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ABSTRACT 

This paper describes a technique to improve the accuracy of 
dynamic time warping-based MIDI-audio alignment. The 
technique implements a hidden Markov model that uses 
aperiodicity and power estimates from the signal as observations 
and the results of a dynamic time warping alignment as a prior. 
In addition to improving the overall alignment, this technique 
also identifies the transient and steady-state sections of the note. 
This information is important for describing various aspects of a 
musical performance, including both pitch and rhythmic aspects. 
 
Index Terms— MIDI-audio alignment, music performance, 
singing, dynamic time warping, HMMs, frequency estimation. 

1. INTRODUCTION 

Precise descriptions of music signals are essential for studying 
both acoustical and interpretative aspects of musical 
performance [1]. MIDI-audio alignment is a useful tool for 
identifying note boundaries, i.e., onsets and offsets [2]. This 
information can be used directly for timing-based studies and is 
also important for pitch-based research in the absence of robust 
transcription methods [3]. However, the current state of the art 
for MIDI-audio alignment is not yet accurate enough to provide 
reliable data for such studies. The options for identifying note 
onsets and offsets are either laborious manual analysis or a 
quasi-automated process, where the results of an alignment 
system are corrected by hand. This paper describes a technique 
for improving the accuracy of MIDI-audio alignment by using 
known acoustical properties of the signal to train an HMM to 
identify silence, transient, and steady-state portions of each note. 
The implementation in this paper is for solo singing voice, 
though the technique could be applied to other instruments by 
modifying the acoustical features and to polyphonic signals with 
the use of an algorithm capable of producing the required 
acoustical descriptions. 

2. EARLIER WORK 

Work in the area of MIDI-audio alignment can be divided into 
two distinct approaches. Online approaches, or score followers, 
are typically applied in live performance contexts [4] while 

offline approaches are used for a range of applications by the 
music information retrieval community, including audio 
database searches [5] and digital libraries [6]. Typically 
graphical models, including hidden Markov models (HMMs), 
have been used for online applications [7–10] whereas the 
related, more constrained, technique of dynamic time warping 
(DTW) has predominantly been used for offline techniques 
[5,6,11,12]. The online approaches often sacrifice precision for 
efficiency, low latency and robustness in the face of incorrect 
notes [13,14]. The offline approaches are more precise, but do 
not work particularly well for non-percussive instruments, such 
as the singing voice [15] or stringed instruments.  

This approach of using an initial alignment to guide a 
secondary process is similar in this respect to the bootstrapping 
algorithm for onset detection described in [16], where an initial 
DTW alignment is used to establish note boundaries that are in 
turn used to train a multi-layer perceptron neural network for 
onset detection. Similarly, HMMs have previously been used 
for describing signals containing the voice in [17] and [18]. In 
[17], a three-state HMM was implemented to model the 
phonemes of hummed notes for a query-by-humming 
application. [18] deals explicitly with transcription of the 
singing voice and uses a three-state note event HMM and a four 
component rest event GMM trained on examples of singing and 
no-singing audio frames respectively.  

3. IMPROVING ALIGNMENT ACCURACY 

The goal of this work is to improve the accuracy of an initial 
DTW alignment with a HMM that models the acoustical 
properties of the singing voice. Since the HMM performs only 
local adjustments to the alignment, a relatively accurate initial 
alignment is important for this technique. Through a 
comparative evaluation of different features, we determined 
that the use of peak spectral difference [8] for the alignment 
feature produced the more accurate DTW alignment for the 
singing voice. The HMM was implemented in Matlab with 
Kevin Murphy’s HMM Toolbox [19] using periodicity and 
power estimates from Alain deCheveigne’s YIN algorithm [20]. 

3.1. Acoustical properties of the singing voice 

The design of the HMM was based on the acoustical properties 
of the singing voice. As a result, this implementation is 
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optimized for the singing voice and would require some 
adjustment to work with other instruments. The amplitude 
envelope and periodic characteristics of a sung note are 
influenced by the words that are being sung. The four acoustic 
events modeled for this system (silence, breath, transient, 
sustain/steady state) are shown in Figure 1. Transients occur 
when a consonant starts or ends a syllable, while vowels 
produce the steady-state portion of the note. The type of 
consonant, voiced or unvoiced, affects the characteristics of the 
transient, as does the particular manner in which the singer 
attacks or enunciates the consonant. The motivation for 
identifying transients is to determine where the voiced section 
of the note begins for estimating a single fundamental 
frequency of the duration of the note. In order to facilitate this, 
only unvoiced consonants have been modeled as transients in 
this system.  

 

Figure 1: The upper graph is (a) is a time domain 
representation of a sung note with the HMM states labeled.  
The two lower graphs are the square root of YIN’s 
estimations of the amount of aperiodicty (b) and power (c) 
in the signal.     

3.2. States 

The basic implementation of this HMM has three states: 
silence, transient, steady state, see Figure 2. An optional fourth 
state, breath, was introduced experimentally, which improved 
results in some cases, but should be considered an optimization 
rather than an essential component of the model, see Figure 3. 
A second silence after the breath state is added in this state 
sequence to reflect the common practice among singers of 
briefly holding the inhaled breath before singing the next note. 

The transition probability values were calculated from a 
superset of the music used in the experiments in section 5, 
including Schubert’s Ave Maria and a Latin mass by Machaut. 
Self-loop probabilities were estimated from the average duration 
of each state in a hand-labeled portion of 90 seconds of audio. 
Other transition probabilities were estimated from summary 
statistics of 318 notes from these scores. Specifically, the 
transition probabilities to the transient states were set to reflect 
the likelihood of syllables beginning and ending with 
consonants in the Latin text. And transition probabilities to the 
silences were based on the average frequency of rests in the 

score, as it was assumed that in the legato singing style that 
dominates the singing voice literature, silences would only 
occur at rest or breath marks. 

Two versions of the state sequences were implemented. 
The first algorithm (see section 5.1) allows each state to be 
visited for each note. The second algorithm (section 5.2) was 
informed by the particular lyrics being sung: transients were 
only inserted when a consonant began or ended a syllable and 
silences (and breaths for experiment 2b) were inserted only at 
the end of phrases. The state sequence for the opening phrase of 
Schubert’s Ave Maria is shown in Figure 4. 

 

Figure 2: Three-state basic state sequence: steady state (SS), 
transient (T), silence (S). Both ending transient (ET) and the 
beginning transient (BT) have the same observation distribution. 

    
Figure 3: Basic state sequence plus breath (B). 

Figure 4: State sequence adapted to sung text. 

3.3. Observations 

The observations for the HMM are the square root of 
periodicity and power estimates provided by the YIN algorithm 
for each frame. The algorithm was run at frame rate of one 
estimate every 32 samples, which provided a temporal 
resolution of approximately 0.7ms. The mean and covariance 
values for each frame were calculated by isolating 
representative examples of silence, transient, steady state, and 
breath from recordings by different singers. In total, 2.25s of 
data were used to calculate the means and variances for silence, 
13.4s for steady state, 0.47s for transients, and 3.83s for breath. 

3.4. Prior 

The initial DTW alignment is used as a prior to guide the HMM 
(see Figure 5). The use of the DTW alignment obviates the 
need to encode information about the score in the HMM. By 
assuming that the DTW alignment is roughly correct, it is not 
necessary to encode pitch specific information into the HMM. 
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This drastically simplifies the problem that the HMM has to 
address, and thus simplifies the design of the HMM as it allows 
the same HMM to be used for each note. The problem of this 
approach is that it does not allow for adjustments of the existing 
alignment if any of the misalignments are more than one note, 
so the initial alignment has to be relatively accurate.  

 
Figure 5: Visualization of the DTW alignment implemented 
as a prior for the HMM 

The prior is implemented by fitting a rectangular window 
with half a Gaussian on each side over the note positions 
estimated by the DTW alignment. Each state has a different set 
of rules governing the placement and width of the windows and 
half Gaussians, as detailed in Table 1. 

 
 5% start 100% 

start 
100% end 5% end 

Silence 
(and 
Breath) 

Midpoint 
between 
N-1 On 
and N-1 
Off 

N-1 Off N On Midpoint 
between 
N On and 
N Off 

Opening 
Transient 

N-1 Off  75% of the 
distance 
between N-
1 Off and 
N On 

25% of the 
distance 
between N 
On and N 
Off 

N Off 

Steady 
State 

N-1 Off N On N Off N+1 On 

Closing 
Transient 

N On  75% of the 
distance 
between N 
On and N 
Off 

25% of the 
distance 
between N 
Off and 
N+1 On 

N+1 On 

Table 1: Gaussian distributions for the creation of a prior from 
the DTW alignment. N is the current note number.  

4. EVALUATION 

4.1. Test Data 

Three annotated recordings of the opening of Schubert’s Ave 
Maria by three different singers were used to evaluate the 
system. The annotations were done manually using Audacity 
[20]. All of the singers had soprano voices, one was a 
professional and the other two were undergraduate vocal majors. 
The singers’ exhibited differences in overall timbre, attack time 
(transient length), and vibrato rates. 

4.2. Algorithm One – General state sequence 

In this first algorithm the entire state sequence is used for each 
note. This is the baseline test, to evaluate whether performance 
is improved when the text is taken into account (algorithm tw). 
The first part of this algorithm (1a) uses the basic three-state 
HMM model, as per Figure 2, and the second (1b) adds the 
optional breath state, as per Figure 3. 

4.3. Algorithm Two – State sequence adapted to sung text 

In the second algorithm the state space is modified based on the 
presence of consonants in the sung text and phrase endings or 
rests in the score, see Figure 4. As with Algorithm One, this 
algorithm was run both with the basic three-state HMM (2a) 
and with the optional breath state added (2b).  

4.4. Results 

The results of the experiments are detailed in Table 2, which 
provides the 2.5nd, 25th, 50th, 75th, and 97.5th percentiles of the 
absolute difference between the manually annotated ground 
truth and the various alignments. These percentiles were chosen 
to give a reasonable nonparametric summary of the errors. The 
50th percentile is the median, the 25th and 75th provide a sense 
of the spread, and the 2.5nd and 97.5th give the 95% confidence 
interval. 
 

Percentile 2.5 25 50 75 97.5 
Algo. 1 w/o breath 1.6 13.1 41.8 88.8 564 
Algo. 1 w/breath 1.9 13.7 47.4 118 924 
Algo. 2 w/o breath 1.6 13.1 27.8 78.0 506 
Algo. 2 w/breath 2.1 13.7 41.8 91.3 923 
DTW 3.2 32.6 52.3 87.9 479 

Table 2: Deviations in milliseconds form the ground truth of 
Algorithms 1 and 2 compared to the original DTW alignment.  

In general, both algorithms provided greater alignment 
accuracy than the original DTW alignment. There was also a 
consistent improvement in performance by the modified state 
sequence used in Algorithm Two over the unmodified sequence 
in Algorithm One. This was largely to be expected, as in the first 
algorithm the HMM had the freedom to select a state that would 
not have occurred at certain points in the recorded performance. 
The addition of the breath state did not increase the accuracy of 
the alignment, in fact it led to a small number of quite severe 
misalignments. On inspection, these misalignments ocurr at the 
silence-breath-silence states and not in the transient and steady-
state portions of the notes that we are concerned with, when 
these were ignored, the 75th percentile dropped from 91 to 78ms, 
and the 97.5th percentile dropped from 923 to 468ms. 

A visual demonstration of the improvement in alignment 
can be seen in Figure 6. Here the red boxes indicate the DTW 
alignment, the red horizontal lines are the silences predicted by 
the model, the green lines are the transients, and the blue lines 
are the steady-state portion of the notes. At approx. 400ms, 
800ms, and 1500ms (labels 1, 2, and 3, respectively) the DTW 
alignment estimates the offsets too early and the onsets too late 
and at approx. 1800ms (label 4) the DTW estimates the offset 
too late. All of these misalignments are corrected by the HMM, 
also at 1 and 3 the HMM successfully identifies the presence of 
the transients at the start of the notes. 
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Figure 6: Visualization of the performance of the HMM 
alignment (lines) versus the DTW alignment (boxes).  

5. DISCUSSION 

Closer examination of where the HMM made incorrect 
state identifications revealed that some voiced consonants 
introduced a considerable amount of ‘noise’ in steady-state 
sections, i.e., when the consonants are rolled. The 
implementation of the transient state predominantly modeled 
unvoiced consonants, while allowing for the possibility of 
several frames of noise at the start of a voiced consonant. The 
implementation of the steady-state portion covered both voiced 
consonants and vowels. The reason for this is that the voiced 
consonants contribute to the perceived pitch. There is also some 
ambiguity present in the ground truth. Onsets and offsets in the 
singing voice are often notoriously difficult to identify [22], 
which may affect the accuracy of the ground truth, and thus the 
results of the experiments, by several tens of milliseconds.  

6. CONCLUSIONS AND FUTURE WORK 

Overall, the 3-state HMM algorithm was able to improve the 
results of the standard DTW alignment, decreasing the median 
alignment error from 52 to 42 ms. When a simple model of the 
phonetics of the lyrics was taken into consideration, the median 
error was further reduced to 28 ms. The is promising and 
generally sufficient for determining start and end points of 
steady-state portions of notes when calculating the perceived 
fundamental frequency. Plans for future work include 
experimenting with expansions to the HMM to differentiate 
explicitly between voiced and unvoiced consonances. This 
information will be useful when calculating a single perceived 
fundamental frequency over the duration of a note.  
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