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Abstract
A successful speech enhancement system requires strong mod-
els for both speech and noise to decompose a mixture into the
most likely combination. However, if the noise encountered dif-
fers significantly from the system’s assumptions, performance
will suffer. In previous work, we proposed a speech enhance-
ment framework based on decomposing the noisy spectrogram
into low rank background noise and a sparse activation of pre-
learned templates, which requires few assumptions about the
noise and showed promising results. However, when the noise
is highly non-stationary or has large amplitude, the local SNR
of the noisy speech can change drastically, resulting in less ac-
curate decompositions between foreground speech and back-
ground noise. In this work, we extend the previous model by
changing the modeling of the speech part to be the convolution
of a sparse activation and pre-learned template patches, which
enforces continuous structure within the speech and leads to
better results in highly corrupted noisy mixtures.
Index Terms: speech enhancement, convolutive factorization,
patch dictionary

1. Introduction
Automatically enhancing degraded and noisy speech is one of
the key problems in speech processing. Speech enhancement
serves both to pre-process audio for automatic speech recogni-
tion, as well as improve quality for human listeners. In gen-
eral speech enhancement, the signal is typically modeled as a
combination of a clean speech with a noisy background, and
the goal is to recover the speech component by detecting and
suppressing noise. Consequently, to ensure high-quality speech
enhancement, both the estimation of speech and the noise need
to be accurate. However, since “noise” can vary widely from
one context to the next, it can be difficult to formulate a single
noise model which performs well in all situations.

Existing speech enhancement systems typically make sev-
eral assumptions about the noise distribution. In the traditional
speech enhancement framework, noise is assumed to be sta-
tionary and to follow a Gaussian distribution across each fre-
quency bin of the spectrogram, with parameters that can be es-
timated from detected gaps in the speech [1]. To deal with
non-stationary noise, several fixed-rank noise models have been
proposed, where the noise is assumed to lie in the span of a
low-rank (non-negative) subspace [2, 3]. But when noise fails
to match the assumptions of the model, enhancement quality
rapidly declines.

The recently-developed technique of Robust Principal
Component Analysis (RPCA) [4] provides a new approach to
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distinguishing background noise. RPCA decomposes a matrix
into the sum of a sparse component and a low-rank component.
Some speech enhancement scenarios include background noise
that can be non-stationary but still exhibit low-rank structure.
Noise is often less spectrally diverse than foreground speech, in
which case it will be captured by the low-rank component when
RPCA is applied to the spectrogram.

In recent work, we proposed a model that further decom-
poses the sparse component of RPCA into the product of a pre-
learned dictionary of spectra and a sparse activation matrix, and
where the background noise is modeled as the sum of a low-
rank matrix and a Gaussian residual [5]. The key feature of the
RPCA formulation is that the rank of the noise basis is inferred
from the input signal, rather than fixed in advance.

However, as described above, the effectiveness of speech
enhancement depends on both the noise and speech models.
One drawback of the previous model [5] was that the speech
spectrogram was represented as frame-wise sparse activations
of pre-learnt spectra which did not explicitly account for tem-
poral continuity of speech. Consequently, the performance of
the model degrades in low SNR situations or when the noise is
highly transient.

In this work, we incorporate the temporal continuity of
speech by extending the previous model [5] to decompose the
noisy spectrogram into the sum of two components: a low rank
background noise matrix, and the convolution of pre-learned
time-varying templates with a sparse activations. Sparse con-
volutional modeling of speech allows us to discover a compact
representation of the audio which exploits continuous structure
in speech. This results in improved robustness, and better per-
formance in moderate-to-low SNRs.

2. Proposed Model
2.1. Background: Low-rank noise

Candès et al. showed that under broad conditions, a data matrix
Y ∈ RF×T can be uniquely decomposed as the sum of sparse
matrix S and low-rank matrix L by solving the following con-
vex optimization problem [4]:

min
S,L
‖S‖1 + ‖L‖∗ s.t. Y = S + L. (1)

In (1), ‖S‖1 denotes the element-wise `1-norm, which provides
a convex surrogate for sparsity of S. ‖L‖∗ denotes the nuclear
norm — or sum of singular values — which provides a convex
surrogate for the rank of L. Because of its ability to reveal the
intrinsic structure of a matrix, RPCA has been shown to have
good performance in the problem of audio source separation,



where S and L are taken as the foreground and the background
components in the mixture [6].

For speech enhancement, where the target is to extract clean
speech, the objective is more specific than in general source sep-
aration. To better constrain the speech model, we previously
adapted RPCA by replacing the sparse component of the RPCA
with a sparse activation H ∈ RK×T+ of a pre-learned speech
codebook W ∈ RF×K+ [5]:

min
H,L,E

‖E‖2F + λH‖H‖1 + λL‖L‖∗ + I+(H)

s.t. Y = WH + L+ E.
(2)

Here, ‖E‖2F denotes the Frobenius norm of the residual E. The
indicator function I+(H) constrains the activationH to be non-
negative, which prevents the energy cancellation with the nega-
tive weight on the codewords.

2.2. Convolutive sparse low-rank decomposition

One problem of the column-wise model described above, as
well as other column-based factorization systems [7, 8, 2], is
that they assume that frames are invariant to temporal permuta-
tions. However, speech clearly exhibits strong temporal depen-
dencies which can be exploited to improve enhancement [1].

To better capture temporal dynamics of speech, we propose
a convolutive extension of (2), which takes the form:

min
H,L,E

‖E‖2F + λH‖H‖1 + λL‖L‖∗ + I+(H)

s.t. Y =

P−1∑
τ=0

W (τ)
τ→
H + L+ E.

(3)

Here, {W (τ)} ⊂ RF×K+ , τ = 1, ..., P is a set of time-varying
basis elements, where each W (τ) encodes the spectra pattern
of each patch at its τ th frame. H ∈ RK×T+ is the corresponding

set of non-negative convolutive activations, and
τ→
H refers the

“shift” operation, which pads τ zero-columns to the left of H
and truncates its rightmost P − τ columns to maintain shape,

with
←τ
H defined analogously for left-shift.

Compared with (2), the proposed model decomposes
speech as the sum of convolutions between the dictionary el-
ements and their corresponding activations. Rather than in-
dividual speech spectra, the dictionary now consists of two-
dimensional “patches” of speech, which capture the energy
distribution in each frequency bin over subsequent points in
time. Modeling temporal dependencies in this way prevents the
speech model from erroneously capturing transient noise bursts.
The proposed system thus provides robust estimation of both
speech and noise components.

The parameter P controls the length of convolution win-
dow. By controlling the convolution window length, parameter
P affects the model’s emphasis on continuity. Note that when
P = 1, the proposed model reduces to the column based model.
Larger values of P correspond to longer basis patches, and en-
force longer dynamic structure within the estimated speech. P
therefore provides a parameter to trade-off between flexibility
and reconstruction accuracy. In low SNR situations, longer con-
volution windows prevent the system from modeling noise with
the speech components. Conversely, when SNR is relatively
high, enforcing long dynamic dependencies in the speech would
limit the model in representing the detail of the speech, and lead
to inaccurate reconstruction.

Algorithm 1 Convolutive sparse low-rank decomposition
Input: noise+speech spectrogram Y , convolutive basis W ,
Output: activations H , noise spectrogram L
Initialization: H ← random positive values; L← 0
for t = 1, 2, . . . until convergence do

update H:
R←

(
Y − Lt

)
+

Z ←
∑
τ W (τ)

τ→
Ht

Hτ ← Ht ◦

(
W (τ)T

←τ
R −λH1K×T

)
+

W (τ)T
←τ
Z

Ht+1 ← 1
T

∑
τ Hτ

update L:

U,Σ, V T ← svd
(
Y −

∑
τ W (τ)

τ→
Ht+1

)
Lt+1 ← USλL(Σ)V T

end for

The proposed model can also be viewed as a natural exten-
sion of convolutive non-negative matrix factorization (CNMF).
In the traditional CNMF/NMF model for speech enhancement,
the noise spectrogram Yn was modeled as a fixed rank matrix
Yn = WnHn, where the size of the noise dictionary must be
set beforehand [9, 3]. However, the appropriate rank for the
noise varies with SNR and noise types, and a single fixed-rank
model may not work in all situations. Moreover, fixed-rank
noise models need to estimate both the noise dictionary and
the corresponding activation, which results in a difficult, non-
convex optimization problem. By replacing the fixed-rank noise
model with an adaptive low-rank penalty, the model can adjust
its complexity in modeling noise for each input mixture. Since
the nuclear norm optimization is convex, a global optimum can
be guaranteed.

2.3. Algorithm

Given the dictionaryW , the problem given in (3) is jointly con-
vex in L and H , and a global optimum can be obtained by a
variety of methods, e.g., projected sub-gradient descent. Here,
we opt for alternating block optimization, primarily because it
leads to simple and efficient multiplicative updates, and the re-
sulting algorithm is qualitatively similar to those for (convolu-
tive) NMF [10, 9]. Note that the variable E may be eliminated
by substituting the constraint into the objective.

When updating H , the current L is held constant, which
makes the model equivalent to CNMF applied to Y − L. We
can then compute the element-wise gradient of (3) with respect
toH to obtain multiplicative update rules forH . By initializing
H with positive values, the non-negativity ofH can be ensured.

When updating L, H is held constant, and the resulting up-
date is the standard nuclear norm proximal problem [11]. The
optimum can be computed through soft thresholding the singu-
lar values of L.

The full algorithm is detailed in Algorithm 2.3, where ◦ de-
notes Hadamard multiplication, 1K×T denotes the K × T all-
ones matrix, (·)+ denotes projection onto the non-negative or-
thant, and Sλ denotes the soft-threshold operator:

Sλ(x) :=

{(
1− λ

|x|

)
x if |x| > λ

0 otherwise.
(4)

Note that by fixing L = 0, we recover the original sparse



CNMF model [9]. For a fixed H , the resulting multiplicative
update rule for W is

W (τ)←W (τ) ◦ Y
τ→
HT

Z
τ→
H

T
. (5)

Combining these facts allows us to learn a codebook W from
examples of clean speech by performing alternating minimiza-
tion of W and H .

3. Experiments
The proposed system was evaluated with 2500 noisy speech ex-
amples, totaling 2.5 hours. The noisy signals were synthesized
by adding clean speech to a variety of noise signals at different
SNRs. Clean speech was randomly sampled from the TIMIT
dataset [12]. Noise data was drawn from AURORA dataset [13]
and the collection used in by Duan et al. [7]. We include 8 sta-
tionary noise types: car, exhibition, restaurant, babble, train,
subway, train, airport; and two transient noises: keyboard and
birds. Test samples were mixed with noise at four SNRs, rang-
ing from −10 to 5dB. All signals were resampled to 8kHz, and
spectrograms were calculated using a window of 32ms and a
hop of 10ms.

The speech dictionary was learned from 200 utterances of
20 speakers, which were disjoint from the speakers used to
make the test samples. For each speaker, a dictionary of 50
elements was constructed by alternating minimization of (3)
and (5). The final dictionary was formed by concatenating each
speaker-dependent dictionary, resulting in K = 1000 basis el-
ements. To measure the influence of window length, we evalu-
ated the model using two convolution window lengths: P = 3
and P = 5. The weights λL and λH were tuned on a small
held-out set to values 0.08 and 5.5.

Five models were selected as baselines for comparison. The
first three were sparse convolutive NMF with rank 1, 4 and 8
(FR1, FR4, and FR8, respectively). We also include the previ-
ous column-based low-rank noise model (2) as a baseline (LR).
To ensure fair comparison, dictionaries for the column-based
systems were learned from the same training set with the same
size as the total number of frames in the convolutive dictionary.
We also include the classic LogMMSE estimation [1], using the
implementation provided in [14].

We evaluated speech enhancement using two metrics.We
used the popular BSS EVAL package [15] to calculate the
Signal-to-Distortion Ratio (SDR). And The second criteria was
the PESQ estimate of subjective speech quality[16]. For both
metrics, a larger score indicates better performance. The results
are shown in Table 1–3 and Figures 1&2.

4. Results and Discussion
As illustrated in Table 1 & 2, the proposed CLR algorithm
achieves the highest performance in all SNR conditions, except
against FR1 at the 0dB SNR. And for PESQ score, the CLR out-
performs all the base-line except the 5 dB experiment, in which
logMMSE achieves the highest score.

In low-SNR conditions, the noise has large amplitude, and
correspondingly large variance. This effectively forces the
speech model to represent the large noise energy in spectrogram
in order to reduce the reconstruction error. Increasing the rank
of the noise model can help to mitigate this effect, as it provides
greater model flexibility to separate noise from speech. This
can be observed in the −10dB experiment, where the rank-4

SNR FR1 FR4 FR8 LR LogMMSE CLR
−10dB -2.98 -2.26 -2.07 -4.13 -5.62 -0.86
−5dB 3.03 2.15 1.02 1.47 0.31 3.63
0dB 7.39 4.32 1.55 5.79 5.18 7.22

+5dB 9.39 4.56 1.11 8.44 9.28 9.33

Table 1: SDR values (in dB) for all systems at various SNRs,
averaged across all noise types. FR1, FR4 and FR8 are sparse
convolutive NMF models with rank 1, 4 and 8. LR corre-
sponds to (2) [5]. CLR is the proposed convolutive low-rank
model(P = 5). For each SNR, bold indicates statistical equiva-
lence to the best result under a Bonferroni-corrected Wilcoxon
sign-rank test against CLR at sensitivity α = 0.05.

SNR FR1 FR4 FR8 LR LogMMSE CLR
−10dB 1.35 1.35 1.32 0.93 1.16 1.43
−5dB 1.67 1.58 1.47 1.17 1.54 1.71
0dB 1.97 1.73 1.47 1.42 1.97 1.98

+5dB 2.16 1.76 1.38 1.62 2.36 2.22

Table 2: PESQ scores for all systems at various SNRs, averaged
across all noise types.

and rank-8 models outperform the rank-1 model. Conversely, in
higher SNR conditions, the noise is relatively small, and a rank-
1 noise model suffice. In the experiments at −5dB and above,
the trend is reversed, and FR1 outperforms FR4 and FR8. How-
ever, if the fixed rank is too high, as in FR4 and FR8, the extra
representation power would erroneously capture the speech en-
ergy, and impair separation performance.

In high-SNR conditions (5dB and above), the speech model
itself can generate the most robust enhancement result, as even
rank-1 approximation would suffer the energy loss problem. In
general, the complexity of the noise model should be adaptive:
it must be rich enough to capture background noise, but not so
rich as to capture speech.

A similar analysis can also be performed for each particu-
lar type of noise. Figure 1 depicts the per-noise enhancement
results for four typical noises. We observe that under a fixed
SNR, the performance of different systems varies significantly
according to the specific type of noise in the mixture. For tran-
sient noises, such as bird and keyboard, a high-rank noise model
is necessary to prevent the speech model from fitting noise. For
relatively stationary noises, such as train and car, energy loss
could be the main reason for the unsuccessful separation, and
low-rank noise models suffice.

As discussed in section 2, the proposed model can adap-
tively determine the noise model complexity according to the
balance between the speech and noise energy. Therefore, in
low-SNR and transient noise experiments, the proposed model
should adapt to a high rank noise mode (sometimes higher than
8), and thus generate better or equivalent results as FR4 and
FR8. On the other hand, for stationary noise or high-SNR
settings, where FR4 and FR8 suffered from the energy loss
problem, the proposed model should automatically decrease its
noise rank (zero for many samples in 5dB SNR experiments).
Note that in some experiment settings, the proposed model also
slightly suffers from the incorrect noise rank problem, resulting
in lower SDR than FR1 in 0dB experiment, where the optimum
rank for most noises was one. However, for a large variety
of SNR conditions, the proposed model provides significantly
more robust separation, which makes it especially suitable for
real-world applications when the SNR and noise types are un-
known.
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Figure 1: Enhancement results for various types of noise.

SDR PESQ
SNR LR CLR3 CLR5 LR CLR3 CLR5

−10dB -3.65 -2.06 -0.64 0.93 1.30 1.43
−5dB 1.80 2.72 3.93 1.17 1.59 1.71

0dB 5.94 6.89 7.32 1.43 1.90 1.98
+5dB 9.35 10.32 9.25 1.63 2.24 2.22

Table 3: SDR values and PESQ scores for each convolutive win-
dow size.

Table 3 shows the performance of the proposed model with
P = 1, 3 and 5, where P = 1 corresponds to the column-based
system. As discussed in section 2, the longer window enforces
stronger continuity constraints, leading to better performance
of CLR in low-SNR and transient noise experiments. As the
SNR increases, noisy speech was easier to separate, which re-
duces the necessity for continuity, but calls for stronger model-
ing power to accurately reconstruct the speech. In those condi-
tions, the short-window model (CLR3) tends to outperform the
long window model (CLR5), as observed in the +5dB experi-
ment in table 3. And for the same reason, the PESQ score of the
CLR5 , which emphasizes more in the speech quality than the
noise reduction, was lower than LogMMSE and CLR3 when
the SNR is at +5dB.

5. Conclusion

In this work, we proposed an algorithm that decomposes noisy
speech into the sum of a low rank matrix (capturing background
noise with limited spectral variation) and the convolution be-
tween a learned basis of speech patches and corresponding
sparse activations. When employed for speech enhancement,
the proposed model achieves significantly better performance in
transient noise and moderate-to-low SNR conditions than fixed-
rank factorizations and non-convolutive models, .
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Figure 2: Example decomposition. The top pane shows the
spectrogram of speech mixed with bird chirping at −5dB. The
output of FR1 is shown in the second pane, and the third pane is
the result for CLR3. The fourth and fifth pane show log-MMSE
and LR enhancement. The clean speech appears in the bottom
pane.
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