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Figure 12: Confusion matrix for the artist recognition task.
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(a) Metallica
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(b) Tori Amos /
Suzanne Vega

Figure 13: Typical patterns for different artists.

leave-one-out setting, and represent each of the 20 artists
by the average of their (remaining) song-histograms. The
test song is matched to an artist based on minimum Eu-
clidean distance to these per-artist averages. This gives an
accuracy of 23.4%, where the random baseline is around
5%. The confusion matrix can be seen in Figure 12, show-
ing that certain artists are recognized at an accuracy far
above the average.

It is interesting to inspect the most “discriminative” pat-
terns for individual artists. To find these patterns, we com-
pare a pattern’s use by one artist and divide by its use
across all artists. Figure 13 shows the dominant patterns
for Metallica, and for Tori Amos and Suzanne Vega (who
shared a ‘favorite’ pattern). These three artists were eas-
ily identified. Artists like Metallica are characterized by
“wideband” patterns, with energy spread across multiple
adjacent chroma bins, indicative of noise-like transients in
the audio.

6. CONCLUSION AND FUTURE WORK

We have presented a practical method to perform large-
scale clustering of tonal patterns, and assessed the basic
properties of the method through experiments on a large
collection of music. We have explored several ways to in-
spect and interpret the data and suggested the merit of the
representation through further experiments. We have dis-
cussed the possibility to move to even larger scales and we
provide our source code for other interested researchers 3 .

Future work may include more sophisticated clustering
that moves beyond simple Euclidean-distance-based quan-

3 See Papers section at www.columbia.edu/˜tb2332/

tization, perhaps by separately modeling the spread within
each cluster (i.e., a Gaussian mixture or other generative
model). Summarizing patches with Gaussians, and then
comparing the distance between those Gaussians, could re-
duce the influence of the noise in the distance measure.

Moving on to larger scales, we would like to pursue a
scheme of incrementally splitting and merging codewords
in response to a continuous, online stream of features, to
create an increasingly-detailed, dynamic model. We could
also cluster codebooks themselves, in a fashion similar to
hierarchical Gaussian mixtures [10].
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