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ABSTRACT

For the MIREX 2010 Audio Chord Extraction task, we
submitted a total of four systems. Our base system is a
trainable chord recognizer based on two-band chroma rep-
resentations and using a Structured SVM classifier to re-
place the more familiar hidden Markov model. We submit
two versions of this system, one which transposes all train-
ing data through all 12 possible chords to maximize the
training data available for each chord (and hence improve
generalization to rarely-seen chords and keys), and one
which simply trains on the chords in their original trans-
position, leading to a smaller model and possible learning
of key-specific features. We also submit two pre-trained
models, based on these two frameworks, trained in-house
on the 180 Beatles and 20 Queen tracks for which ground-
truth chord labels have been made available.

1. INTRODUCTION

Audio chord recognition takes a full musical signal, such
as a commercial pop music recording, and returns a se-
quence of labels indicating the chords in the piece and the
times during which they are active. Although the vocab-
ulary of possible chords can become quite complex, for
many purposes – such as searching for common musical
patterns – it is sufficient to define a smaller subset of ba-
sic chords. In this work, we use a vocabulary of 25 chords
– one major and one minor chord for each of the 12 root
chroma (C, C#, D . . . B), plus one “no chord” symbol.

Figure 1 shows the basic structure of our system. We
use our beat-synchronous, instantaneous-frequency chroma
features, originally developed for cover song detection [2].
These features are fed into the SVMhmm package of Joachims
[4] which generates a model then used at recognition time.
We submitted an earlier version of this system to MIREX
2009 [6]. Within this structure, a number of variants were
investigated, as described below.
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Figure 1. Block diagram of structured SVM audio chord
recognition system.

2. DATA & EVALUATION

We evaluated our models on the 180 tracks of the 12-album
Beatles corpus, using the hand-marked labels from Chris
Harte [3]. Our audio apparently came from different digi-
tal masterings of the albums, because not only were there
variable time offsets compared to the labels, but our audio
actually had slightly different speeds than those that can be
inferred from the labels. Moreover, the speed difference
is not even constant throughout the track, as illustrated in
figure 2 which shows residual systematic time differences
between the time of each ground-truth chord label and the
nearest beat time from our beat tracker, even after linear
speed compensation is applied. We surmise that when a
new digital master is made from the original studio tapes,
variations in the tape speed lead to slightly different val-
ues. Although most speed variations were below 0.5% –
too small to be perceived as a pitch shift – this is enough
to result in grossly misaligned chord labels by the end of
a 3 minute track. We manually corrected time and speed
offsets for all 180 tracks to obtain our training labels. Be-
cause the chord labels are effectively quantized onto the
grid defined by our beat tracker, the remaining nonlinear
deviations have little or no effect on system training, and
only minor impact on scoring.

We divided the data into four cuts, each consisting of 3
albums, with the release dates interspersed in order to get
a range of styles in each cut. Our cuts were {Please Please
Me, Help!, Magical Mystery Tour}, {With The Beatles,
Rubber Soul, The White Album}, {A Hard Day’s Night,
Revolver, Abbey Road}, and {Beatles For Sale, Sgt. Pep-
per’s Lonely Hearts Club Band, Let It Be}. To evaluate
each system, we trained on three cuts and tested on the
fourth, repeating this four times until every track had been
used as a test target; the results are the scoring over all
180 tracks. In order to cast the detailed ground truth la-
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Figure 2. Differences in timing between manual chord la-
bels and automatic beat times. Even after correcting for
a 0.3 s timing skew and a 0.5% speed difference, the plot
shows there is a residual nonlinear timing drift, with labels,
relative to the beats extracted from the audio, early at the
start and end of the track, and late in the middle.

System Dims Time Acc%
Baseline 12 0:08 67.7
+ tuning fixes 12 0:08 68.6
+ whitening 12 0:08 71.6
+ quad terms 90 0:23 72.5
+ prev. frame 102 0:21 73.2
+ LF chroma 114 0:23 76.0
+ 12×, C = 400 114 2:38 77.6
Best HMM 24 0:06 74.9

Table 1. Accuracy, feature dimensionality, and training
times of different model variants.

bels into our 25 major/minor/no chord set, any chord label
including “min” was considered a minor chord, and every-
thing else was considered a major chord. Although this
is perhaps not the best-motivated choice, the prevalence
of non-canonical-triad chords is believed small enough to
have little influence.

Although the system is based on beat intervals, the eval-
uation is weighted by the non-quantized temporal overlap.
Ground truth labels are cast into 25 categories using the
same rules as used to obtain the training labels. Accuracy
(the proportion of time for which labels were correct) re-
flects all correctly-labeled intervals except recognizing “no
chord” as “no chord”, since this makes the results too de-
pendent on details of lead-in and lead-out. Recognizing
“no chord” as some other chord, or labeling valid chords
as “no chord”, does contribute to error (i.e. the denomina-
tor), however.

3. RESULTS

Table 1 shows the overall accuracy on a range of system
variants. The table is structured as a series of enhance-
ments moving towards more complex, and better perform-
ing system, although these represent a simplified picture of
the actual system evolution. Each line is explained in more
detail below:

• Baseline: Beat-averaged chroma features (12 dimen-
sions per beat) are passed to the structured SVM

training routine, along with the corresponding class
label (from the 25-entry vocabulary). The parame-
ter C, which controls the tradeoff between training
error and margin, Is set to 100, which gave the best
results for this training setup.

• tuning fixes: On inspecting the results, we noticed
that several tracks were getting almost no chords cor-
rect. For several of these, it was because the au-
tomatic tuning reference was off by one semitone.
Instead of modifying the labels, we added a special
case to force the automatic tuning to stretch beyond
±0.5 semitones for these files. This line represents
the significant performance gain obtained by chang-
ing the tuning reference for just 4 Beatles tracks, as
shown in table 2.

• whitening: [5] reports a dramatic improvement in
trained chord recognition by normalizing the means
and variances of their constant-Q spectral features
over a local window. We implemented something
like this by dividing out the energy of the spectrum
smoothed by a window whose bandwidth was pro-
portional to center frequency. We found that an ex-
tremely narrow window (a Gaussian with half-width
0.02 octaves) gave the best result, which amounts
in most cases to setting all the raw spectral magni-
tudes to 1. Because the actual spectral peaks are cho-
sen in our chroma calculation on the basis of phase
consistency [1], the spectral magnitudes influence
only the weight contributed by each harmonic iden-
tified. However, it is clear that this “spectral whiten-
ing” had a significant beneficial effect on normaliz-
ing away timbral variations in the training data.

• quad terms: This corresponds to adding quadratic
terms to the basic 12 chroma bins i.e. an additional
(12×13)/2 = 78 dimensions formed as the product
of every possible pairing of features. Since the SVM
is using only a linear kernel, this increases the ef-
fective dimensionality of the space in which the de-
cision boundary is sought, akin to using a quadratic
kernel.

• prev. frame: We added the features for the previ-
ous frame as part of the current frame’s feature vec-
tor. Note that the quadratic features were not calcu-
lated for these additional dimensions. We tried many
combinations of multiple past and future frames, and
different quadratic term configurations, but this sim-
ple setup performed nearly the best.

• LF chroma: We added another 12 chroma bins cal-
culated from a spectrum centered around 100 Hz,
instead of the 400 Hz center of the main chroma.
These features often capture the bass line.

• 12×, C=400: To increase the training data available
for individual chords, we transposed all our train-
ing examples through all 12 possible rotations, and
trained on all of these (effectively making all chord



Track Tuning/cents
beatles/Lovely Rita -66
beatles/Strawberry Fields Forever -52
beatles/Wild Honey Pie -55
beatles/Ticket To Ride -54
queen/Another One Bites The Dust 54

Table 2. Manual exceptions for the automatic tuning.
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Figure 3. Variation of accuracy and training time with the
maximum number of beats allowed for each track.

models identical modulo a rotation). This larger data
set required longer training times. Training time was
further increased by switching to a higher value of
the training parameter C, which improved perfor-
mance slightly.

• Best HMM: We evaluated our MIREX 08/09 HMM-
Gaussian system within the same framework, and in-
cluding all applicable enhancements (tuning, whiten-
ing, LF chroma, 12× data). While these helped, the
system is still inferior to the structured SVM.

4. DATA TRUNCATION

SVM training memory requirements grow with the size of
the training set, the size of the feature vector, and the train-
ing parameter C. For our larger models, we found that
training on all available data (the 180 Beatles tracks plus
20 Queen tracks, or 94,974 total beats) exhausted the 16GB
of RAM on our machine. We therefore experimented with
truncating individual tracks after some number of beats,
reasoning that we will obtain better diversity of training
data by using fewer beats from more tracks rather than
vice-versa, while remembering that in order to let the model
learn good sequence features, we should retain as far as
possible the original contiguity of the data.

Figure 3 shows the result of this experiment (trained on
the “LF chroma” model of table 1). Although the aver-
age length of a track is a little under 500 beats, with the
longest (“I want you/She’s so heavy”) composed of over
1800 beats, we see that accuracy is only affected when we
truncate at 300 frames or shorter – at which point the total
training time has already been halved. In fact, truncating
at 500 beats gives the best performance, possibly because
it avoids over-emphasizing some longer tracks (including
the infamous “Revolution 9”).

5. MIREX

For the MIREX 2010 Audio Chord Estimation evaluation,
we submitted four systems:

• EW1 – a train/test system using all the enhance-
ments listed in section 3 including 12× data trans-
position.

• EW2 – a “lightweight” train-test system that does
not use 12× data transposition.

• EW3 – a pretrained system, equivalent to EW1, trained
on the 180 Beatles tracks [3] and 20 Queen tracks
[5]. To be able to train this comfortably on our 16GB
machine, we also employed a maximum beats/track
limit (as discussed in section 4) of 300.

• EW4 – a pretrained version of EW2, trained without
beats/track limitation.

6. CONCLUSIONS

We have described the audio chord recognition system we
submitted to MIREX 2010. The full code to run all of these
systems is available at http://labrosa.ee.columbia.
edu/projects/chords/ .
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