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Identifying the individual sources present in a real-world sound recording is difficult: Almost
without exception, sounds of interest are embedded in a context of competing sounds, and it is rare
to be given an unobstructed view of an ideal, isolated target. Human listeners, in common with
other auditorily-equipped animals, are adept at handling such mixed signals, but our best compu-
tational audition systems — for instance automatic speech recognizers — are highly vulnerable to
added interference, even at levels that listeners barely notice.

This program is about developing algorithms and systems for the analysis of sound mixtures
in the context of automatic multimedia scene analysis. In comparison with video and image anal-
ysis, there has been little work on the general problem of organizing everyday sounds into the
objects and events perceived by listeners. Unlike noise-robust speech recognition, which seeks
simply to minimize the impact of the nonspeech components on the derived signal features, sound
organization involves identifying and separately characterizing each significant contribution in a
sound.

Central to the proposed approach is the idea of sound fragment recognition: Although a sound
mixture may not afford unobstructed views of an entire sound source (voice, telephone ring, mu-
sical instrument), there will often be limited ‘glimpses’ in time and frequency when part of the
signal can be observed relatively undistorted. By identifying and grouping such regions, and em-
ploying recognition algorithms modified to make correct classifications under incomplete observa-
tions, the combined sound mixture can be successfully interpreted as the combination of different,
separately-modeled sounds.

Technical advances in pattern recognition and machine learning, increasingly illuminating re-
sults from neurophysiology and experimental psychology, and enormous advances in available
computation power, make this a particularly profitable time to advance automatic sound organi-
zation, while the rapid growth in the volume of available multimedia content makes it urgent for
better automatic content-based analysis tools to become available, e.g., to be able to find a partic-
ular event in a recording of the previous month’s day-to-day activities.

The impact of this project includes the education of the graduate students who will conduct
the research and other students who will pursue projects at the Laboratory for Recognition and
Organization of Speech and Audio (LabROSA). This new lab will offer a unique agenda of analysis
and abstraction of sound in all its forms from music to meetings. Results and illustrations will be
transferred into courses at both undergraduate and graduate level, and used as demonstrations at
Open House events aimed at the diverse local high school population in New York City.

The ability to analyze and describe complex sounds in terms of the different events they contain
will facilitate a wide range of novel applications in content-based multimedia indexing, machine
perception systems for robots interacting in human environments, and prosthetic devices for the
perceptually impaired. These eventual outcomes will have an enormous impact on a broad section
of the general public.
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1 Introduction: The problem of machine listening

Imagine that you are on the edge of a lake [...] Your friend digs two narrow channels
up from the side of the lake [...] Halfway up each one, your friend stretches a handker-
chief [...] As waves reach the side of the lake, they travel up the channels and cause the
two handkerchiefs to go into motion. You are allowed to look only at the handkerchiefs
and from their motion to answer a series of questions [such as] How many boats are
there on the lake and where are they? [...] Solving this problem seems impossible, but
it is a strict analogy to the problem faced by our auditory systems.
Albert Bregman, Auditory Scene Analysis (Bregman 1990), pages 5–6.

The sense of hearing exists because it provides information that helps an organism to adapt and
thrive, by identifying opportunities and threats in the environment. In order to analyze acoustic
information, the information specific to each independent active sound source must first be sep-
arated, yet the overwhelming majority of research in sound recognition — typified by work in
speech transcription — has assumed that the target sound is isolated, i.e. it is the only significant
component in the received acoustic field. This may be a reasonable assumption when the signal
comes from a head-worn microphone, but it is almost never true in a natural environment, where a
distant source of interest will be competing with other simultaneous distractor sources.

To survive in such a densely populated world, the organism must be capable of segre-
gation, [which] allows a cat to hear the faint sounds made by a mouse in the rustling
grass, and might be of use to the mouse in that same situation [...] The hypothesis
explored here is that the auditory system is in large part designed for that task.
Alain de Cheveigné, “The Auditory System as a Separation Machine” (de Cheveigné
2000).

This proposal consists of a program of research and learning to establish a radically new ap-
proach to extracting information from sound — one which, like the auditory systems of human
and other animals, treats the organization of the received sound into features attributable to differ-
ent sources as a central and indispensable aspect of the sound processing problem. As discussed
below, this results in a problem that is significantly more complicated than the traditional speech
transcription or acoustic event classification paradigm, yet it is inescapable: a sense of hearing that
ceases to work when more than one sound source is active has little or no practical use.

1.1 Recognizing sound mixtures

Machine recognizers [...] cannot currently be used in normal environments without a
close-talking or directional microphone or without using a push-to-talk switch because
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desired speech inputs cannot be separated from other environmental sounds. Common
transient and intermittent environmental sounds may be interpreted by many modern
high-performance recognizers as well-formed sentences.
Richard Lippmann, “Speech recognition by machines and humans” (Lippmann 1997).

The current state of sound recognition, in which it is assumed that signal segmentation is un-
necessary because only a single source is present, has arisen because even given this simplification,
the problems of sound recognition, such as classifying the myriad realizations of a given word as
representing the same item, have proven to be very challenging (Gold and Morgan 2000). More-
over, preliminary investigations have revealed the problem of separating signals, such as reducing
background noise in a speech signal, to be very hard (Cooke and Ellis 2001), even though people
perform it effortlessly.

Recent advances in the basic speech recognition mechanisms mean that for many applications
the interference of competing noise is the most important challenge. Unlike the studio-quality read-
speech of the early 1990s, speech recognition tasks devised in the past few years have involved
high levels of real-world background noise as a major feature (Pearce 1998; Singh, Seltzer, Raj,
and Stern 2001), and have exposed the vulnerability of the ‘all one source’ assumption of the
current recognition paradigm.

At the same time, computational models of the kinds of source-separation tasks performed
by listeners (known as Computational Auditory Scene Analysis or CASA) have been increasing
in sophistication. For example, recordings of music involving two or three instruments can now
be transcribed into score-like representations with usable levels of accuracy (Goto 2001; Klapuri
2001). An increased understanding of the psychological basis of source segregation in listeners,
coupled with an improved appreciation of how these processes can be simulated by and related
to algorithms, means that the time is ripe for a concerted effort to find practical, general-purpose
approaches to making sense of complicated sound mixtures.

1.2 The need for sound organization

Although speech recognition provides the most visible example of the sound mixture problem, the
basic ability to organize sound scenes is necessary for any kind of device that aims to approximate
an intelligent, human-like response to an unconstrained natural environment. This includes future
portable and autonomous devices that may need to distinguish between spoken commands and
other possible sounds, or to adapt to their changing contexts based on their senses, just as animals
do. The envisaged sound organization technology would enable a ‘semantic hearing aid’ that
could provide a textual or otherwise re-represented version of the ongoing acoustic environment
for hearing impaired individuals, alerting them to situations they might not notice (Goldhor 1992).

The same process of converting a complex sound into a high-level abstract description can
substitute for the human annotators (such as documentary filmmakers) who, at present, must review
audio-visual material in order to provide a searchable index. Even a relatively crude automatic
solution to this problem would make large archives of media content — whose limited interest
makes the economics of human annotation infeasible — useful and available for scholars and
other interested parties.
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2 Research

As a concrete target on the path to a full simulation of a human listener, our goal in this project is
a system that can recognize a wide range of sound-events mixed in with noise, voices, music etc.
The sound events to be recognized will, at least initially, be based on sets of training examples,
but the recognition must succeed despite enormous differences between the context of training
and test examples. Our principle target application will be the identification of salient events
in large audio archives for description (summarization) and indexing (retrieval). We will work
with recordings of ‘personal space’, continuously collected by a portable audio memory aid, and
with the soundtrack of video content such as the corpus used in the TREC Audio-Video spoke
(NIST/TREC 2001). Hence, the most significant technical problem is the question of finding an
efficient way to apply the existing tools of pattern recognition when the combinatorics of multiple
sound sources make enumeration intractable, but when the overlap of the different sound signals
preclude direct recognition of each one.

2.1 Background

Work on automatic recognition for real-world nonspeech sounds has taken a global-features ap-
proach rather than trying to isolate the properties of individual sources. Muscle Fish (Wold, Blum,
Keislar, and Wheaton 1996) developed an early content-similarity-based browser for sound effects,
and examples of similar work include applications to similar general sound databases, (Li 2000;
Zhang and Kuo 2001), vehicle noise (Couvreur and Bresler 1998), and machine sounds (Atlas,
Ostendorf, and Bernard 2000).

Soundtrack segmentation into a few classes (such as speech/music) has been important for
speech recognition applications. Various features and classification schemes have been proposed in
(Saunders 1996; Scheirer and Slaney 1997; Siegler, Jain, Raj, and Stern 1997; Chen and Gopalakr-
ishnan 1998) among others; we have also worked in this area, tightly coupling classification to the
speech acoustic model (Williams and Ellis 1999).

Work on separating simultaneous sound sources has been pursued from the perspective of
modeling the perceptual phenomena described in psychology (Bregman 1990), which is known
as Computational Auditory Scene Analysis (CASA) (Cooke and Ellis 2001). Most often, signal
cues of harmonicity (e.g. for voiced speech) and common onset (across frequency channels) are
used to group together time-frequency cells apparently relating to the same source. Our work has
investigated the use of top-down ‘prediction-driven’ constraints (Ellis 1996; Ellis 1999).

CASA is often contrasted with blind source separation through Independent Component Anal-
ysis (ICA) in which a parameterized separation algorithm is adjusted to maximize the statistical in-
dependence of the ‘unmixed’ outputs (Bell and Sejnowski 1995; Hyvärinen and Oja 2000). ICA’s
elegant simplicity is also a weakness, in that more esoteric, arbitrary constraints (such as prior
source models) and the need for multiple alternative solutions cannot easily be incorporated.
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2.2 Technical Approach

Our approach starts with the idea of a set of models of the individual sounds that can occur in our
mixtures, similar to the models used in speech recognition. The classical application of statistical
pattern recognition is to find a maximum a-posteriori probability fit across a range of class models
Mi to a set of signal features X i.e. the features are interpreted as an instance of the model M ∗,
where:

M∗ = argmax
Mi

P (Mi|X) (1)

Rearranging via Bayes’ rule gives:

M∗ = argmax
Mi

P (X|Mi)P (Mi)

P (X)
(2)

where the prior term P (X) does not vary across the models, so can be dropped. Individual classes
Mi are thus represented by distribution models P (X|Mi), which are a convenient way to represent
prior class knowledge: The feature values observed in a set of training instances are generalized,
typically as Gaussian mixture models (GMMs). The implicit assumption is that observations at
classification time will be fully and directly comparable to the training examples on which the
distribution models are based.

In the case of sound mixtures, however, any single target sound may appear in an infinite variety
of acoustic contexts, formed by different combinations of different background sounds. We may
describe this mathematically by defining a new variable, Y, as the actual feature observations of
the total, compound mixture, and our classification problem becomes:

M∗ = argmax
Mi

P (Mi|Y) = argmax
Mi

P (Y|Mi)P (Mi) (3)

One approach to recognizing the target sound buried in a mixture is to directly train distribu-
tion models, P (Y|Mi), to include the ‘typical’ effects of background sounds, either by training
on noisy tokens (the ‘multicondition training’ paradigm used, for instance, in the Aurora task
(Pearce 1998)), or by synthetically combining model representations of clean targets with models
of isolated interference sounds to predict the appearance of various possible forms of corruption
(known variously as ‘HMM decomposition’ (Varga and Moore 1990) or ‘parallel model combina-
tion’ (Gales and Young 1993)). It is, however, difficult or impossible to construct a training corpus
with any kind of generality: not only are an uncountable number of possible background sound
objects, but when combining models the absolute signal level can no longer be simply normalized
away: instead, any pair of sounds must be modeled at an enumerated range of relative levels. This
combinatoric explosion results in models that are either overly broad (because a single model is
being made to stand for a broad range of noise or levels), or prohibitively expensive to create and
to use (because a very large number of individual models must be tested).

The alternative approach is retain P (X|Mi), the clean feature distribution model, as the basic
representation of each source, but to further model the relationship between the clean features X
and the compound observations Y. In general, we can integrate the P (Mi|Y) term in equation 3
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over the unknown values of X:

P (Mi|Y) =

∫
P (Mi,X|Y)dX (4)

=

∫
P (Mi|X,Y)P (X|Y)dX (5)

The first term in the integral reduces to P (Mi|X), since the value of total observation Y is im-
material given the target features X. To express this in terms of our original distribution model,
P (X|Mi), we can apply Bayes’ rule to this first term to give:

P (Mi|Y) = P (Mi)

∫
P (X|Mi)

P (X|Y)

P (X)
dX (6)

(Note in this case that P (X) is not a constant, and cannot be dropped.) In this form, the relationship
between target source features X and composite observations Y is defined by P (X|Y)/P (X), the
change in the likelihood of a particular value of X given knowledge of Y.

When the multidimensional distributions P (X|Mi) are represented as mixtures of diagonal-
covariance Gaussians (GMMs), the likelihood of each mixture component can be calculated as the
product of the likelihoods of the individual feature dimensions, e.g., for a mixture of Q Gaussians
indexed by k, over P dimensions indexed by j, we have:

P (X|M) =

Q∑

k=1

P (k|M)

P∏

j=1

P (xj|k,M) (7)

where xj is a scalar element of the feature vector. Assuming a similar decomposition of the prior
P (X), we can use this to decompose equation 6 to give:

P (Mi|Y ) = P (Mi)

Q∑

k=1

P (k|Mi)
P∏

j=1

∫
P (xj|k,Mi)

P (xj|Y)

P (xj)
dxj (8)

where each P (xj|k,Mi) is a simple unidimensional Gaussian. The relationship between observed
and target features has thus been decomposed to a likelihood change of the individual target feature
elements due to the observations, P (xj|Y)/P (xj)

Even with this factorization, evaluating the full integral over every dimension of X will be
tractable only under certain special conditions. In the ‘missing data’ approach to speech recog-
nition (Cooke, Green, Josifovski, and Vizinho 2001), it is assumed that some elements of the
observation feature vector are likely to be dominated by the target sound, thereby enabling at least
part of the clean-signal model to be used unmodified. This is a good match to the situation if our
features are spectral energies: Many sounds concentrate their energy at any moment into a few
frequency bands (such as the formants in speech), and these bands can ‘poke through’ the energy
of background sounds to permit largely unobstructed observations of those parts of the spectrum.
This is in contrast to the more commonly-used cepstral features, where a change in any single
frequency band will, in general, change every cepstral coefficient.

Given a way to decide which observation elements reliably reflect the underlying target fea-
tures, and which ones have been corrupted, we have several choices for evaluating the per-dimension
integral in equation 8:
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• For dimensions considered reliable, P (xj|Y) is a Dirac delta at the assumed value x̂, so the
integral reduces to

P (xj|k,Mi)/P (xj)|xj=x̂ (9)

• If, for a particular element, the masking due to energy from other sound sources meant that
nothing could be inferred about the underlying xj , P (xj|Y)/P (xj) would be unity, and the
integral over the complete pdf P (xj|k,Mi) would also reduce to unity.

• Even if the target signal is masked at a particular frequency, we know the observed spectral
energy at that frequency, and we can infer that the actual target energy is not more that
this value. Thus a more accurate treatment of such dimensions is given by the ‘bounded
marginalization’ approach (Cooke, Green, Josifovski, and Vizinho 2001), where P (xj|Y)
is zero for xj greater than some ceiling xmax. While the bounded distribution of xj may be
difficult to express, the ratio P (xj|Y)/P (xj) can be given a simpler form: zero for xj >
xmax and a constant value F for xj ≤ xmax, where F is the normalization constant that
preserves P (xj|Y) as a true pdf, i.e.:

F =
1∫ xmax

−∞ P (xj)dxj
(10)

which is simply a lookup of a value of the error function erf when P (xj) is a Gaussian.

• More complex assumptions about the relationship between Y and xj can be accommodated
through other relationships. For instance, in ‘soft missing data’ (Barker, Green, and Cooke
2001), the true value of xj is taken to be close to the masking ceiling in regions adjacent to
unmasked energy.

Thus, we see that using spectral feature models, a simple masking assumption, and some mech-
anism for distinguishing between masked and unmasked elements, the model likelihoods in equa-
tion 8 can be evaluated in most cases with high computational efficiency.

The outstanding question is how to identify which frequency channels should be considered as
reliable, and which to treat as corrupt. Here, too, there are several alternatives:

• We could infer a simple model of the interference, for instance by estimating a fixed ‘noise
floor’ in each frequency band. Energy that exceeds the floor is taken as belonging to the
target sound. This is the approach taken in the basic ‘missing data’ approach to recognizing
speech in noise (Cooke, Green, Josifovski, and Vizinho 2001).

• We could treat the reliable/unreliable segregation as part of the inference problem, i.e. solve
for the largest posterior value P (Mi, S|Y), where S represents a particular segregation hy-
pothesis, indicating the elements of source model X believed to have been reliably observed.
This approach is taken in the ‘speech fragment decoder’ described in (Barker, Cooke, and
Ellis 2002).

• We could use information from the observed signal, perhaps beyond that being modeled by
P (X|Mi), to indicate which parts of the signal belong to different sources. This is one way
to introduce the organization cues of Computational Auditory Scene Analysis (CASA) into
a probabilistic sound-understanding framework (Barker, Cooke, and Ellis 2001).
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Figure 1: Word error rate vs. signal-to-noise ratio for several approaches. “HTK clean training”
uses conventional modeling and recognition, trained on clean data only. “HTK multicondition”
uses conventional models, but where the training examples have been mixed with noise similar to
that used in the test conditions, at similar levels. “MD Soft SNR” uses models trained on clean
data only, but using a ‘soft’ variant of the missing-data recognition to do the classification.

2.3 Preliminary results

2.3.1 Missing data speech recognition

Figure 1 shows example results from the missing-data approach used for the standard Aurora
noisy digits task (Pearce 1998). In this task, fluent digit strings (e.g. “eight one seven three oh”)
are artificially mixed with various real-world noise backgrounds (restaurant, car, airport etc.) at
a range of signal-to-noise ratios (SNRs). There are two alternative training sets: the “clean” set
consists only of the digits, to test how well systems can deal with completely unanticipated noise;
the “multicondition” training set includes training examples mixed with noise at a range of SNRs
from clean to 5 dB. The test set consists of distinct digit strings mixed with four noise types at seven
SNRs (clean to -5 dB) for a total of 28 conditions (separate test sets include noise less similar to
the noises in the multicondition set, and channel coloration). The task also specifies a ‘baseline
recognizer’ built from the well-known HTK toolkit, using a standard (but somewhat optimized) set
of features and parameters.

The missing-data system used spectral features (instead of the Mel cepstra of the baseline)
and estimated a static background noise level from the first 100 ms of each sound file in the test
set; time-frequency cells significantly above the noise floor were taken as reliable, those below
were subjected to bounded marginalization, and cells whose energy was within a few dB of the
estimated noise floor made a ’soft’ contribution to overall likelihood, calculated as a linear mix of
reliable and masked estimates (Barker, Green, and Cooke 2001).

Figure 1 shows that using the same clean-data models as the baseline recognizer, missing data
recognition achieves a substantial reduction in the word error rate for higher signal-to-noise ratios,
bringing performance close to that achieved by multicondition training — but, unlike the multi-
condition system, without any prior knowledge of the corrupting noise styles, making it far more
robust to variation in test conditions.

In this system, the connection between observed features (Y in the exposition above) and target
feature (X) is made via the bounded missing data assumption, and the fixed noise floor model. In
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subsequent work, we have investigated additionally comparing different segregation choices to
find the most likely one, with some promising results (Barker, Cooke, and Ellis 2002).

2.3.2 Alarm sound detection

A second preliminary investigation into the fragment-recognition approach focused on the alarm
sounds generated by many man-made devices such as telephones, sirens etc. (Ellis 2001). Alarm
sound recognition would be useful in a portable warning device for hearing impaired users, but only
if it is able to operate with very unfavorable signal-to-noise ratios. Alarm sounds are designed to
be easily heard and readily recognized, making the task less daunting.

With no prior work, we had to build our own database and our own baseline system for com-
parison. A collection of 50 example alarms was assembled from CDs and the web, including car
horns, fire alarms, doorbells and telephones. For the test set, these examples were mixed with a
range of real background sounds at 0 dB SNR (equal power in alarm and noise during the ‘active’
alarm segments). Since alarms often have sparse, sustained spectra, they were usually quite easily
to hear against the noise.

The baseline system used a global-feature approach, consisting of a multi-layer perceptron
(MLP) classifier trained to discriminate between time windows with and without alarms. The
training set was a collection of alarms in noise, similar to the test examples (although the noises
and alarms were different).

The second, fragment recognition system operated as follows: First, the sound was subject to
a time-frequency analysis emphasizing the narrow, sustained harmonics typical of alarm sounds.
These concentrations were then represented with sinusoid models, and tracks starting at about
the same time and with similar shapes were grouped together into composite objects. In this
way, the preprocessing approximated the psychoacoustic grouping principles of common onset
and common modulation.

Each grouped object was summarized by parameters such as average frequency variation, av-
erage magnitude decay, amplitude modulation depth etc. This representation relies implicitly on
partial observations of the target alarms — the discrete frequency peaks — and is largely indepen-
dent of the background noise level, until the alarm sound is entirely buried. These parameters are
then passed to a classifier based on properties extracted from the training set to decide if the object
is an alarm.

The outputs of the two alarm detection systems are illustrated in Figure 2. The output of the
MLP classifier shows a rapid variation in the classification of individual, short frames; smoothing
this result and median filtering yields detected alarms, shown by the thick boxes. Because the
neural network can only generalize across the noise backgrounds used in training, it is vulnerable
to the many false alarms seen here. The fragment-recognition system exhibits many fewer false
alarms, but has also missed one of the true alarms.

In a complete test presenting the 25 test alarms each in four different noise backgrounds, the
overall error rate of both systems was large — 192% for the MLP system, and 197% for the
sound-object based system. The breakdown by error type and noise conditions revealed interesting
differences: the MLP system made half as many false-rejects as the object-based system (22%
vs 50%), which made more than 90% of its false-alarms (insertion errors) against a pop-music
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Figure 2: Example of the alarm detection systems. Top panel shows spectrogram of three example
alarms from the test set; the second panel has ‘restaurant’ noise added at 0 dB SNR. The third panel
shows the output of the MLP frame-level classifier, which detects the alarms but also experiences
numerous false alarms due to differences between the restaurant noise and the noises used in its
training set. The bottom panel shows the sound objects classified as alarms by the preliminary
fragment-recognition system. There are many fewer false alarms, although one of the true alarms
has been missed. Blue boxes outline detected alarm events in bottom two panels.

background, which contained many sustained pitches to trigger the alarm object detector (Ellis
2001).

In this example, noisy observations are related to clean target models through the sound object
extraction system, which rejects at an early stage any acoustic energy not broadly ‘alarm-like’ (nar-
row spectral peak, sustained frequency and magnitude). The system can in theory recognize even
partial extraction of these already fragmentary descriptions, if the remaining, extracted harmonics
still form a pattern whose composite characteristics fit the learned ‘alarms’ class.

2.4 Research plan

The research part of this program will focus on extending our preliminary results in fragment-
based recognition to extract a higher degree of information from a wider range of sound sources
and conditions. So far, we have shown results comparable to standard approaches for two special
cases, but improved implementations, model representations, and particularly segregation cues
(as discussed above) should reveal the dramatic improvements obtainable when the mixed nature
of sound is directly addressed. Developing the core recognition engine will involve many sub-
projects; our specific plans include:

• Recognizing multiple sources at once: In both preliminary tasks, the goal was to identify a
single, specific target, and ignore the remainder. The analysis, however, is completely sym-
metric over the labeling of foreground and background; any number of simultaneous sources
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can be simultaneously recognized, and segregating their features in a single operation should
be more efficient and more accurate. (This draws on ideas developed in (Barker, Cooke, and
Ellis 2002); see the attached commitment letter from Sheffield University.)

• Better target model descriptions: Our current models of the clean target examples (pa-
rameter distribution GMMs) are simplistic: they make little accommodation for large but
highly-structured deviations from the training set that can be anticipated, for instance, the
problem of absolute level variation. This becomes much more important when dealing with
mixtures that cannot be simply normalized to a fixed energy level (since the target may not be
the dominant signal, and thus normalization would adjust it to an unexpected level). Source
attributes such as overall level and fixed or slowly-varying spectral coloration can be mod-
eled as ‘hyper-parameters’, using Bayesian network/graphical model techniques of the kind
demonstrated in (Jojic and Frey 2001; Beal, Jojic, and Attias 2002).

• Online model acquisition: Rather than predefining the model objects, a system that can
define a set of objects to explain its composite objects would have a much more robust,
human-like ability to organize sound. One approach is to identify sounds that happen to be
high-SNR examples, and to cluster them into incrementally-refined ‘concepts’.

As mentioned at the start of this section, the application area will be everyday sound environ-
ments, following on from the alarm sound detection work. We are collecting a database of real-
world sound by carrying a portable recorder around in normal day-to-day circumstances. Summa-
rization and browsing of this kind of data — already easy to collect, but currently next to useless
— will be a major application example for this work.

A second application domain will be the soundtrack of videos, leveraging our close ties to the
Digital Video / MultiMedia group in the department, which has a well-established reputation in
image and video analysis and searching (Chang, Chen, Meng, Sundaram, and Zhong 1997; Zhong
and Chang 1999). This collaboration will further involve industrial partner IBM, and will permit
our involvement in the Audio-Video TREC spoke, a new evaluation for multimedia content search
(NIST/TREC 2001).

Because the area of sound organization and understanding is so novel, there are no established
sound-only evaluation metrics beyond speech recognition word error rate. Such standards are
very helpful in interpreting one’s own results, as well as in promoting a field, so we will devote a
substantial portion of our effort to developing and promoting well-defined, general-purpose eval-
uation standards for sound organization tasks. Initially this will consist of finding known sound
events in a test corpus, but as the usefulness of the technology is made clear through prototype
auditory memory agents, evaluation will be based on simulations of practical tasks, like location
ambiguously-described events.

3 Educational aspects

This project will support the development of a recently-established lab within Columbia’s Elec-
trical Engineering Department, the Laboratory for Recognition and Organization of Speech and
Audio. LabROSA is currently taking shape, but needs secure support for the future. The lab is
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founded on a unique vision of transferring the advanced statistical and machine-learning tools em-
ployed in speech recognition to the recognition of the full range of real-world sound, and of taking
ideas from auditory modeling and perceptual sound organization to break through the logjams cur-
rently facing speech recognition. The lab is unique in this perspective, and also in its situation at
Columbia, where it is both intellectually and physically adjacent to the ADVENT Digital Video
/ MultiMedia group of Prof. Shih-Fu Chang, widely recognized as a leading source of ideas and
solutions in video content processing (Chang, Chen, Meng, Sundaram, and Zhong 1997), and also
the Natural Language Processing group of Prof. Kathy McKeown, at the forefront of high-level
analysis and summarization of language (McKeown, Klavens, Hatzivassiloglou, Barzilay, and Es-
kin 1999). The three groups have already been involved in several joint proposals for multimodal
content analysis and access (Ellis, Chang, and McKeown 2000; Chang, Ellis, and McKeown 2001).

LabROSA has a commitment to supporting the research community by providing data and
software. PI Ellis is the maintainer of a large neural network speech recognition package, the
ICSI SprachCore, which has been used in numerous publications. Our website http://labrosa.
ee.columbia.edu provides links to a variety of resources, including student- compiled literature
reviews and a collection of Matlab implementations of various sound processing algorithms, de-
veloped in the lab. We consider the dissemination of working code examples to be of comparable
importance to our published papers.

The immediacy to all people of sound in general, and music in particular, makes LabROSA a
particularly effective conduit for introducing the department to a wider audience. Thus, we have
been one of a small number of labs featured in three Engineering Open House days over the past
year, where demonstrations of music deconstruction and similarity-based music recommendation
truly engage the local high school students at whom these events are aimed (and who already
associate music with computers thanks to MP3s). We hope to exploit the accessibility of our work
to further promote the discipline of electrical engineering by motivating young students and the
public at large.

As an example, we are planning to release a software ‘plugin’ for the popular music-playing
program WinAMP to help people organize their music collections using the content-analysis tech-
niques developed in our lab. In addition to its intrinsic value to the user, the plugin will, given the
user’s permission, report back anonymized statistics to help us evaluate the success of our algo-
rithms, at the same time giving the individual a sense of involvement with and contribution to the
academic research enterprise (Ellis, Whitman, Berezweig, and Lawrence 2002).

This proposal will provide support for research mentorship through one graduate research
assistantship for the duration of the project. If all goes according to plan, this would be taken by
one of the current lab members who is currently being supported through teaching assistantships
and startup funds. Since he is already a year into his graduate studies, the goal would be for him to
graduate in the third year of the project, and to bring in a new graduate student for the remainder.

These students, along with the other students based in LabROSA, will gain an introduction to
the academic research community, including both technical skills of structuring and conducting
experiments (and how to develop and exploit the tools required), and the socialization aspects of
how best to contribute as part of the scientific community through the development and sharing of
resources, participation in and organization of meetings, reviewing, and of course writing publi-
cations and making presentations. All LabROSA students are closely involved in developing the
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direction of their own research projects, rather than simply following directions or acting purely as
‘assistants’.

Other LabROSA members include visitors: I am currently hosting a graduate student on a one-
year secondment from University College, Dublin, as well as a shorter visit from the student of a
colleague at the Oregon Graduate Institute. A separate pending proposal seeks funds to support a
postdoc, and I have an international candidate in mind, a contact made through my past involve-
ment in a series of international collaborations sponsored by the European Union (Robinson, Cook,
Ellis, Fosler-Lussier, Renals, and Williams 2002).

Since starting at Columbia, I have been responsible for two courses: the undergraduate/masters’
level introductory Digital Signal Processing (DSP) course, and a new graduate course of my own
design, Speech and Audio Processing and Recognition. Both these courses have been developed
according to ‘open courseware’ principles, with all course materials (lecture notes, assignments,
exams, solutions etc.) being distributed via web sites that are universally and permanently available
from http://www.ee.columbia.edu/∼dpwe/. While I have not actively publicized these materials,
I have happily granted several requests from far-flung individuals who have found them via web
search engines, and who wish to re-use or adapt some of the material.

In both courses, I have pursued the educational philosophy of balancing and interrelating theo-
retical and practical aspects. Both courses involve weekly computer-based assignments, relying on
the excellent interactive data manipulation package Matlab to enable students to experiment with
the techniques discussed in class when applied to real data. True facility with the mathematical and
algorithmic tools of signal processing and recognition requires both a clear understanding of the
theoretical basis and sufficient practical experience to develop a proper intuition. It can take years
to fully develop such an intuition, but by giving the students the ability to go away and experiment
on their own it is possible to start them on this path. Both courses also involve a final project, for
which I require an actual, practical component, preferably in Matlab.

For the undergraduate Digital Signal Processing class, sound forms an excellent demonstra-
tion medium, because it is one dimensional (and therefore simpler to conceptualize than images or
video), and because the process of ‘listening’ to the effects of, say, bandpass filtering or quantiza-
tion makes a deep impression and gives a visceral, alternative way to understand a mathematical
concept. My computer-generated sound examples have attracted particularly positive comments
from students.

The current program will allow me to further enhance props of these kind by developing more
sophisticated special-purpose demonstrations. As an example, I currently use a crude animation
to illustrate the process of cross-correlation to detect a particular pulse shape buried in noise; by
building up the cross-correlation function one point at a time, and showing (via computer projec-
tion) the alignment of the correlation kernel with the noisy signal resulting in each point in the
correlation, insight into the process is obtained. The Matlab commands used to generate this dis-
play are distributed via the website; however, my goal is to build a more polished demonstration,
making the interaction and experimentation more inviting and more flexible, while still retaining
the transparency of a Matlab-based implementation.

The graduate level Speech and Audio Processing and Recognition class is directly related
to the technical content of the research in this proposal. As the only advanced course on audio
processing currently offered by the department, the syllabus ambitiously includes everything from
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music compression to speech database querying. My goal has been to cover a different broad topic
(e.g., psychoacoustics, music synthesis and analysis) in each week’s lecture, including a single
detailed investigation of one area (for instance, simultaneous masking or sinusoid modeling) within
each lecture. Each class is complemented by a reading and a Matlab practical tailored to the current
topic. Support under this program would facilitate the development of more custom practicals for
this course, often involving direct transfer of the research tools and results.

An example will illustrate the two-way flow between research and coursework: A current
research project (see section 7) involves recording of real, multi-participant meetings with several
tabletop microphones. I included some of this data among the set of ‘project data’ offered to
students of the DSP class. A team of two talented students worked with this data to infer speaker
locations in a 2-D plane from channel cross-correlations — a project I had been planning to pursue
with a graduate student. I continued this work with one of the students as independent research
for another semester (one of 8 such projects I have supervised in the past two years), to extend the
localization to 3 dimensions; the work will be submitted to ICASSP this year. The results were so
interesting that I converted them into a very successful practical for my Speech and Audio class.

Developing a good practical, like preparing a good lecture, is intricate and time consuming. I
have been fortunate to be able to borrow some courseware developed by colleagues: The Matlab
Auditory Demonstrations from Sheffield (Cooke, Parker, Brown, and Wrigley 1999) formed the
core of a practical on auditory perception, and my European project colleagues from IDIAP in
Switzerland graciously let me use their practical introducing hidden Markov models. In turn, I
have developed a practical on sinusoid modeling into a tutorial, available from my web site, which
several colleagues have told me they found useful. Sharing practicals benefits both recipient and
donor, not least in the form of contributed enhancements.

Columbia’s School of Engineering, and the Electrical Engineering department in particular,
is actively engaged in developing new mechanisms to evaluate the effectiveness of educational
activities. Course assessments are web-based, affording consistency, anonymity, and automatic
statistical analysis; by emphasizing the importance of these assessments, I have achieved 80-100%
participation among students in my classes. By tracking quantitative ratings in categories such as
quality of lectures, relevance of material, and appropriateness of workload, an objective measure
of the effect of incremental changes introduced into a course can be gained. The department
also conducts formal, standardized surveys of its graduating students to gauge both their overall
experience in the program, and any comments specific to individual aspects or classes.

While clearly at home within Electrical Engineering, LabROSA has many interdepartmental
links, most obviously to Computer Science, but also to other disciplines including Psychology and
Music. A major advantage of Columbia’s wide range of schools and departments is to facilitate
connections and interactions of this kind; several longer-term curricular developments to be pur-
sued under this program involve co-ordinated developments with faculty in other departments, and
Columbia will be unique in offering this combination of opportunities.

Computer Science has a large Natural Language Processing group (led by Kathy McKeown),
and we are already collaborating on the Meeting Recorder project described below. This fall, Julia
Hirschberg is joining CS as senior faculty to start a group researching spoken language processing
and dialog systems, and we have begun discussions of an integrated program in speech and lan-
guage, which could also involve psychology faculty such as Robert Remez. Columbia also has a
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highly-regarded, and engineering-oriented Computer Music Center, with whom I am already col-
laborating to the extent of trading guest lectures. The goal is to divide my currently overstuffed
Speech and Audio class into two new classes: one containing the speech material, and with less
emphasis on signal processing, to suit the joint EE/CS program in speech and language. (To make
sure this course is fully accessible to CS students, we may develop a brief signal processing ‘crash
course’ for students without an EE background.)

The second course will consist of the remaining topics in audio signal processing, and will
be made attractive to Computer Music students; one way to accommodate students with different
backgrounds is to recognize the different kinds of projects that will be completed in each case.
However, in my experience, a range of perspectives in the classroom leads to positive interations
and student involvement.

Also in Computer Science, Tony Jebara, who joined Columbia this year, conducts research in
machine vision as a basis for behavior and action; machine listening forms an obvious complement
to this work. I am very interested in using his advanced machine learning techniques, so we are
currently discussing collaboration both in research and in classes — for instance, to introduce
audio processing into the practical aspects of his class on machine perception.

4 Diversity

I have a deep idealogical commitment to social responsibility in engineering, and one aspect of this
is an effort to promote and support diversity in LabROSA and in the department and school in gen-
eral. One of my five graduate students is female, which is too low, but better than the department
average of under 10% female, something we are moving to improve. My first graduate student,
Manuel Reyes, is Hispanic, and I am very pleased to be supporting him through his Ph.D. I work
hard to come across as approachable in class, particularly to encourage the less confident students;
of the seven students for whom I have written letters of recommendation, two were women. I am
currently working with an African American female student who is retaking my undergraduate
DSP course this summer to complete her degree requirements. I have made LabROSA a fixture in
the Engineering Open House events for local high-school students, and I make a point of sitting
with students least like our current student body at the lunches associated with these events, to
encourage their emerging interest in engineering.

5 Timeline

The anticipated sequence of activities in this program is broadly as follows:
Year 1: Construct baseline fragment-based recognition systems for detecting alarm sounds

and other events in everyday sound, demonstrating the fundamental advantage over global-feature
approaches. Develop and enhance in-class demonstrations and practicals, and actively pursue
sharing them with colleagues at parallel institutions.

Year 2: Collaborate to define and collect evaluation datasets and criteria for the nonspeech
recognition work, with the goal of establishing widely-adopted standards. Investigate integra-
tion of information from other modalities for use in Audio-Video TREC (NIST/TREC 2001) in
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collaboration with IBM (see attached commitment letter). Adapt the Speech and Audio class to
co-ordinate with Computer Science courses in speech and language processing, including a new
’signal processing crash course’ for CS students.

Year 3: Graduation of student working on fragment recognition; recruit a follow-on. Organize
a special session at a major conference to promote these new results and to promote interaction
with related researchers. Further development of the graduate Speech class to co-ordinate with CS
machine perception classes through shared projects etc.

Year 4: Consider problem of acquisition and generalization of nonspeech sound models from
unsupervised data. Transfer results from research into classroom courses in the form of demon-
strations, datasets, and basic concepts. Develop a complementary Digital Audio Processing class
for EE and Computer Music students, containing material excluded from the Speech class.

Year 5: Revise evaluation tasks to accommodate new aspects of model acquisition (i.e. much
more data, but much less annotation). Review progress of integrated CS/EE speech and language
courses to see how best to divide the material between courses and faculty.

6 Conclusion

This program addresses the hitherto neglected problem of recognizing the individual components
in an everyday sound ambiance. By adapting and developing missing-data techniques already
shown to be effective in recognizing speech corrupted by noise, we will develop systems able to
describe multimedia content in terms that match users’ impressions.

The immediate beneficiaries of this work will be students: those directly involved in the re-
search project, other students doing projects at LabROSA who will share the ideas and resources
emerging from the project, and students participating in the various classes, existing and newly-
developed, mentioned above. Successful solutions to the problem of general sound understanding
will have a much broader impact in the form of new applications in multimedia content description,
intelligent interactive machines, and perceptual prostheses that, in addition to enhancing lives, will
also promote the status and allure of engineering throughout society.

7 Results from prior support

PI Ellis is a co-PI on one current NSF project: NSF IIS-0121396 ($1,402,851), Title: ITR/PE+SY:
Mapping Meetings: Language Technology to make Sense of Human Interaction, Award period:
2001-09-01 to 2005-08-31, PI: Nelson Morgan, International Computer Science Institute. This
project is concerned with the application of speech recognition and other automatic signal analysis
techniques to extracting information from recordings of natural, unconstrained meetings between
human participants. The one graduate student in LabROSA supported on this grant is currently
looking at unsupervised clustering of the extensive data so far collected as a way to define and
locate “interesting” events in the recordings, and there will likely be transfers of these techniques
into the current project. Publications arising from this work have yet to be completed, although the
initial data collection and general goals are described in (Morgan, Baron, Edwards, Ellis, Gelbart,
Janin, Pfau, Shriberg, and Stolcke 2001).
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