
Preservation and recollection of facts
and events are central to human expe-
rience and culture, yet our individual
capacity to recall, while astonishing,

is also famously fallible. As a result, technologi-
cal memory aids date back to cave paintings and
beyond. More recent trends include the shift
from specific, active records (such as making
notes) to transparent, comprehensive archives
(such as the sent box of an email application)—
which become increasingly valuable as the tools
for retrieving the contents improve. 

We have been investigating what we see as a
natural extension of this trend to the large-scale
collection of daily personal experiences in the
form of audio recordings, striving to capture
everything heard by the individual user during
the time he or she collects archives (for example,
during the working day). Our interest in this
problem stems from work in content-based
retrieval, which aims to make multimedia docu-
ments, such as movies and videos, searchable in
much the same way that current search engines
allow retrieval from text documents and
archives. However, automatic indexing of movies
has to compete with human annotations (for
example, subtitles)—if the ability to search is
important enough to people, it will be worth the
effort to perform manual annotation. But for
data of speculative or sparse value, where manu-
al annotation would be out of the question, auto-
matic annotation is a more compelling option.
Recordings of everyday experiences—which may

contain interesting material in much less than 1
percent of their span—are a promising target for
automatic analysis. 

The second circumstance that spurred our
interest in this project was the sudden availability
of devices capable of making these types of per-
sonal audio recordings at a low cost, with high
reliability, and with minimal impact to the indi-
vidual. Figure 1 shows one such device that we
have used, an MP3 player with 1 Gbyte of flash
memory and a built-in microphone able to record
continuously for about 16 hours, powered by a
single rechargeable AA battery. This kind of tech-
nology, along with the plummeting cost of mass
storage, makes the collection of large personal
audio archives astonishingly inexpensive and
easy. However, using current tools, a 16-hour
recording (less than 500 Mbytes at 64 kbps, which
gives reasonable quality for a mono MPEG-Audio
file) is singularly useless. To review a particular
event would require loading the whole file into an
audio browser and making some type of linear
search: guessing the approximate time of the
event of interest, then listening to little snippets,
and trying to figure out whether to scan forward
or backward. The time required for this type of
search begins to approach the duration of the orig-
inal recording, and renders any but the most crit-
ical retrieval completely out of the question. 

Our interest is to develop tools and techniques
that could turn these easily collected personal
audio archives into something useful and worth-
while. As part of this, we’re interested in imagin-
ing and discovering what uses as well as what
pitfalls and limitations this data type presents. Our
initial work, described in this article, considers the
broad-scale information contained in such record-
ings, such as the user’s daily locations and activi-
ties—the kind of information that someone might
record in an appointment calendar. In particular,
we describe our approach for dividing long-dura-
tion recordings into segments on the scale of min-
utes that contain consistent properties, and in
clustering and classifying these segments into a
few, recurrent activities. While we haven’t yet
developed sufficiently powerful tools to truly
reveal the potential of these recordings, we’re con-
vinced that archives of this kind will, before long,
become a commonplace addition to each individ-
ual’s personal effects, and will become a routine
source of valuable personal recollections.

Audio archives potential
Although our current experiments are limited

We’ve collected
personal audio—
essentially
everything we
hear—for two years
and have
experimented with
methods to index
and access the
resulting data. Here,
we describe our
experiments in
segmenting and
labeling these
recordings into
episodes (relatively
consistent acoustic
situations lasting a
few minutes or
more) using the
Bayesian
Information
Criterion (from
speaker
segmentation) and
spectral clustering.
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in scope, it’s worthwhile to consider the poten-
tial value and utility of these kinds of recordings,
once the suitable indexing techniques are devel-
oped. Audio archives contrast with image or
video archives in a number of important dimen-
sions. First, they capture information from all
directions and are largely robust to sensor posi-
tion and orientation (and lighting), allowing data
collection without encumbering the user.
Second, the nature of audio is distinct from
video, making certain kinds of information (for
example, what is said) more accessible, and other
information (for example, the presence of non-
speaking individuals) unavailable. In general,
processing the content of an audio archive could
provide a wide range of useful information: 

! Location. We can characterize a physical loca-
tion by its acoustic ambience, which might
reveal finer gradations (for example, the same
restaurant empty versus busy), although ambi-
ence is also vulnerable to confusion (for exam-
ple, mistaking one restaurant for another). 

! Activity. Different activities are in many cases
easily distinguished by their sounds, for exam-
ple, typing on a computer versus having a
conversation versus reading. 

! People. Speaker identification based on the
acoustic properties of voice is a mature and suc-
cessful technology. However, it requires some
adaptation to work with the variable quality
and noise encountered in personal audio. 

! Words. Ideally, we would like to handle
queries like “This topic came up in a discus-
sion recently. What was that discussion
about?” This would require not only recog-
nizing all the words used in the earlier discus-
sion, but summarizing and matching them.
This is ambitious, although similar applica-
tions are being pursued for recordings of
meetings.1

The “Background” sidebar (next page) reviews
previous work in personal archive recording and
in audio segmentation and classification. 

Segmentation and clustering of 
personal audio

To ease the problem of locating and reviewing
a particular event in a lengthy recording, we seek
automatic means to generate a coarse index into

the recording. At the broadest level, this index
can divide a multihour recording into episodes
consisting of, say, 5 minutes to an hour, during
which statistical measures of the audio indicate
a consistent location or activity. By segmenting
the recording at changes in an appropriate sta-
tistic, then clustering the resulting segments to
identify similar or repeated circumstances, a user
could identify and label all episodes of a single
category (for instance, attending lectures by
Professor X) with minimal effort. 

Features 
Unlike audio analysis applications, such as

speech recognition, that aim to distinguish audio
events at a fine time scale, we’re interested in seg-
menting and classifying much longer segments,
and not becoming distracted by momentary devi-
ations. We opted for a two-level feature scheme,
with conventional short-duration features (cal-
culated over 25-millisecond windows) summa-
rized by statistics over a longer basic time frame
of up to 2 minutes. Long time frames provide a
more compact representation of long-duration
recordings and might better represent back-
ground ambience properties when transient fore-
ground events are averaged out over a longer
window. We’ve experimented with several short-
time features and several different statistics, com-
paring them empirically for their ability to
support segmentation and clustering of our
recorded episodes. We present the main results in
this article; more details are available elsewhere.2

Our data consists of single-channel recordings
resampled to 16 kHz. All features start with a con-
ventional Fourier magnitude spectrum, calculat-
ed over 25-ms windows every 10 ms, but differ in
how the 201 short-time Fourier transform (STFT)
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Figure 1. Data capture
equipment. In the
middle of the picture is
the iRiver flash memory
recorder. The larger
unit to the right is a
data logger recording
ambient temperature,
which we have
considered as a proxy
for more specific ground
truth on location
changes.



frequency bins resulting from each 400-point
STFT are combined into a short-time feature vec-
tor. We compared the linear-frequency spectrum,
auditory spectrum, mel-frequency cepstral coef-
ficients (MFCCs), and spectral entropy.

We form the linear-frequency spectrum by
summing the STFT bins across frequency in
equal-sized blocks. The linear-frequency spec-
trum for time step n and frequency index j is

(1)

where X[n, k] are the squared magnitudes from
the N point STFT, and the wjk define a matrix of
weights for combining the STFT bins into the

more compact spectrum. We used 21 output bins
to match the size of the other features.

The auditory spectrum is similarly formed as
weighted sums of the STFT bins, but using win-
dows that approximate the bandwidth of the
ear—narrow at low frequencies, and broad at
high frequencies—to obtain a spectrum whose
detail approximates the information perceived
by listeners. A spacing of 1 Bark per band gave us
21 bins, corresponding to a different matrix of wjk

in Equation 1. 
MFCCs use a different (but similar) frequency

warping, then apply a decorrelating cosine trans-
form on the log magnitudes. MFCCs are the fea-
tures most commonly used in speech recognition
and other acoustic classification tasks. 
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The concept of continuous, passive mechanical storage of
experiences was initially articulated by Bush,1 but it was not
until almost five decades later that the technology to realize his
vision became practical. Early experiments in live transmission
from body-worn cameras developed into independent wear-
able computers,2 but it was still several years before researchers
could seriously propose comprehensive capture and storage
portions of personal experience.3

In some early experiments, works by Clarkson et al.4 and
Clarkson5 proposed analyzing continuous audio streams,
including environmental sounds, which focused on identifying
specific, distinctive acoustic events. This work eventually led to
a project in which a continuous waking-hours record was col-
lected for 100 days, and then segmented and clustered, but
using features only from forward- and backward-facing fish-
eye video.5

Our work in segmenting and clustering based on recorded
sound draws on work in audio segmentation. Early work on dis-
criminating between speech and music in radio broadcasts6

became important for excluding nonspeech segments from
speech recognizers intended to work with news broadcasts.7 Since
speech recognizers can adapt their models to specific speakers, it
was also important to segment speech into different speakers’
turns and cluster the disjoint segments originating from the same
speaker, by agglomerative clustering across likelihood ratios or
measures such as the Bayesian Information Criterion, which com-
pares likelihoods between models with differing numbers of para-
meters.8 Other work in multimedia content analysis spans a
number of projects to segment sound tracks into predefined class-
es such as speech, music, environmental sounds, and various pos-
sible mixtures.9 Predefined classes allow model-based
segmentation—for example, with hidden Markov models—but
local measures of segment dissimilarity permit segmentation even
when no prior classes are assumed.10
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To preserve some of the information lost when
summing multiple STFT bins into a single value,
we devised a feature to distinguish between ener-
gy distributed across the whole band, or concen-
trated in just a few of the component bins. By
considering the distribution of energy within the
subband as a probability density function (pdf),
we define a short-time spectral entropy at each
time step n and each spectral channel j as

where the band magnitudes A[n, j] from Equation
1 normalize the energy distribution within each
weighted band to be pdf-like. This entropy fea-
ture can be calculated for either of the subband
schemes described previously, that is, for any
weight matrix wjk. Spectral entropy has intent
and properties similar to the well-known spectral
flatness measure.3

To represent longer time frames of up to 2
minutes, we tried a number of statistics to com-
bine the set of short-time feature vectors (calcu-
lated at 10-ms increments) into a single vector.
We calculated the mean and standard deviation
for each dimension before or after conversion to
logarithmic units (dB), giving four summary vec-
tors, µlin, σin, µdB, and σdB, respectively, all finally
expressed in dB units. We also calculate the aver-
age of the entropy measure µH, and the entropy
deviation normalized by its mean value, σH/µH.
Figure 2 illustrates each of these statistics, based
on the Bark-scaled auditory spectrum, for 8 hours
of audio recorded on one day. 

Segmentation 
To segment the recordings into episodes with

internally consistent properties, we used the
Bayesian Information Criterion (BIC). This pro-
vides a principled way to compare the likelihood
of models with different numbers of parameters
that describe different amounts of data. Chen
and Gopalakrishnan’s speaker segmentation
algorithm uses the BIC to compare every possible
segmentation of a window expanded until a
valid boundary is found—meaning that the deci-
sions are based on all time frames back to the pre-
vious boundary, and far enough forward until
the decision is adequately confident.4

The BIC is a likelihood criterion penalized by
model complexity as measured by the number of
model parameters. If we are modeling data set X =

{xi : i = 1, …, N} by some model M with #(M) para-
meters, and L(X, M) is the likelihood of X under
the best parameterization of M, then the BIC is
defined as a property of the data set and model:

where λ determines the weight applied to model
parameters, theoretically 1, but tunable in practice.
Given several different candidate models to
explain a single data set, the model with the largest
BIC gives the best fit according to this criterion. 

The BIC-based segmentation procedure is as
follows: A sequence of d-dimensional audio fea-
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Figure 2. Examples of
the six long-time-frame
statistic features based
on 21-band auditory
(Bark-scaled) spectra.
The underlying data is
8 hours of recordings
including a range of
locations. White
vertical lines show our
hand-marked episode
boundaries.



ture vectors X = {xi ∈ ℜd : i = 1, …, N} are modeled
as independent draws from either one or two
multivariate Gaussian distributions. The null
hypothesis is that the entire sequence is drawn
from a single distribution: 

where N (µ, Σ) denotes a multivariate Gaussian
distribution with mean vector µ and full covari-
ance matrix Σ, which is compared to the hypoth-
esis that there is a segment boundary after
sample t. That is, that the first t points are drawn
from one distribution and that the remaining
points come from a different distribution:

The difference in BIC scores between these
two models is a function of the candidate bound-
ary position t:

where L(X|H0) is the likelihood of X under hypoth-
esis H0 and so on, and (d2 + 3d)/2 is the number of
extra parameters in the two-model hypothesis H1.
When ∆BIC(t) > 0, we place a segment boundary at
time t, and then begin searching again to the right
of this boundary and reset the search window size
N. If no candidate boundary t meets this criterion,
we increase the search window size, and repeat the
search across all possible boundaries t. This con-
tinues until we reach the end of the signal. 

Clustering 
Since recordings of daily activities are likely to

contain many routine, repeated circumstances,
we apply unsupervised clustering to group the
automatically segmented episodes into recur-
rences of the same location or activity. Then, with
a small amount of human input, appropriate
labels can be automatically propagated within the
browsing software to all members of a cluster.

We used spectral clustering, which starts from
a matrix of affinities (similarities) between every
segment to be clustered.5 We begin with the
symmetrized Kullback-Leibler (KL) divergence
between single, diagonal-covariance Gaussian
models fit to the feature frames within each seg-
ment. For Gaussians, the symmetrized KL diver-
gence is given by

where Σi is the unbiased estimate of the feature
covariance within segment i, µi is the vector of
per dimension means for that segment, I is the
identity matrix, and tr(·) is the trace of a matrix.
(Since some segments can be just a few frames
long, we regularized our covariance estimates
with a small empirically optimized constant
added to the leading diagonal.) DKLS is zero when
two segments have identical means and covari-
ances, and progressively larger as the distribu-
tions become more distinct. To convert these
distances to affinities, we use a quadratic expo-
nential mapping, so the affinity between seg-
ments i and j is given by 

where is a free parameter controlling the radius
in distance space over which points are considered
similar; increasing leads to fewer, larger clusters.
We tuned it by hand to give reasonable results. 

Clustering then consists in finding the eigen-
vectors of the affinity matrix. When the affinities
indicate a clear clustering (most values close to
zero or one), the eigenvectors will tend to have
bimodal values, with each vector contributing a
block on the diagonal of a reconstructed affinity
matrix whose rows and columns have been
reordered to make similar segments adjacent. In
the simplest case, the nonzero elements in each
of the top eigenvectors indicate the dimensions
belonging to each of the top clusters in the orig-
inal data. To deal with more general cases, we
find K clusters in a set of K-dimensional points
formed by the rows of the first K eigenvectors
(taken as columns)—that is, each of the N origi-
nal segments lies on a point defined by the val-
ues of the corresponding elements from the top
K eigenvectors of the affinity matrix, and points
with similar values across all these vectors will be
clustered together. Choosing K, the desired num-
ber of clusters, is always problematic: we chose it
automatically by considering every possible value
up to some limit, using the size for which the
Gaussian mixture model we employed for the
final clustering had the best BIC score. (These
details of our clustering scheme are drawn from
other work.2)
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Long-duration recording experiments 
Evaluating and developing our techniques

required test data including ground truth for seg-
mentation points and episode categories. We
manually annotated some 62 hours of audio
recorded over eight successive days, marking
boundaries wherever there was a clear shift in
environment and/or activity. This resulted in 139
segments (average duration 26 minutes) that we
assigned to 16 broad classes such as street, restau-
rant, class, library, and so on. We note the risk of
experimenter bias here, since the labeling was
performed by the researchers who were already
aware of the kinds of distinctions that would be
possible or impossible for the system. Thus,
although our results might be optimistic for this
reason, we believe they are still indicative of
these approaches’ viability. 

Features and segmentation results 
We evaluated the BIC segmentation scheme

for each of our base features and statistics by
adjusting the parameter described previously to
achieve a false alarm rate of one false boundary
every 50 minutes (that is, 2 percent with 1-
minute time frames, or a specificity of 98 per-
cent), then looking at the resulting correct-accept
rate (probability of marking a frame as a bound-
ary given that it’s a true boundary, also called
sensitivity). We judged as correct a boundary
placed within 3 minutes of the ground-truth
position; otherwise, it was a false alarm, as were
boundaries beyond the first near-to-a-ground-
truth event. Table 1 compares the results from
the three different short-time features (linear
spectrum, auditory spectrum, and MFCC) repre-
sented by the six different summary statistics—
except that spectral entropy was not calculated
for the MFCCs, since the coefficients don’t cor-
respond to contiguous frequency bands.

While all features perform similarly when we
use linear averaging, log domain averaging
reveals a wide variation with the auditory spec-
trum clearly superior. The entropy measure sta-
tistics, describing the structure within each
frequency band and its variation, prove the most
successful basis for segmentation. We also tried
combinations of the three best features—µdB, µH,
and σH/µH—for the auditory spectrum, and used
principal component analysis to compress the
resulting high-dimensional feature vectors. Our
best result came from combining µdB and µH

reduced to three and four dimensions, respec-
tively, giving a sensitivity of 0.874. 

Clustering results 
Our best segmentation scheme produced 127

automatically generated segments for our 62-hour
data set. Spectral clustering (using the same aver-
age spectrum features as used for segmentation)
then arranged these into 15 clusters. We evaluat-
ed these clusters by comparing them against the
16 labels used to describe the 139 ground-truth
segments. Since there is no a priori association
between the automatically generated segments
and the hand-labeled ones, we chose this associa-
tion to equate the most similar clusters in each
set, subject to the constraint of a one-to-one map-
ping. This resulted in one ground-truth class
(street) with no associated automatic cluster, and
five more (billiards, class break, meeting, sub-
way, and supermarket) for which no frames were
correctly labeled, meaning the correspondences
are arbitrary. 

Since the automatic and ground-truth bound-
aries will not correspond, we evaluated the clus-
tering at the frame level—that is, for each
1-minute time frame, the ground-truth and auto-
matic labels were combined. Overall, the labeling
accuracy at the frame level was 67.3 percent
(which is also equal to the weighted average pre-
cision and recall, since the total number of
frames is constant). Figure 3 shows an overall
confusion matrix for the labels. 
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Table 1. Sensitivity at specificity = 0.98 for each feature set. 

Short-Time Features µlin σlin µdB σdB µH σH/µH

Linear spectrum 0.723 0.676 0.355 0.522 0.734 0.744
Auditory spectrum 0.766 0.738 0.808* 0.591 0.811 0.816
MFCC 0.734 0.736 0.145 0.731 N/A N/A

*Values greater than 0.8 are shown in bold. All features had 21 dimensions.
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For comparison, direct clustering of 1-minute
frames without any prior segmentation, and
using an affinity based on the similarity of fea-
ture statistic distributions among 1-second sub-
windows, gave a labeling accuracy of 42.7
percent—better than the a priori baseline of
guessing all frames as a single class (26.1 per-
cent), but far worse than our segmentation-
based approach.

Varying the time frame 
The previous results are based on 60-second

windows, our arbitrary initial choice motivated
by the granularity of the task. Returning to this
parameter, we ran the entire system (both seg-
mentation and clustering) for time frames vary-
ing from 0.25 to 120 seconds to see how this
affected performance, holding other system para-
meters constant. Figure 4 shows the overall frame
accuracy of the clustering as a function of time-
frame length. The lower trace gives the system
results, showing variation from 65 to over 80 per-
cent frame accuracy, with the best results
achieved at the shortest time frames, and signif-
icant degradation for time frames above 10 sec-
onds. The upper trace shows the best result from
an exhaustive grid search over the clustering
parameters K and σ, giving an upper bound in
performance. We see that the 3-second time
frame has the best performance—arguably still
long enough to capture background ambience
statistics by averaging over foreground transients,

but much shorter than (and distinctly superior
to) the 60-second window we had used thus far.

We also experimented with basing the clus-
tering on different features, which of course need
not be the same as those used in segmentation.
The results presented previously are based on the
21-dimensional log-domain average auditory
spectrum µdB, which achieved a 76.8 percent
frame-level labeling accuracy with the 3-second
window. Using the normalized entropy devia-
tion, σH/µH, increased this to 82.5 percent, and
combining both features with the mean entropy
achieved the best result of 82.8 percent. 

However, we have not reported the segmen-
tation performance—shorter time frames gave
many more inserted segmentation points, which
did not impact labeling accuracy because the
resulting short segments were still correctly clus-
tered on the whole. For the indexing application,
however, excess segment boundaries are a prob-
lem, so labeling frame accuracy is not the only
metric to consider. Larger numbers of segments
also severely impact the running time of spectral
clustering, which is based on the eigensolution
of an N × N affinity matrix.

Visualization and browsing
We developed a prototype browsing interface,

shown in Figure 5. A day-by-day pseudospectro-
gram visualization of the audio (using a coloring
that reflects both intensity and spectral entropy
distribution) lies alongside the automatically
derived segments and cluster labels, as well as the
user’s calendar items. Audio can be reviewed by
clicking on the spectrogram, along with the usual
fast-forward and rewind transport controls. Our
informal experiences with this interface have
been mixed. It greatly facilitates finding particu-
lar events in a recording compared to the time-
line slider provided by a basic media player.
However, the interface has an effective resolution
no better than a minute or two, and having to lis-
ten through even this much audio to reach the
desired moment is still painful and boring, and
would benefit from the addition of time-scaling
techniques for faster review. Future directions for
the interface include the addition of further data
streams, such as synchronization with explicit
note taking (as in Stifelman et al.6), or other time-
line-oriented data such as documents and emails. 

Speech and privacy 
Initially, our interest was in the nonspeech

background ambience in the audio signals as we
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consider this a neglected topic in audio analysis.
However, it has become clear that the speech
content is the richest and most engaging infor-
mation in our recordings, both for practical and
reminiscence purposes. To this end, we’re devel-
oping a robust speech detector that we intend to
use for identifying fragments of speech amid
noisy and reverberant backgrounds as encoun-
tered in our data. Dividing into speech and non-
speech segments allows both purer modeling of
background ambience (for location recognition)
as well as more focused processing of speech.
Identifying interactions with particular speakers
would be useful for access, as, of course, would
recognizing the spoken content—for example, by
using the techniques being developed for meet-
ing transcription.1

This, however, brings us squarely into the
domain of privacy concerns. This project readily
arouses resistance and suspicion from acquain-
tances who find the idea of recording conversa-
tions threatening and creepy. We must address
such concerns before people can widely accept
and use this type of application. While segmen-
tation requires only the long-time-frame statis-
tics (which do not contain sufficient information
for resynthesis to audio), much of the data’s use-
fulness is lost unless users have the ability to lis-
ten to the original audio. Sufficiently accurate
speaker identification could enable the retention
of intelligible utterances only if the speaker has
given explicit permission, along the lines of the
“revelation rules” in the location-tracking system
of Lamming and Flynn.7

We’re also looking at ways of securing the
recordings against unauthorized access. An
intriguing technique for cooperative computing
breaks the data into two individually useless
parts—for example, by adding and subtracting the
same random sequence to the original wave-
form—which are distributed to two agents or loca-
tions, who then permit computation of derived
features (such as our time-frame statistics) without
either party having access to the full data.8

Conclusions
Ubiquitous, continuous recordings seem

bound to become a part of our arsenal of personal
records as soon as the retrieval and privacy issues
are tackled, since, for audio-only recordings, the
collection technology is already quite mature.
While the most compelling applications for this
data remain to be clarified, we’re intrigued and
encouraged by our investigations so far. MM
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