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Abstract— Autoregressive (AR) models are commonly obtained
from the linear autocorrelation of a discrete-time signal to
obtain an all-pole estimate of the signal’s power spectrum. We
are concerned with the dual, frequency-domain problem. We
derive the relationship between the discrete-frequency linear
autocorrelation of a spectrum and the temporal envelope of a
signal. In particular, we focus on the real spectrum obtained by
a type-I odd-length discrete cosine transform (DCT-Io) which
leads to the all-pole envelope of the corresponding symmetric
squared Hilbert temporal envelope. A compact linear algebra
notation for the familiar concepts of AR modeling clearly reveals
the dual symmetries between modeling in time and frequency
domains. By using AR models in both domains in cascade, we
can jointly estimate the temporal and spectral envelopes of a
signal. We model the temporal envelope of the residual of regular
AR modeling to efficiently capture signal structure in the most
appropriate domain.

Index Terms— Autoregressive modeling, frequency-domain lin-
ear prediction (FDLP), linear prediction in spectral domain
(LPSD), temporal noise shaping (TNS), Hilbert envelope.

I. INTRODUCTION

AUTOREGRESSIVE (AR) modeling identifies and ex-
ploits a particularly simple form of redundancy in signal

sequences by finding the optimal linear combination of a fixed-
length history to predict the next sample – hence the alternative
name of Linear Predictive (LP) modeling. By extracting the
linear dependence (correlation) in a signal, AR models find
many applications in signal compression and communications,
but the form of the model itself – which describes the original
sequence as the result of passing a temporally-uncorrelated
(white) excitation sequence through a fixed all-pole digital
filter – leads to some interesting and important applications
in itself. The filter comprises a low-dimensional parametric
approximation of the signal, or specifically its broad spectral
structure, since the magnitude of the Fourier transform of
the signal is the product of the white excitation’s spectrum
(expected to be flat) and coarse spectral variation provided by
the poles of the AR filter.

One prominent application domain relates to human voice,
since voiced speech is well modeled as a broadband, pseu-
doperiodic glottal pulse train filtered by resonances (poles) in
the vocal tract, identified with formants. Formants carry much
of the linguistic information in speech, and many formant
tracking applications operate by fitting AR models to short-
time windows of the speech signal, factoring to identify the
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individual poles, then constructing formant trajectories from
the succession of center frequencies of these poles [1]. While
explicit formant tracks turn out to be a brittle basis for speech
recognition, the properties of AR modeling to suppress fine
detail while preserving the broad structure of formants has led
to its widespread use in speech recognition preprocessing, for
instance in “perceptual linear prediction” (PLP) features [2].
In this application, the all-pole filter defined by the optimal
difference equation coefficients is taken as the description
of a smoothed spectral envelope – the magnitude of the z-
transform of that filter evaluated on the unit circle – which is
then described by its cepstral coefficients for further statistical
modeling in a speech recognizer.

This paper is concerned with using AR models to form
smoothed, parametric models of temporal rather than spectral
envelopes. The duality between the time and frequency do-
mains means that AR modeling can be applied equally well to
sequences which are discrete spectra instead of time-domain
sequences. In this case the magnitude evaluated on the unit
circle in the z-plane describes the time-domain envelope –
specifically the squared Hilbert envelope. Just as conventional
AR models are used most effectively on signals with sharp
spectral peaks that can be well modeled with individual
complex pole pairs, so AR models of the temporal envelope
are most appropriate for ‘peaky’ temporal envelopes, and
individual poles in the resulting polynomial may be directly
associated with specific energy maxima in the time waveform.

In the same way that a parametric description of the spectral
envelope leads to numerous applications, a temporal envelope
model can be useful. For signals that are expected to consist of
a number of distinct transients, (be they the isolated vocal pitch
pulses of low-pitch male speech, or the irregularly-spaced
crackling of burning log) fitting an AR model can constrain the
modeled envelope to be a sequence of maxima, and the AR fit-
ting procedure can remove finer-scale detail. This suppression
of detail is particularly useful in classification applications,
where the goal is to extract the general form of the signal
regardless of minor variations. Because the envelopes modeled
by AR can include sharp, narrow maxima even for low-order
models, this approach can be preferable to the implicit low-
pass filtering of a low-order Fourier approximation.

This idea was first applied in audio coding by Herre and
Johnston [3] who dubbed it Temporal Noise Shaping (TNS).
This frequency-domain version of D*PCM [4] was used
to eliminate pre-echo artifacts associated with transients in
perceptual audio coders such as MPEG2 AAC by factoring-
out the parameterized time envelope prior to quantization, then
reintroducing it during reconstruction. Traditional transform
coding introduced “reverberation” or temporal-smearing pre-
echo artifacts to signals that were ‘peaky’ in time, and TNS
eliminated these artifacts. In their original and subsequent
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papers [3], [5], [6], [7] Herre and Johnston motivated TNS
by citing the duality between the squared Hilbert envelope
and the power spectrum for continuous signals, but no exact
derivation for finite-length discrete-time signals was given.

Kumaresan et al [8], [9], [10], [11], [12], [13] have also
addressed the problem of autoregressive modeling of the
temporal envelope of a signal. Specifically, in [8] Kumare-
san formulated the so-called linear prediction in the spec-
tral domain (LPSD) equations. Working with a continuous,
periodic time-domain signal and its corresponding infinite-
length Fourier series, he used an all-pole model in order to
fit the Hilbert envelope without calculating the corresponding
analytic signal. By considering the discrete, periodic signal
obtained by sampling the continuous signal, the AR model
of the infinite series was taken as an approximate model for
the finite-length discrete Fourier transform of a finite discrete
signal.

We solve the same problem of finding an AR model of a
discrete spectrum and relating it to the envelope of the finite,
discrete time-domain signal, but our solution is expressed
entirely in the discrete, finite domain through matrix opera-
tions. One particular issue we examine concerns continuity at
boundaries: because the envelope calculated on the z-plane
is intrinsically periodic, discontinuities between the first and
last values of a finite-length sequence, which is treated as
periodic by the analysis, will lead to Gibbs-type ringing. To
avoid this, we symmetrize the time signal prior to analysis and
model the envelope of the resulting, double-length signal. As
a consequence, we end up using a discrete Cosine transform
(DCT) to shift between temporal and spectral domains, and
our envelopes, while constrained to have zero slope at the
edges, do not suffer from discontinuities in value. This leads to
our central result, that to obtain an all-pole model describing
the squared Hilbert envelope of an odd-length symmetrized
discrete sequence, one should apply AR modeling to the real
spectrum computed by the discrete cosine transform type I
odd (DCT-Io).

We present a linear-algebra derivation of autoregressive
models that is completely symmetric for spectral and temporal
envelopes. By using orthogonal versions of all transforms,
energy preservation and perfect reconstruction properties are
guaranteed. This leads to a joint fit of a cascade of tempo-
ral and spectral autoregressive models that obtains a lower
minimum total squared error when compared to independent
modeling in each domain.

Section II presents the mathematical background needed to
relate autocorrelation and envelopes. In section III we formu-
late the time-domain and the frequency-domain AR models
in a dual fashion and combine them to form the cascade
and joint time-frequency models. Section IV contains two
examples, modeling the temporal envelope of voiced speech,
and modeling the speech residual. We draw conclusions and
discuss future work in section V.

II. RELATING AUTOCORRELATION AND ENVELOPES

The aspect of autoregressive modeling that interests us is its
ability to approximate the envelope of the transform of a signal

by starting from the autocorrelation in the non-transformed
domain. Conventionally, this is estimating the spectral enve-
lope from the autocorrelation of the time signal. In the dual
domain, this becomes estimating the temporal envelope from
the autocorrelation of the spectrum - in our case the discrete
cosine transform. We show that by concentrating on odd-
length, symmetric signals this relationship is particularly tidy.

A. Linear autocorrelation
Let x be an N -dimensional real column vector that repre-

sents a finite-duration discrete-time real signal x(n):

x = [x(0) x(1) . . . x(N − 1)]T (1)

where {·}T denotes transposition. Let r̃x be a column vector
that represents the biased linear (aperiodic) autocorrelation of
x(n), where |m| ≤ N − 1. In column vector form we have

r̃x = [r̃x(−N + 1) . . . r̃x(−1) . . .

. . . r̃x(0) r̃x(1) . . . r̃x(N − 1)]T (2)

where

r̃x(m) =
1
N

N−|m|−1∑
n=0

x(n)x(n + |m|) (3)

r̃x is always odd-length with M = 2N − 1, and is even-
symmetric over the lag m = 0 i.e. r̃x(m) = r̃x(−m).

We define a zero-padding matrix Zr,l as the (l+n+ r)×n
zero-padding matrix:

Zr,l = [0n×l In 0n×r]
T (4)

where In is the n×n identity matrix. Left-multiplying x by the
matrix Zr,l pads an input sequence x to the right and left by r
and l zeros respectively, where the dimension n can be inferred
by the vector that Zr,l is applied to. For the most part of this
paper l will be zero (meaning no left padding) in which case
we will drop the parameter l and denote the matrix as Zr. The
special case ZN−1 (right padding by N − 1 zeros) is simply
denoted as Z. Note that the transposed zero-padding matrix ZT

applied to an M -dimensional vector (where M = 2N − 1 as
above) simply selects the first N elements, and so the product
ZZT is applied to an M -dimensional vector zeroes out the
last N − 1 elements.

Let F be the M × M unitary Discrete Fourier Transform
(DFT) matrix defined as

F =
1√
M

exp
(
−

2πmn

M

)
(5)

where the row and column indices are m,n = 0, 1, . . . , M−1.
For the unitary DFT we have F−1 = FH and FH = F∗.

Defining x̂ = FZx as the forward DFT of the zero-padded
input signal x, the autocorrelation of eqn. 3 is:

rx =
√

M

N
FH(x̂¯ x̂∗) (6)

where {·}∗ denotes complex conjugation and A¯B denotes
the Hadamard (element wise) product, giving the familiar
relationship between autocorrelation and the magnitude of the
transform-domain signal. Note the distinction between rx of
eqn. 6 and r̃x of eqn. 2, which is rotated by N − 1 elements
to start with x(0).
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B. The WSHS symmetry of autocorrelation

In the terminology of Martucci [14], autocorrelation is
left whole-sample symmetric – right half-sample symmetric
(WSHS). Formally an M -point sequence x̄(n) is WSHS
symmetric if

x̄(n) =
{

x(n) n = 0, 1, . . . , N − 1
x(M − n) n = N, . . . , M − 1 (7)

and x̄(n) is always an odd-length sequence. An infinite peri-
odic extension of x̄(n) is symmetric over the sample at index
n = 0 (the whole-sample part) and also symmetric over the
‘half-sample’ n = N − 1

2 i.e. x̄(N − 1) = x̄(N).
The M × N -dimensional WSHS symmetric extension op-

erator (SEO) matrix S is defined [14] as:

S =




1
1

. . .
1
1

. . .

1




=




1 0
0 IN−1

0 JN−1


 (8)

where JN−1 is the N − 1 × N − 1 reverse identity matrix
(1’s on the antidiagonal). We can right-symmetrize an N -
dimensional signal x by left multiplying it by S i.e. x̄ = Sx.
ST is essentially an aliasing operator: it “folds” and adds the
signal onto itself, to reduce M points to N .

Note that the DFT and inverse DFT (IDFT) of a WSHS
sequence are also WSHS. In our case this means that since the
autocorrelation rx is WSHS, then the corresponding sampled
power spectrum x̂¯ x̂∗ (see eqn. 6) will also be WSHS.

C. The Discrete Cosine Transform type I odd (DCT-Io)

Out of the 16 discrete trigonometric transforms (DTT) first
tabulated by Wang [15], we are interested in the discrete cosine
transform type I odd (DCT-Io) which is the only one related to
the DFT through the WSHS SEO operator [14], meaning that
the WSHS symmetry property of the autocorrelation can be
preserved through the DCT-Io. The orthogonal N×N DCT-Io
matrix C is defined as

C =
2√
M

kmkn cos
(

2πmn

M

)
(9)

where m, n = 0, 1, . . . , N − 1 and the coefficients kj are

kj =
{

1/
√

2 j = 0
1 j 6= 0

(10)

We place the weights kj on the main diagonal of an N×N
matrix W that we define as

W =




1/
√

2
1

. . .
1


 =

[
1/
√

2 0
0 IN−1

]
(11)

and we derive the following orthogonal DCT-Io factoriza-
tion (see appendix I):

C = W(ZT FS)W−1 (12)

W SZ
T

W
−1

FC

=

Fig. 1. DCT-Io factorization. A pictorial representation of eqn. 12. Diagonal
matrices are represented by diagonal lines and basis vectors are represented
by horizontal lines.

Notice that the DFT matrix F is M × M and complex
whereas the DCT-Io matrix C is N × N and real; moreover
the inverse of W is trivial since it is diagonal and non singular.
One way to interpret this equation is that the DCT-Io can be
seen simply as the first N elements (ZT ) of the DFT (F) of
the WSHS-symmetrized (S) input vector. In order to make
the columns and rows orthogonal, we left and right multiply
by W and W−1 respectively. This interpretation is depicted
pictorially in figure 1.

Although C is orthogonal and self-inverse (involutary), we
wish to derive a non-orthogonal forward (CF ) and corre-
sponding inverse (CI ) pair of N ×N DCT-Io transforms. We
have

IN = CCT

= W(ZT FS)W−1W−1(ST FHZ)W

= W2(ZT FS)W−2(ST FHZ)

(13)

(We can move the W like this because of the identity matrix
on the left-hand side i.e. if I = AX and A is nonsingular,
then X = A−1 and thus AX = XA.) Associating the
scalar weights 2 and 1/2 with the forward and inverse non-
orthogonal DCT-Io we can divide into a pair of new trans-
forms,

CF = 2W2(ZT FS) (14)

CI = 1/2W−2(ST FHZ) (15)

and thus CF CI = IN . Note that, like the orthogonal DCT-
Io C, CF includes the ZT FS term i.e. a truncated Fourier
transform of a WSHS-symmetrized sequence. The main dif-
ference is that in CF the vector being processed is exactly
the input sequence, whereas in C the intervening W−1 factor
modifies the input vector prior to the transform. Note that W
affects only the first element of the time and frequency domain
signals.

D. Discrete-time “analytic” signal and its temporal envelope

The analytic signal was introduced by Gabor [16]. Its
fundamental property is that its spectrum vanishes for negative
frequencies or, put another way, it is “causal” in the frequency
domain. By this definition, a discrete-time signal cannot be
analytic because the spectrum is periodic and thus not causal.
One way to define a discrete-time “analytic” signal is by
forcing the spectrum to be “periodically causal” [17] meaning
that the second half of each periodic repetition of the spectrum
is forced to be zero. Marple [18] used this definition in order
to derive a discrete-time analytic signal using the DFT.

In the time domain, the analytic signal is complex with its
real part being the original signal and its imaginary part being
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the Hilbert transform of the original signal [19]. The squared
magnitude of this time-domain signal is the temporal envelope
we will approximate through AR modeling, by showing its
dual relationship to the sampled power spectrum.

Conversion to an analytic signal can be expressed as a
matrix multiply: The M ×M analytic transformation matrix
A is

A = FH(2W2)(ZZT )F (16)

We can interpret A as follows: After taking the DFT (F) of
the input signal we first zero-out the negative frequencies by
multiplying with ZZT thus forcing the spectrum to be peri-
odically causal. Then we scale with the appropriate weights
(2W2) as defined in [18] to ensure orthogonality of the real
and imaginary parts. Finally we take the IDFT (FH ) to return
to the time domain.

E. Autocorrelation of the DCT-Io

Eqn. 6 showed that the autocorrelation of the time-domain
signal is the IDFT of the power spectrum. The dual of this is
that the autocorrelation of the DCT-Io transform of a signal x
is the DFT of the WSHS-symmetric squared Hilbert envelope.
Starting from the non-orthogonal DCT-Io of x, y = CF x, its
autocorrelation is given by analogy to eqn. 6 as:

ry =
√

M

N
F(ŷ ¯ ŷ∗) (17)

where ŷ = FHZy analogously to x̂ of eqn. 6. (Because ry is
WSHS-symmetric and has a pure-real transform, F and FH

are interchangeable here.)
Using the forward DCT-Io of eqn. 14 and the analytic

transformation matrix A of eqn. 16 we can express ŷ as
follows

ŷ = FHZy

= FHZCF x

= FHZ(2W2
NZT FS)x

= FH(2W2
M )(ZZT )FSx ⇒

ŷ = ASx

(18)

(The last equation holds since ZW2
N = W2

MZ with an
appropriate change of dimensionality of W2 from N × N
to M × M .) The important interpretation of this formula
is that the inverse DFT of the zero-padded DCT-Io of x is
equal to the analytic WSHS-symmetrized signal. This means
that the Hadamard product ŷ ¯ ŷ∗ in eqn. 17 is just the
squared Hilbert envelope of the WSHS-symmetrized signal.
This equality allows us to model the temporal envelope by
fitting an AR model to the DCT-Io of y.

This derivation depended on using the non-orthogonal CF .
However, the material differences between CF and the orthog-
onal DCT-Io C lie only in the zero-index terms in both time
and frequency. If the signal being analyzed has zero values for
these terms, we could equally use C. We can construct such a
signal by (a) subtracting its mean in the time domain, and (b)
left-padding with a zero, since this first time-domain value is,
by duality, the mean value in the frequency domain.

III. AUTOREGRESSIVE MODELING

Since the autocorrelation of the DCT-Io relates to the
WSHS-symmetrized temporal envelope just as the time-
domain autocorrelation determines the power spectrum, we
can use autocorrelation-based AR techniques to approximate
the temporal envelope. We present three variants: In section
III-A we review the standard time-domain autoregressive
model and its frequency-domain counterpart. Section III-B
uses time and frequency domain autoregressive models in
cascade to model both spectral and temporal envelopes. Lastly,
section III-C optimizes the cascade, jointly minimizing a total
quadratic error by iterating on the partial derivatives with
respect to the time- and frequency-domain AR models.

A. Time and frequency duality

Consider convolution expressed in a matrix form. If x and y
are N - and L-dimensional vectors respectively, we must zero-
pad each one to length N + L − 1 to avoid circular aliasing
when convolving them, i.e.

x ~ y = XZy (19)

where X is a right-circulant matrix [20], [21] with ZL−1x
as its first column (i.e. generated by ZL−1x). Convolution is
commutative, so eqn. 19 is also equal to y ~ x = YZL−1x
where Y is the right-circulant matrix generated by Zy.

AR modeling is equivalent to finding the FIR filter, with 1
as its first coefficient, that minimizes the energy of the output
when applied to the sequence being modeled i.e.

XZa = d (20)

where X is the right circulant matrix generated by the zero-
padded signal ZL−1x, a = [1 a(1) . . . a(L − 1)]T are the
AR model coefficients to be found, and the residual d is the
N + L − 1 × 1 column vector residual whose norm is to be
minimized. Note that the Z can be viewed as zero-padding a
to facilitate convolution, or as right-multiplying X to truncate
the last L columns, making the system of equations over-
determined.

The solution of eqn. 20 is given by minimizing the quadratic
D = dT d by setting its first derivative with respect to the
free elements in a to zero. This leads to the well-known Yule-
Walker equations, which give the classic result that the AR
solution depends only on the autocorrelation rx of the signal
x being modeled. In our notation, this becomes:

(ZT
NRxZN )ZT

0,1a = −ZT
N−1,1rx (21)

where Rx is the circulant matrix generated by rx, and the Z
matrices are simply trimming the other elements appropriately.

The residual from passing the original signal through the
FIR filter defined by the AR coefficients is simply the first N
elements of d from eqn. 20 i.e. dN = ZT

L−1d. The average
minimum total squared error as defined in [22] is given by

G2 =
1
N

dT
NdN (22)

and it will be used as a goodness-of-fit measure in section
IV-B.
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Fig. 2. Block diagrams of AR models. On the left of the first row we plot
the regular time-domain AR model and on the right the frequency domain
AR model. On the middle row we plot the cascade time-frequency AR model
and on the bottom we plot the joint time-frequency AR model.

In the dual domain, eqn. 20 becomes:

YZb = e (23)

where Y is the circulant matrix generated by the zero-padded
DCT-Io transformed signal ZK−1y, b = [1 b(1) . . . b(K −
1)]T are the coefficients of the filter we are estimating – this
time in the DCT-Io domain – and e is again a residual to be
minimized. We call this model FDLP for frequency domain
linear prediction [23].

The solution of this equation involves the autocorrelation
of y, i.e. the circulant matrix Ry and the vector ry. From
eqns 17 and 18, we can see that the magnitude of the AR
filter defined by b approximates, evaluated on the unit circle
in the z-plane – the analog of the conventional AR spectral
magnitude approximation – is in this case an approximation of
the WSHS-symmetric squared Hilbert envelope of the original
sequence. One implication of this is that sharp transients in
the temporal signal result in significant, short-lag correlation
among values in the DCT-Io which can be effectively captured
by AR models.

The block diagrams of temporal and frequency domain AR
models are plotted on the top row of figure 2.

B. Cascade time-frequency AR modeling

The time-domain residual signal dN is spectrally flat since
its spectral peaks are balanced by the zeros of the estimated
FIR filter. However, any remaining temporal structure is mod-
ified but not in general eliminated. For instance, in voiced
speech the residual still carries clearly audible pitch pulses.
We propose a second AR model operating on the DCT-Io-
transformed residual in order to generate a temporally flat
frequency-domain residual.

This second model is obtained by calculating the DCT-Io
transform of the residual and estimating a new filter b that
operates on the spectrum of the residual; we have

DZb = e (24)

where D is the circulant matrix generated by ZK−1CdN (the
zero-padded DCT-Io transformed residual). The filters a and

b can be calculated by solving eqns 20 and 24 independently,
one after the other. This process is depicted on the block
diagram plotted on the second row of figure 2. Note that the
ordering of filters (time domain first) was suggested by our
chosen application of modeling the speech residual (section
IV-B). From a theoretical point of view, one as well could
estimate the frequency domain filter first.

C. Joint time-frequency AR modeling

The separate, sequential optimization of the two filters in the
cascade model above ultimately aims to minimize a quadratic
error in the frequency domain by eliminating temporal struc-
ture. But the first filter optimized a time-domain error; a
fully optimal solution will solve for both filters jointly. Our
objective is to minimize the final frequency domain residual
and we can try to do that by estimating the two filters jointly.
The error measure we minimize is

DZb = eJ (25)

but this time both filters a (which affects D) and b are
variable. In order to minimize the quadratic EJ = eT

J eJ we
need to calculate the two partial derivatives with respect to the
vectors a and b and set them to zero. The partial with respect
to b is the same as solving the frequency domain eqns 24 but
this time the solution for b is a function of a.

In order to calculate the partial with respect to a we use the
commutativity property of convolution to write eqn. 25 as

BZK−1CdN = eJ (26)

where B is the right-circulant matrix generated by Zb. Finally,
the error becomes

BZK−1CZT
L−1XZa = eJ (27)

where we have substituted dN using eqn. 20. Now the partial
with respect to a is easy to calculate which means that we
can express the optimal a as a function of b. We do not have
an exact solution of this system of equations, but repeatedly
solving for a and b in turn (and using each new value in the
solution for the other) settles to a minimal value for EJ . Both
of equations 25 and 27 are equivalent to “normal equation”
forms, solving for the free elements in the b and a vectors,
respectively, that minimize the length of the residual eJ –
which will therefore always be orthogonal to the subspace
defined by the relevant columns of the left-multiplying matrix.
In each iteration, the particular normal problem being solved
depends on the values assigned to the other AR model, which
appear in the left-multiplying matrix and of course change in
each iteration. However, the particular value of eJ that was
optimal in the solution of eqn. 25 exists as a possible solution
of eqn. 27 (i.e. if a were unchanged), but the normal solution
allows us to find the global minimum for that particular fixed
value of b. Thus EJ is guaranteed to get smaller at each
iteration, and the iterative procedure will always converge
to a local minimum. In our experience, 5–10 iterations are
sufficient to converge to a value that improves by less than
1% in successive steps. The question remains whether this is
the unique, global optimal solution: we believe it is, given
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Fig. 3. Dual forms of autoregressive modeling. On the left column (time)
we plot 50 ms of a speech signal, the corresponding squared Hilbert envelope
and the all-pole fit. On the right column (frequency) we display the DCT-Io
of the same signal, the corresponding power spectrum and the conventional
time-domain all-pole fit. Both envelope models are 24th order and the dots
show pole angles.

the simple convexity of each subproblem, but we do not yet
have a proof. The results, however, show that the joint solution
does represent a real improvement over cascade in any case.
A block diagram representation of the joint model is plotted
on the last row of figure 2.

IV. EXAMPLES AND APPLICATIONS

Here we present two applications of the AR models we
have introduced. Section IV-A illustrates the use of the time-
and frequency-domain linear prediction filters to model the
formant structure and pitch pulses, respectively, of a segment
of speech. This simple example demonstrates the flexibility
and power of the parametric model. FDLP poles represent
temporal peaks, with the pole’s distance to the unit circle
relating to peak sharpness and the pole’s angle reflecting the
peak’s position in time. This parametric description provides
a novel feature for applications such as automatic speech
recognition [23].

In section IV-B we show how the second-stage frequency
domain model can be used to parameterize the residual of a
standard time-domain model, for instance for speech coding
applications. We show that the joint model improves on the
cascade in terms of the minimum total squared error.

We have also used the cascade model for audio synthesis,
specifically in the modeling of audio textures. Sounds such as
rain or footsteps are rich in temporal micro-transients which
are well represented by the FDLP model [24]. A similar
application in coding was investigated by Schuijers [25]. He
used FDLP to model the temporal envelope a noise-excited
segment but the spectral ARMA model was substituted by
a Laguerre filter. Schuijers’ model later became part of the
MPEG-4 SSC coding standard [26].
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Fig. 4. Comparison of envelope representations. On the left column we plot
the voiced speech signal, the squared Hilbert envelope, and on the bottom
the signal squared. On the upper right is the low-pass filtered full-rectified
signal and on the middle right is the output of an envelope follower. On the
bottom right we plot three frequency domain AR models of order 16, 24 and
48 shifted by -20, -10 and 0dB for readability.

A. Temporal envelope modeling

Figure 3 shows the spectral and temporal envelopes of 50ms
of the /aa/ (arpabet) sound from the word “c o ttage”, extracted
from the TIMIT corpus and sampled at 8kHz. On the upper
left pane we plot the original signal and on the upper right the
output of the DCT-Io transform. On the middle right pane we
plot the first half of the sampled power spectrum, the other half
being WSHS-symmetric. Specifically, we plot ZT (x̂¯ x̂∗) as
in eqn. 6. On the middle left pane we plot the corresponding
first half of the WSHS-symmetric squared Hilbert envelope;
similarly this is given by ZT (ŷ ¯ ŷ∗) from eqn. 17. On the
bottom two panes we plot AR envelopes modeled by two 24th

order filters. Notice the classic all-pole behavior of fitting the
peaks of the signal – meaning the pitch pulses in the time
domain and the formants in the frequency domain – which
are well represented by the poles of the corresponding filters.
The valleys of the signal in time and frequency are smoothed
since they contribute little to the quadratic error. Note that
since the Hilbert envelope being modeled has been WSHS-
symmetrized, the temporal envelope from filter b has zero
slope at the boundaries (as does the spectral model).

For comparison, figure 4 compares a range of methods
for extracting temporal envelopes. Notice the noisiness of the
envelope obtained by squaring the signal (bottom left); the
squared Hilbert envelope (middle left) is much less noisy
by comparison. A low-pass filtered version on the top right
smooths out both peaks and valleys of the signal as all sharp
edges are eliminated. On the middle right a simple envelope
follower with exponential attack of 0.1 and exponential decay
of 2 milliseconds follows the signal well but it is approxi-
mately piecewise-linear on a log scale. For comparison on the
bottom right we present the estimated envelope using model
orders of 16, 24 and 48, where the detail increases with the
model order. The angles of poles of the FDLP model indicate
the timing of the peaks of the signal and are particularly
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Fig. 6. Minimum total squared error comparison. All three models start
with 24th order time-domain models. On the time-only plot we keep adding
poles from 0 to 50 for a total of 24 up to 74 poles. On the cascade and joint
models we add 0 to 50 poles on the frequency domain model keeping the
time domain fixed at 24.

accurate if the poles are sharply ‘tuned’ (close to the unit
circle in the z-plane). Applied to subbands this can provide
useful features for speech recognition [23].

B. Modeling of the speech residual

The second application we present is modeling the residual
of a regular time-domain AR model. A common way to model
the pitch pulses typically remaining in the residual is through a
second long-term predictor (LTP) [27]. Our cascade and joint
AR models can parameterize each pitch pulse in the second,
frequency-domain AR model, and thereby flatten the temporal
envelope of the overall residual.

In figure 5 we plot the effect of modeling speech using the
cascade model. On the upper row we plot the same speech
segment used in figure 3 along with the corresponding squared
Hilbert envelope and power spectrum. After filtering the signal
with the first-stage time-domain AR filter we get the residual
1 plotted on the second row along with its two envelopes.
Notice how the pitch pulses persist in the time domain whereas
the spectral envelope is broadly flat since the formant peaks
have been captured by the first stage time-domain AR filter.
Plotting the Hilbert envelope in the log domain reveals sharp
details in the temporal envelope that are difficult to capture
with traditional LTP. In fact even though the original time
domain signal appears to contain four pronounced pitch cycles,
the first stage residual contains six dominant temporal peaks
which could have perceptual importance, since they identify
moments within the pitch cycle where the waveform does
not correspond simply to decaying resonances – the kind of
textural detail that may contribute to perceived voice quality.

These temporal peaks are modeled by the second stage
AR model operating on the DCT-Io of the residual 1. This
operation is illustrated on the third row where we plot the
residual 2 in the time domain after filtering the DCT-Io by the
second filter. Notice that both the temporal and the spectral
envelopes are flattened. Also notice that due to the nature of
all-pole modeling the dips (or zeros) of the signal are barely
affected and persist in both temporal and spectral envelopes.
The residuals 1 and 2 correspond to d and e respectively in
the cascade block diagram of figure 2.
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Fig. 7. Filter comparison. On the left column we plot the Hilbert envelope
of the residual and its two models (joint and cascade) and on the right we
plot the power spectrum and its two models. The joint and cascade models
have been shifted by +10dB and -5dB respectively for readability purposes.
All filters are 24th order.

Figure 5 shows the results of the simple cascade model
with independent, non-iterative filter optimization; the joint
model should improve on this. Specifically, we note that the
power spectrum of the final residual has been distorted by the
application of the frequency-domain AR filter, which might
be avoided by a joint optimization.

Figure 6 shows the average minimum total squared error
(eqn. 22) as a function of the model order for the three
models. We plot the average minimum total squared error of
the regular time-only model for filter orders between 24 and
74. For comparison, in the cascade and joint models we fix the
temporal filter order at 24 then add 0 to 50 extra coefficients
to the second stage filter, capturing the temporal peaks of
the voiced speech signal. Even the purely time-domain model
improves performance as model order increases, but only by
about 1dB for 50 extra poles. Adding the same number of
coefficients to the second model gains 4dB extra at +24 poles
onwards. The joint model is able to squeeze an extra 1dB over
the cascade when we add 35 poles or more.

Notice the jumps in the joint and cascade model errors at 12
and 24 coefficients. This is because, as observed, this excerpt
has 6 main temporal peaks in its residual, so 12 poles allows
each to be modeled by a separate peak (pole-pair), and 24
poles allows a pair of peaks for each temporal feature. This
highlights that, in general, the order of FDLP models will
depend on the anticipated density of temporal transients within
an analysis window.

To compare the results of the cascade and joint approaches,
figure 7 compares their models. On the upper right the power
spectrum of the original signal and on the left is the squared
Hilbert envelope of the first stage residual. Below each are
the AR model envelopes (magnitudes from the z-domain)
resulting from joint (above) and cascade (below) optimization.
All models are 24th order, and the joint optimization employed
10 iterations. Notice that the time-domain filter peaks for the
joint model are sharper, and that the jointly-estimated spectral
envelope is smoother in the low frequencies while amplifying
some high frequencies consistent with the sharper peaks in
time.
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Fig. 5. Cascade time-frequency modeling. On the upper row we present the time-domain speech signal, its corresponding squared Hilbert envelope and its
sampled power spectrum. On the second row we plot the residual in time after whitening the spectral envelope through a regular time-domain AR modeling.
On the third row we present the residual after the second (cascade) AR model, this time filtering the DCT-Io. On the last row we plot the residual after joint
modeling. All models are 24th order.

V. CONCLUSION

As the dual of traditional time-domain autoregressive mod-
eling in which the resulting filter approximates the spectrum,
we have presented frequency-domain linear predictive mod-
eling where the z polynomial provides an approximation of
the temporal (Hilbert) envelope, incorporating all the desirable
sharpness-preserving properties of all-pole modeling.

This technique has potential applications wherever temporal
envelopes are of interest. In comparison to traditional rectify-
and-smooth envelope extraction, the autoregressive model has
a well-defined optimal relation to the original signal. All-pole
models also have a number of useful properties: Varying the
length of the window over which envelopes are estimated
and/or the order of the models used controls the tradeoff
between local detail and average representation size, since
AR models may distribute poles nonuniformly to minimize
error. Unlike subsampling, a low-order model AR does not
necessarily remove temporal detail, since each pole pair can
result in an arbitrarily sharp peak in the envelope. Finally,
there is a vast literature on representation and manipulation of
AR models which can be brought to bear in this alternative
domain.

The cascade model combines AR modeling of both spectral
and temporal structure, and we have shown how to jointly
optimize this structure to balance the signal modeling across
domains. Insofar as traditional linear-predictive modeling has
proven to be a versatile and popular model for spectral
structure, we foresee many applications in signal analysis, ma-
nipulation, and compression using joint and cascade structures
of the kind we have proposed. We also note that the approach

extends very simply to modeling distinct subranges of the
spectrum (subbands), to estimate separate temporal envelopes
for these bands [23]. This is simply the dual of AR modeling
for short-time spectral analysis of successive time frames.

Future work includes using autoregressive-moving average
(ARMA) models in the frequency domain. We believe that
zeros on the Hilbert envelope are important, for instance to
model regions in speech such as stop consonants, and we
expect that the pure-real spectrum generated by the DCT-
Io will be an effective domain in which to pursue such
representations.

APPENDIX I
PROOF OF THE DCT-IO FACTORIZATION

Let T be the matrix of cosines T = cos( 2πmn
M ) for m,n =

0, 1, . . . , N−1 as it appears in eqn. 9. Using eqn. 11 we write
the N ×N orthogonal DCT-Io matrix C as

C =
2√
M

WTW (28)

Substituting T =
√

M
2 ZT (F + FH)Z we finally have

C = WZT (F + FH)ZW

= WZT FSW−1
(29)

since FS equals (F + FH)Z except on the first column. The
right multiplication by W−1 establishes the final equality.
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