us estimates of

p(qt|xt) ∝ p(xt|qt)p(qt) (2)
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i.e. the posterior probabilities of each HMM state given the local acoustic features.
Thus, by dividing each (pseudo)posterior by the prior of that note, we get scaled like-
lihoods that can be employed directly in the Viterbi search to the solution of equation
1. The unvoiced state needs special treatment, since it is not considered by the main
classifier. We tried several approaches, including decoding the pitch HMM with the
unvoiced state excluded (setting its observation likelihood to zero), then applying voic-
ing decisions from a separate voicing HMM, or setting the observation posterior of the
unvoiced state to1/2±α, whereα was tuned on the development (training set), which
gave significantly better results.

As shown in table 5, using this information achieves another robust improvement of
1.6% absolute in total frame accuracy over using only the 1-best classification informa-
tion. More impressively, the accuracy on the pitched frames jumps 3.3% absolute com-
pared to the memoryless case, since knowing the per-note posteriors helps the HMM to
avoid very unlikely notes when it decides to stray from the one-best label assigned by
the classifier. If we focus only on pitch accuracy (i.e. exclude the frames whose ground
truth is unvoiced from scoring), we can maximize pitch accuracy with a posterior-based
HMM decode that excludes the unvoiced state, achieving a pitch accuracy of 79.4%, or
2.6% better than the comparable unsmoothed case.

7 Discussion and Conclusions

We have described techniques for recovering a sequence of melodic pitch labels from
a complex audio signal. Our approach consists of two steps: first, a discriminatively-
trained local pitch classifier operating on single time frames, followed by a hidden
Markov model trained to apply some of the temporal constraints observed in real
melody label sequences to the resulting signal. This combination is ad-hoc: if the
task is to exploit local features subject to sequential constraints, then we should look
for an approach that optimizes the entire problem at once. Recently, Taskar et al. [2003]
have suggested an approach to using the advantages of classifier-margin-maximization
from SVMs in a Markov model, but we expect that solving the entire optimization
problem would be impractical for the quantities of training data we are using. The im-
portant question is whether there are significant differences in how local features would
be processed depending on the context in such a scheme, or whether the problem can
in fact be separated into the two stages we have implemented without significant im-
pact on performance. Looking at the intermediate posterior representation illustrated
in figure 5, we suspect that this is an adequate representation of the acoustic informa-
tion for the sequential modeling to be operating on. We feel that the most promising
areas for improvement are improving the frame-level accuracy of this front end and
more sophisticated post-processing (including improved voicing detection), and not a
tighter integration between the two stages, which seem comfortably separate from our
perspective.

There are several directions in which we plan to continue this work. Although
this paper has considered the problem of melody extraction i.e. assigning at most one
pitch to each time step, the OVA classifiers can be run and examined independently.
With a different kind of decoding scheme running over the output posteriors, it may be
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possible to report more than one note for each time frame i.e. polyphonic transcription.
Alternatively, there may be a direct classification path to polyphonic transcription i.e.
training classifiers to recognize entire chords, although this raises serious combinatoric
problems.

We believe the local harmonic structure carried by a chord could provide significant
additional information and constraints for melody transcription. In conventional west-
ern music, there is an underlying harmonic progression of chords, and the melody notes
are strongly dependent on the current chord. The chord sequence itself has a strong se-
quential structure, and is dependent on the overall key of the piece. This hierarchy
of hidden states is a natural fit to hidden Markov modeling, based either on separate
chord-related features or on the note observations alone, and a system that explicitly
represents the current chord can have a more powerful, chord-dependent transition ma-
trix for the pitch state.

We have shown that a pure classification approach to melody transcription is vi-
able, and can be successful even when based on a modest amount of training data.
In the MIREX 2005 evaluation, we entered the system denoted “AVA SVM” in this
paper, without any HMM smoothing, which ranked third of ten entries; by switching
to the OVA architecture, the RBF kernel, and the posterior-based HMM smoothing,
we achieve a 5.5% absolute improvement in overall frame accuracy (from 67.7% to
73.2%), and believe this would carry across to the MIREX test. (The MIREX 2005 re-
sults are visible athttp://www.music-ir.org/evaluation/mirex-results/

audio-melody/ .)
The natural question is: what is the upper limit on the performance achievable by

this approach? One attraction of data-driven approaches is that further improvements
can predictably be obtained by gathering additional training data. Figure 3 is the im-
portant example here: if we create ground truth for another 15 excerpts, how high can
our accuracy grow? The slope of accuracy vs. excerpt count looks quite promising, but
it may be reaching an asymptote. One of the most striking results of the recent MIREX
evaluation is that our radically different approach to transcription scored much the same
as the traditional model-based approaches; the performance spread across all systems
on raw pitch accuracy was within 10%, from 58% to 68%.

This suggests that the limiting factors are not so much in the algorithms, but in
the data, which might consist of 60-70% of relatively easy-to-transcribe frames with
the pitch of the remaining frames very difficult to transcribe for classifier- or model-
based approaches alike. If this were the case, we would not expect rapid improvements
from our classifier with modest amounts of training data, although there must be some
volume of training data that would allow us to learn these harder cases.

Given the expense of constructing additional training data – either in trying to beg
multi-track recordings from studios and artists, or in manually correcting noisy first-
pass transcripts, we are also curious about the tradeoff between quantity and quality in
training data. Raw musical audio is available in essentially unlimited quantities: given
an automatic way to extract and label ground-truth, we might be able to construct a
positive-feedback training loop, a system that attempts to transcribe the melody (aided
perhaps by weak annotation, such as related but unaligned MIDI files), then retrains it-
self on the most confidently-recognized frames, then repeats. Bootstrap training based
on lightly-annotated data of this flavor has proven successful for building speech recog-
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nition systems from very large training sets [Lamel et al., 2002].
However, classification-based transcription has a number of other attractive features

that make it interesting even if it cannot provide a significant performance improvement
over conventional methods. One application that we find particularly appealing is to
train the classifier on the accompaniment datawithout the lead melody mixed in, but
still using the lead melody transcripts as the target labels. Then we will have a classifier
trained to predict the ‘appropriate’ melody from accompaniment alone. With suitable
temporal smoothness constraints, as well as perhaps some random perturbation to avoid
boring, conservative melody choices, this could turn into a very interesting kind of
automatic music generation or robotic improvisor.
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