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Abstract

To capture essentially everything that you hear takes little more than a $100
MP3 player with a built-in microphone; a year’s worth of recordings is maybe 60
GB, or a small stack of writable DVDs. We have been collecting this kind of ‘per-
sonal audio’ on and off for a couple of years, and experimenting with methods to
index and access the resulting data. Audio archives have several distinctive features
when compared to other kinds of artificial memory, not least the serious privacy
issues that arise when recording conversations — which may be one reason they
have previously received almost no attention from the research community. At the
same time, continuous audio archives are minimally intrusive to collect, contain a
great deal of valuable information, and present some very interesting challenges in
providing convenient and useful access. We describe our experiments in segment-
ing and labeling these recordings into ‘episodes’ (relatively consistent acoustic
situations lasting a few minutes or more) using the BIC criterion (from speaker
segmentation) and spectral clustering. We also briefly discuss our experiences in
browsing and scanning the data, and our plans and ideas concerning future direc-
tions both for our research and for the technology of personal audio recording as a
whole.

Keywords: Audio Segmentation, Audio Clustering, Personal Archives, Envi-
ronment Recognition, Multimedia Content Analysis

1 Introduction

Preservation and recollection of facts and events are central to human experience and
culture, yet our individual capacity to recall, while astonishing, is also famously falli-
ble. As a result, technological memory aids date back to cave paintings and beyond;
more recent trends include the shift from specific, active records (such as making notes)
to transparent, comprehensive archives (such as the “sent-mail” box of an email appli-



cation) — which become increasingly valuable as the tools for retrieving the contents
improve.

We have been investigating what we see as a natural extension of this trend to the
large-scale collection of daily personal experiences in the form of audio recordings,
striving to capture everything heard by the individual user during the time archives are
collected (e.g. during the working day). Our interest in this problem stems from work
in content-based retrieval, which aims to make multimedia documents such as movies
and videos searchable in much the same way that current search engines allow fast and
powerful retrieval from text documents and archives. However, automatic indexing of
movies has to compete with human annotations (e.g. subtitles) — if the ability to search
is important enough to people, it will be worth the effort to perform manual annotation.
But for data of speculative or sparse value, where manual annotation would be out of
the question, automatic annotation is a much more compelling option. Recordings of
everyday experiences, which may contain interesting material in much less than 1% of
their span, are a promising target for automatic analysis.

The second spur to our interest in this project was the sudden availability of de-
vices capable of making these kind of personal audio recordings at low cost, with high
reliability, and with minimal impact to the individual. Figure 1 shows one device we
have used, an MP3 player with 1GB of flash memory and a built-in microphone, able
to record continuously for about 16 hours, powered by a single rechargeable AA bat-
tery. This kind of technology, along with the plummeting cost of mass storage, makes
the collection of large personal audio archives astonishingly cheap and easy. However,
using current tools a 16 hour recording (under 500MB at 64 kbps, which gives very
reasonable quality for a mono MPEG-Audio file) is singularly useless: to review a par-
ticular event would require loading the whole file into an audio browser and making
some kind of linear search: guessing the approximate time of the event of interest, then
listening to little snippets and trying to figure out whether to scan forwards or back-
wards. The time required for this kind of search begins to approach the duration of the
original recording, and renders any but the most critical retrieval completely out of the
question.

Our interest is to develop tools and techniques that could turn these easily-collected
personal audio archives into something useful and worthwhile. As part of this, we are
interested in imagining and discovering what kind of uses (and what pitfalls and limi-
tations) this kind of data presents. Our initial work, described in this paper, considers
the broad-scale information contained in such recordings, such as the daily locations
and activities of the user — the kind of information that might be recorded in an ap-
pointment calendar. In particular, we describe our approach for dividing long-duration
recordings into segments on the scale of minutes that contain consistent properties, and
in clustering and classifying these segments into a few, recurrent activities. While we
do not, as yet, feel that we have developed sufficiently powerful tools to truly reveal the
potential of these recordings, we are convinced that archives of this kind will, before
long, become a commonplace addition to each individual's personal effects, and will
become a routine source of valuable personal recollections.



1.1 The potential of audio archives

Although our current experiments are quite limited in scope, it is worthwhile taking a
little time to consider the potential value and utility of these kinds of recordings, once
the suitable indexing techniques are developed. Audio archives contrast with image or
video archives in a number of important dimensions. Firstly, they capture information
from all directions and are largely robust to sensor position and orientation (and light-
ing), allowing data collection without encumbering the user. Secondly, the nature of
audio is distinct from video, making certain kinds of information (e.g. what is said)
more accessible, and other information (e.g. the presence of nonspeaking individuals)
unavailable. In general, processing the content of an audio archive could provide a
wide range of useful information, including:

e Location: A physical location can be characterized by its acoustic ambience,
which may even reveal finer gradations (e.g. the same restaurant empty vs. busy),
although ambience is also vulnerable to confusions (e.g. mistaking one restau-
rant for another).

e Activity: Different activities are in many cases easily distinguished by their
sounds e.g. typing on a computer vs. having a conversation vs. reading.

e People: Speaker identification based on the acoustic properties of voice is a
mature and successful technology [Reynolds, 2002]. However, it requires some
adaptation to work with the variable quality and noise encountered in personal
audio.

e Words: Ideally, we would like to handle queries like “This topic came up in
a discussion recently. What was that discussion about?” This would require
not only recognizing all the words of the earlier discussion, but summarizing
and matching them. This is ambitious, although similar applications are being
pursued for recordings of meetings [Renals and Ellis, 2003].

In the next section we review background, both in personal archive recording and
in audio segmentation and classification. We then describe our processing of personal
audio recordings, considering the features appropriate for long-duration recordings,
identifying segmentation points, and clustering and classifying the resulting segments.
Next, we discuss our initial efforts at displaying and interacting with this data, and in
integrating it with other ‘scavenged’ data such as online calendars. Finally, we describe
our current and future work that focusses more on specific events — particularly speech
—and some of the important privacy issues raised by this kind of technology.

2 Background

The concept of continuous, passive mechanical storage of experiences was initially ar-
ticulated by Bush [1945], but it was not until almost five decades later that the technol-
ogy to realize his vision became practical. Early experiments in live transmission from
body-worn cameras developed into independent wearable computers [Mann, 1997],
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Figure 1: Data capture equipment. In the middle of the picture is the iRiver flash mem-
ory recorder. The larger unit to the right is a data logger recording ambient tempera-
ture, which we have considered as a proxy for more specific ground truth on location
changes.

but it was still several years before researchers could seriously propose comprehensive
capture and storage portions of personal experience [Gemmel et al., 2002].

Analyzing continuous audio streams — including environmental sounds — was pro-
posed in some early experiments of Clarkson et al. [1998] and Clarkson [2002] which
focused on identifying specific, distinctive acoustic events. This work eventually led to
a project in which a continuous waking-hours record was collected for 100 days, and
then segmented and clustered, but using features only from forward- and backward-
facing fish-eye video.

Our work in segmenting and clustering based on recorded sound draws on work in
audio segmentation. Early work on discriminating between speech and music in radio
broadcasts [Scheirer and Slaney, 1997] became important for excluding non-speech
segments from speech recognizers intended to work with news broadcasts [Siegler
et al.,, 1997]. Since speech recognizers are able to ‘adapt’ their models to specific
speakers, it was also important to segment speech into different speakers’ turns and
cluster the disjoint segments originating from the same speaker, by agglomerative clus-
tering across likelihood ratios or measures such as the Bayesian Information Crite-
rion (BIC), which is better able to compare likelihoods between models with differing
numbers of parameters [Chen and Gopalakrishnan, 1998]. Other work in multimedia
content analysis spans a number of projects to segment sound tracks into predefined
classes such as speech, music, environmental sounds, and various possible mixtures
[Zzhang and Kuo, 2001]. Predefined classes allow model-based segmentation e.g. with
hidden Markov models (HMMs), but local measures of segment dissimilarity permit



segmentation even when no prior classes are assumed [Kemp et al., 2000].

3 Segmentation and clustering of personal audio

To ease the problem of locating and reviewing a particular event in a lengthy recording,
we seek automatic means to generate a coarse index into the recording. At the broadest
level, this index can divide a multi-hour recording into episodes consisting of, say, 5
minutes to an hour, during which statistical measures of the audio indicate a consistent
location or activity. By segmenting the recording at changes in an appropriate statistic,
then clustering the resulting segments to identify similar or repeated circumstances, a
user could identify and label all episodes of a single category (for instance, attending
lectures by Professor X) with minimal effort. Below, we describe our approaches for
extracting features, locating segmentation points, and clustering the resulting episodes.

3.1 Features

Unlike audio analysis applications such as speech recognition that aim to distinguish
audio events at a fine time scale, we are interested in segmenting and classifying much
longer segments, and not becoming distracted by momentary deviations. We opted
for a two-level feature scheme, with conventional short-time features (calculated over
25 ms windows) being summarized by statistics over a longer basic time-frame of up
to 2 min. Long time-frames provide a more compact representation of long-duration
recordings and also have the advantage that the properties of the background ambience
may be better represented when transient foreground events are averaged out over a
longer window. We have experimented with several different short-time features and
several different statistics, and compared them empirically for their ability to support
segmentation and clustering of our ‘episodes’. The main results are presented below;
for more details see Ellis and Lee [20044a].

Our data consists of single-channel recordings resampled to 16 kHz. All features
start with a conventional Fourier magnitude spectrum, calculated over 25 ms windows
every 10 ms, but differ in how the 201 short-time Fourier transform (STFT) frequency
bins resulting from each 400-point STFT are combined together into a short-time fea-
ture vector. We compared:

e Linear-Frequency Spectrum formed by summing the STFT bins across fre-
quency in equal-sized blocks. The Linear-Frequency Spectrum for time:step
and frequency index is:

N/2+1

A[TL,]}: Z wij[nvk] (1)
k=0

whereX [n, k] are the squared-magnitudes from fkigooint STFT, and thev;,
define a matrix of weights for combining the STFT bins into the more compact
spectrum. We used 21 output bins to match the size of the other features.



e Auditory Spectrum, similarly formed as weighted sums of the STFT bins, but
using windows that approximate the bandwidth of the ear — narrow at low fre-
guencies, and broad at high frequencies — to obtain a spectrum whose detail
approximates, in some sense, the information perceived by listeners. A spacing
of 1 Bark per band gave us 21 bins, corresponding to a different matuixof
in egn. 1 above.

e Mel-frequency Cepstral Coefficients (MFCCs)use a different (but similar)
frequency warping, then apply a decorrelating cosine transform on the log-magnitudes.
MFCCs are the features most commonly used in speech recognition and other
acoustic classification tasks.

e Spectral Entropy: To preserve some of the information lost when summing
multiple STFT bins into a single value, we devised a feature to distinguish be-
tween energy distributed across the whole band, or concentrated in just a few of
the component bins. By considering the distribution of energy within the sub-
band as a pdf, we define a short-tigectral entropyat each time step and
each spectral channghs:

N/2+1
Hie. i kz:; Aln, J] lg( Aln. j] ) @

where the the band magnituddsn, j] from egn. 1 normalize the energy dis-
tribution within each weighted band to be pdf-like. This entropy feature can be
calculated for either of the subband schemes described above i.e. for any weight
matrix w;. Spectral entropy has intent and properties similar to the well-known
spectral flatness measure [Johnston, 1988].

To represent longer time frames of up to 2 min, we tried a number of statistics to
combine the set of short-time feature vectors (calculated at 10 ms increments) into a
single vector. We calculated the mean and standard deviation for each dimension before
or after conversion to logarithmic units (dB), giving four summary vectors,, oin,
1ap, andogp respectively, all finally expressed in dB units. We also calculate the
average of the entropy measuyrg, and the entropy deviation normalized by its mean
value,oy /. Figure 2 illustrates each of these statistics, based on the Bark-scaled
auditory spectrum, for eight hours of audio recorded on one day.

3.2 Segmentation

To segment the recordings into ‘episodes’ with internally-consistent properties, we
used the Bayesian Information Criterion (BIC). This provides a principled way to com-
pare the likelihood of models with different numbers of parameters that describe differ-
ent amounts of data. The speaker segmentation algorithm of Chen and Gopalakrishnan
[1998] uses BIC to compare every possible segmentation of a window that is expanded
until a valid boundary is found, meaning that the decisions are based on all time frames
back to the previous boundary, and far enough forward until the decision is adequately
confident.
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Figure 2: Examples of the six long-time-frame statistic features based on 21-band audi-
tory (Bark-scaled) spectra. The underlying data is eight hours of recordings including

a range of locations. White vertical lines show our hand-marked episode boundaries
(see text).



BIC is a likelihood criterion penalized by model complexity as measured by the
number of model parameters. If we are modeling a dat&set {z; : i = 1,...,N}
by some modeM with # (M) parameters, and(X, M) is the likelihood ofX under
the best parameterization 8f, then BIC is defined as a property of the dataset and
model:

BIC(X, M) = logL(X, M) — %#(M) log(N) ©)

A determines the ‘weight’ applied to model parameters, theoretically 1, but tunable
in practice. Given several different candidate models to explain a single dataset, the
model with the largest BIC gives the best fit according to this criterion.

The BIC-based segmentation procedure is as follows: A sequewregiofensional
audio feature vector® = {x; € R4 :i = 1,..., N} are modeled as independent draws
from either one or two multivariate Gaussian distributions. The null hypothesis is that
the entire sequence is drawn from a single distribution:

HO : {zla axN} NN(NCHEO) (4)

(whereN (i, ) denotes a multivariate Gaussian distribution with mean vectand

full covariance matrix:) which is compared to the hypothesis that there is a segment
boundary after samplei.e. that the first points are drawn from one distribution and
that the remaining points come from a different distribution:

Hy zy, @} ~ N(pn, 21),
{-’17t+1, ,ZEN} ~ N(,LLQ, 22)

The difference in BIC scores between these two models is a function of the candi-
date boundary positioh

(5)

E(X|H0)> Y 3 a() ©

ABIC(t) = log (E(X|H1) 53

whereL(X|H,) is the likelihood of¥ under hypothesi#l, etc., andd*+3d) /2 is the
number of extra parameters in the two-model hypoth&gis WhenABIC(t) > 0,

we place a segment boundary at titp@nd then begin searching again to the right of
this boundary and the search window si¥as reset. If no candidate boundaryneets

this criteria, the search window size is increased, and the search across all possible
boundarieg is repeated. This continues until the end of the signal is reached.

3.3 Clustering

Since recordings of daily activities are likely to contain a great many routine, repeated
circumstances, we apply unsupervised clustering to group the automatically-segmented
‘episodes’ into recurrences of the same location or activity. Then, with a small amount
of human input, appropriate labels can be propagated automatically to all members of
a cluster.



We used spectral clustering [Ng et al., 2001] which starts from a matrix of ‘affini-
ties’ (similarities) between every segment to be clustered. We begin with the sym-
metrized Kullback-Leibler (KL) divergence between single, diagonal-covariance Gaus-
sian models fit to the feature frames within each segment. For Gaussians, the sym-
metrized KL divergence is given by:

Dicws(ivd) = 5 (G = ) (570 + 2571 (i = 1)

(SIS + 20 - 21)) @)

wherey; is the unbiased estimate of the feature covariance within segmenis the
vector of per-dimension means for that segméns, the identity matrix, andr(-) is
the trace of a matrix. (Since some segments can be just a few frames long, we regular-
ized our covariance estimates with a small empirically-optimized constant added to the
leading diagonal.Dk 1.5 is zero when two segments have identical means and covari-
ances, and progressively larger as the distributions become more distinct. To convert
these distances to affinities, we use a quadratic exponential mapping, so the affinity
between segmenisaandj is given by:
N
a;; = exp (_;DKLES’])> (8)

o is a free parameter controlling the radius in distance space over which points are
considered similar; increasingleads to fewer, larger clusters. We tuned it by hand to
give reasonable results.

Clustering then consists in finding the eigenvectors of the affinity matrix. When the
affinities indicate a clear clustering (most values close to zero or one), the eigenvectors
will tend to have bimodal values, with each vector contributing a block on the diagonal
of a reconstructed affinity matrix whose rows and columns have been reordered to
make similar segments adjacent; in the simplest case, the nonzero elements in each of
the top eigenvectors indicate the dimensions belonging to each of the top clusters in
the original data. To deal with more general cases, we Kndusters in a set of(-
dimensional points formed by the rows of the fif§teigenvectors (taken as columns)

— i.e. each of theV original segments lies on a point defined by the values of the
corresponding elements from the tépeigenvectors of the affinity matrix, and points
with similar values across all these vectors will be clustered together. ChoAsing

the desired number of clusters, is always problematic: we chose it automatically by
considering every possible value up to some limit, using the size for which the Gaussian
mixture model we used for the final clustering had the best BIC score. (These details
of our clustering scheme are drawn from Ellis and Lee [2004b].)

4 Experiments with Long-Duration Recordings

Evaluating and developing our techniques required test data including ground truth
for segmentation points and episode categories. We manually annotated some 62 h of



audio recorded over 8 successive days (by author KL), marking boundaries wherever
there was a clear shift in environment and/or activity. This resulted in 139 segments
(average duration 26 min) which we assigned to 16 broad classes such as ‘street’,
‘restaurant’, ‘class’, ‘library’ etc. We note the risk of experimenter bias here, since
the labeling was performed by the researchers who were already aware of the kinds
of distinctions that would be possible or impossible for the system. Thus, although
our results may be optimistic for this reason, we believe they are still indicative of the
viability of these approaches.

4.1 Features and Segmentation Results

We evaluated the BIC segmentation scheme for each of our base feature/statistics by
adjusting the\ parameter described above to achieve a false alarm rate of one false
boundary every 50 min (i.e. 2% with 1 min time-frames, or a specificity of 98%), then
looking at the resulting correct-accept rate (probability of marking a frame as a bound-
ary given that it is a true boundary, also called sensitivity). A boundary placed within

3 min of the ground-truth position was judged correct, otherwise it was a false alarm,
as were boundaries beyond the first near to a ground-truth event. Table 1 compares the
results from the three different short-time features (linear spectrum, auditory spectrum,
and MFCC) represented by the six different summary statistics — except that spectral
entropy was not calculated for the MFCCs, since the coefficients don’t correspond to
contiguous frequency bands.

Table 1: Sensitivity @ Specificity = 0.98 for each feature set. Values greater than 0.8
are shown in bold. All features had 21 dimensions.

Short-time ftrs| i, | 0un | paB | 0aB b | on/pE
Linear Spec 0.723| 0.676| 0.355| 0.522| 0.734| 0.744
Auditory Spec| 0.766 | 0.738| 0.808 | 0.591| 0.811| 0.816
MFCC 0.734| 0.736| 0.145| 0.731| N/A N/A

Itis interesting to note that while all features perform similarly when linear averag-
ing is used, log-domain averaging reveals a wide variation with the auditory spectrum
clearly superior. The statistics of the entropy measure, describing the structure within
each frequency band and its variation, prove the most successful basis for segmenta-
tion. We also tried combinations of the 3 best featurgs;, pi, andoy /1y, for the
auditory spectrum, and used principal component analysis to compress the resulting
high-dimensional feature vectors. Our best result came from combinipgand gy
reduced to 3 and 4 dimensions respectively, giving a sensitivity of 0.874.

4.2 Clustering Results

Our best segmentation scheme produced 127 automatically-generated segments for our
62 h data set. Spectral clustering (using the same average spectrum features as used
for segmentation) then arranged these into 15 clusters. We evaluated these clusters by

10
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Figure 3: Confusion matrix for the sixteen segment class labels, calculated over the
3753 one-minute frames in the test data.

comparing them against the 16 labels used to describe the 139 ground-truth segments.
Since there is n@ priori association between the automatically-generated segments
and the hand-labeled ones, we chose this association to equate the most similar clusters
in each set, subject to the constraint of a one-to-one mapping. This resulted in one
ground-truth class (“street”) with no associated automatic cluster, and five more (“bil-
liards”, “class break”, “meeting”, “subway”, and “supermkt”) for which no frames
were correctly labeled, meaning the correspondences are arbitrary.

Since the automatic and ground-truth boundaries will not correspond, we evaluate
the clustering at the frame level i.e. for each 1 min time-frame, the ground-truth and
automatic labels were combined. Overall, the labeling accuracy at the frame level was
67.3% (which is also equal to the weighted average precision and recall, since the total
number of frames is constant). Figure 3 shows an overall confusion matrix for the
labels.

For comparison, direct clustering of one-minute frames without any prior cluster-
ing, and using an affinity based on the similarity of feature statistic distributions among
1 s subwindows, gave a labeling accuracy of 42.7% — better thaa phieri baseline
of guessing all frames as a single class (26.1%), but far worse than our segmentation-
based approach.

4.3 \Varying the time-frame

The results above are based on 60 s windows, our arbitrary initial choice motivated by
the granularity of the task. Returning to this parameter, we ran the entire system (both
segmentation and clustering) for time-frames varying from 0.25 s to 120 s to see how
this affected performance, holding other system parameters constant. Figure 4 shows
the overall frame accuracy of the clustering as a function of time-frame length. The
lower trace gives the system results, showing variation from 65% to over 80% frame
accuracy, with the best results achieved at the shortest time frames, and significant
degradation for time-frames above 10 s. The upper trace shows the best result from

11
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Figure 4: Effect on labeling frame accuracy of varying the basic time-frame duration.

an exhaustive grid search over the clustering paraméteesnd o, giving an upper
bound in performance. We see that 3 s is the time-frame with the best performance
— arguably still long enough to capture background ambience statistics by averaging
over foreground transients, but much shorter than (and distinctly superior to) the 60 s
window we had used thus far.

We also experimented with basing the clustering on different features, which of
course need not be the same as those used in segmentation. The results above are based
on the 21-dimensional log-domain average auditory specjiyg which achieved
a 76.8% frame-level labeling accuracy with the 3 s window. Using the normalized
entropy deviationg i /1 increased this to 82.5%, and combining both features with
the mean entropy achieved the best result of 82.8%.

Note, however, that we have not reported the segmentation performance — shorter
time frames gave many more inserted segmentation points, which did not, however, im-
pact labeling accuracy since the resulting short segments were still correctly clustered
on the whole. For the indexing application, however, excess segment boundaries are a
problem, so labeling frame accuracy is not the only metric to consider. Larger numbers
of segments also severely impact the running time of spectral clustering, which is based
on the eigen-solution of alV x N affinity matrix.

5 Discussion

5.1 Visualization and browsing

We have developed a prototype browsing interface, shown in figure 5. A day-by-day
pseudo-spectrogram visualization of the audio (using a coloring that reflects both in-

12
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Figure 5. Screenshot from our experimental browser. Recorded audio is shown by a
pseudocolor spectrogram with a vertical time axis. Next to this are the automatically-
derived segments along with their per-cluster manual labels. The display also shows
appointments read from the user’s online calendar — a useful prompt in navigating the
recordings and interpreting the automatic segments.
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tensity and spectral entropy distribution) lies alongside the automatically-derived seg-
ments and cluster labels, as well as the user’s calendar items. Audio can be reviewed
by clicking on the spectrogram, along with the usual fast forward/rewind transport
controls. Our informal experiences with this interface have been mixed. It greatly
facilitates finding particular events in a recording compared to the timeline slider pro-
vided by a basic media player. However, the interface has an effective resolution no
better than a minute or two, and having to listen through even this much audio to reach
the desired moment is still painful and boring, and would benefit from the addition of
time-scaling techniques for faster review. Future directions for the interface include the
addition of further data streams, such as synchronization with explicit notetaking (as in
Stifelman et al. [2001]), or other timeline-oriented data such as documents and emails.

5.2 Speech and privacy

Initially, our interest was in the nonspeech background ambience in the audio signals
as we consider this a neglected topic in audio analysis. However, it has become clear
that the speech content is the richest and most engaging information in our recordings
— both for information and ‘reminiscence’ purposes. To this end, we are developing a
robust speech detector that we intend to be able to identify fragments of speech amid
noisy and reverberant backgrounds as encountered in our data. Dividing into speech
and nonspeech segments allows both ‘purer’ modeling of background ambience (for
location recognition) as well as more focused processing of speech. Identifying inter-
actions with particular speakers would be useful for access, as, of course, would recog-
nizing the spoken content — e.g. by making use of the techniques being developed for
meeting transcription [Renals and Ellis, 2003].

This, however, brings us squarely into the domain of privacy concerns. This project
readily arouses resistance and suspicion from acquaintances who find the idea of record-
ing conversations threatening and creepy. We must address such concerns before an
application of this kind can become widely accepted and useful. While segmentation
requires only the long-time-frame statistics (which do not contain sufficient informa-
tion for resynthesis to audio), much of the usefulness of the data is lost unless users
have the ability to listen to the original audio. Sufficiently accurate speaker identifica-
tion could enable the retention of intelligible utterances only if the speaker has given
explicit permission, along the lines of the “revelation rules” in the location-tracking
system of Lamming and Flynn [1994]. If recorders become more pervasive, they could
be made to respect an “opt-out” (or opt-in) beacon along the lines of Brassil [2005].

We are also looking at ways of securing the recordings against unauthorized ac-
cess. An intriguing technique for co-operative computing breaks the data into two
individually-useless parts (e.g. by adding and subtracting the same random sequence
to the original waveform) which are distributed to two agents or locations, then permits
computation of derived features (such as our time-frame statistics) without either party
having access to the full data [Du and Atallah, 2001].
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6 Conclusions

We have described a vision of personal audio archives and presented our initial work
on providing automatic indexing based on the statistics of frequency-warped short-time
energy spectra calculated over windows of seconds or minutes. Our automatically-
clustered segments can be grouped into similar or recurring classes which, once the
unknown correspondence between automatic and ground-truth labels is resolved, gives
frame-level accuracies of over 80% on our 62 h hand-labeled test set.

Ubiquitous, continuous recordings seem bound to become a part of our arsenal
of personal records as soon as the retrieval and privacy issues are tackled, since, for
audio-only recordings, the collection technology is already quite mature. While the
most compelling applications for this data remain to be clarified, we are intrigued and
encouraged by our investigations so far.
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