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Abstract

This paper reports the comparative evaluation of several speech
F0 evaluation algorithms over a wide database of laryngograph-
labeled speech. Included are several classic algorithms that are
available in software on the net, as well as two new algorithms
that offer greatly reduced error rates. Particular attention is
given to the methodology of evaluation.

1. Introduction
The fundamental frequency (F 0) of a periodic signal is the in-
verse of its period. The period is defined as the smallest positive
member of the set of time shifts that leave the signal invariant.
This definition applies strictly only to a perfectly periodic sig-
nal, which is uninteresting because it cannot be switched on or
off or modulated in any way without losing its perfect periodic-
ity. Interesting signals such as speech or music are aperiodic in
several ways, and the art of fundamental frequency estimation
is to deal with them in a consistent and useful way.

Some applications give F0 a definition closer to their pur-
poses. For voiced speech, F 0 is usually defined as the rate of vi-
bration of the vocal folds. Periodic vibration at the glottis may
produce speech that is less perfectly periodic, due to changes in
shape of the vocal tract that filters the glottal source waveform,
making it hard to estimate fundamental periodicity from the
speech waveform. Glottal vibration itself may also show aperi-
odicities, in the form of relatively smooth changes in amplitude,
rate or glottal waveform shape (for example the duty cycle of
open and closed phases), or intervals where the vibration seems
to reflect several superimposed periodicities (diplophony), or
where glottal pulses occur without obvious regularity of time
interval or amplitude (glottalizations, vocal creak or fry) [11].
Arguably, in those cases there is no F 0 to estimate, and it is nat-
ural for an estimation algorithm to fail. However practical ap-
plications may require more graceful behavior than just random
failure. All these factors conspire to make the task of obtaining
a useful estimate of F0 rather difficult.

If it can be reliably estimated, F0 is useful for a wide range
of applications. In speech, F0 variations contribute to prosody,
and in tonal languages they also help distinguish segmental cat-
egories. Attempts to use F0 in speech recognition systems have
met with mixed success, but this may in part be a consequence
of the limited reliability of estimation algorithms. Several mu-
sical applications need F 0 estimation, such as automatic score
transcription or real-time interactive systems, but again imper-
fect reliability is an obstacle. F0 is a useful ingredient for a
variety of signal processing methods, for example spectral en-
velope estimation [16]. Finally, a fairly recent application of F0
is as metadata for multimedia content indexing, for example in
the newly developped MPEG-7 standard [15, 7].

F0 estimation has attracted, and continues to attract, much
effort and ingenuity. The most comprehensive review remains
that of [13] that cites literally hundred of methods. More re-
cent reviews are [14] or [12]. A few examples of recent ap-
proaches are instantaneous frequency methods [1, 16, 2] , sta-
tistical learning and neural networks [4, 20, 9], auditory models
[10, 6]. However a major weakness in this field is that it is often
hard to judge the performance of the algorithms proposed, or
make comparisons with other methods. In this respect, evalua-
tion results are as useful as new methods.

2. Methods
2.1. Basic methodology

Evaluation is demanding. First, there must be some means to
judge whether estimates are correct. Second, there must be
enough data to be sure that results will generalize. Third, for
others to benefit from the results, they must be able to compare
them to methods that they are using or developping. Databases
vary in difficulty, and therefore it is not enough to simply report
figures. One option (followed for example by [3]) is to make
the database freely available, another is to evaluate, together
with the method being reported, other easily available methods.

Early F0 extractors were evaluated informally, for example
by checking visually for obvious breaks in the ”pitch track”.
Coding applications evaluated subjective quality of resynthe-
sized speech, but this method is expensive and the scores not
very informative. Manual labeling of speech waveforms has
been used for intonation studies, but it is time-consuming and
error-prone. Recent studies use speech recorded together with
the signal of a laryngograph, which measures the electrical re-
sistance between electrodes on either side of the throat, func-
tion of the surface of contact between vocal folds. It is usually
easier to estimate reliable F0 values from this signal than from
the acoustic waveform. Caveats are that a clean signal may be
hard to obtain or maintain for certain morphologies or behav-
iors (large amplitude body movements), and may it be absent or
weak in phonation modes for which there is little variation of
vocal-fold contact surface.

The laryngograph signal is processed by an F 0-estimation
algorithm tuned to the particularities of this signal: a lack of
formant structure, sharp peaks in the derivative at glottal clo-
sure, and large-amplitude variations in ”DC” offset. In addi-
tion to F0, is also necessary to produce a mask, either auto-
matically or manually, to indicate which portions correspond to
regular glottis vibration. This corresponds roughly (not exactly)
to a voiced-unvoiced decision. The F 0 estimate is then checked
manually to eliminate errors. Two options are available: man-
ual correction of estimate values, or manual adjustment of the
mask. The latter option was chosen in this study. Two criteria
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Figure 1: Histograms of F0 for each speakerand each database.
Full lines are male speakers, dotted lines are female. Bin width
is one semitone (one 12th of an octave). DB3 includes falsetto
phonation, visible as an extension of the distributions to the
right.

were used, in this order: (1) any part for which the F0 estimate
is obviously incorrect is removed, (2) otherwise, any part for
which there is any sign of glottal vibration is included. The first
criterion ensures that all reference F0 estimates are correct, the
second includes as many ”difficult” parts as possible. All these
steps must be done with the utmost care.

It should be noted that this procedure eliminates portions
of irregular glottal vibration (diplophony, creak, etc.). It is not
indifferent how an algorithm treats them, but arguably there is
little sense in setting a normative value where F 0 is inherently
ambiguous.

Error rates are derived by counting the samples that differ
from the reference by more than a criterion percentage (often
20%). This produces the ”gross error rate”. Some studies also
report error rates for a ”voiced-unvoiced”decision based on reg-
ularity, but as voicing cannot be reduced to mere regularity its
detection is best treated as a separate issue.

Acoustic propagation from glottis to microphone, or im-
plementation differences, may introduce a time shift between
laryngograph- and microphone-based estimates. To avoid an
unmerited penalty, the minimum error rate is taken over a range
of time shifts. One must also be aware of a more insidious prob-
lem. Some estimation algorithms work (in effect) by comparing
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Figure 2: Histograms of F0 rate of change for each database,
calculated over 25 ms intervals. Bin width is 0.13 oct/s.

two windows of data that are shifted symmetrically in time with
respect to the analysis point. Others work (in effect) by com-
paring a shifted window to a fixed window. An F 0-dependent
corrective shift should be used in this case.

Methods being compared should be given similar parame-
ters so that they are on a level ground. The search range must
accomodate the values in the database, but wider ranges of-
fer more options for error. Methods should be given the same
range. Some methods produce estimates only when they judge
speech to be ”voiced”, and are at a disadvantage with respect to
methods that always offer an estimate. The voiced-unvoiced de-
cision should be disabled. Other methods apply post-processing
schemes to (hopefully) correct errors. This typically involves
parameters and behavior that are hard to interpret and optimize.
Post-processing is best evaluated separately, and should also be
disabled when evaluating the basic algorithm. These recom-
mendations can not always be followed, either because methods
use radically different parameters, or because their implemen-
tation does not allow them to be controlled. Such differences
must be kept in mind when comparing results.

2.2. Databases

Four databases were used in this study. All were generously
provided by their authors who are warmly thanked. Together
they represent a total of 1.75 hours of speech, of which 47%
were labeled as regularly voiced. They include speech from a
total of 38 speakers (19 male, 19 female) of Japanese (30), En-
glish (4), and French (4). Each included a laryngograph wave-
form recorded together with the speech. Details of availabil-
ity of these and other resources can be obtained from the URL
<http://www.ircam.fr/cheveign/data/eusp2001/>.

1. DB1. Thirty Japanese sentences were each spoken by 14
male and 14 female speakers for a total of 0.66 hours of
speech [2].

2. DB2. Fifty English sentences were each spoken by one
male and one female speaker for a total of 0.12 hours
of speech [3]. This databse has been used in several
studies and is available for download. It includes a
laryngograph-based F0 estimate that was not used here
(our error rates are thus not directly comparable to rates
reported elsewhere for the same database).

3. DB3. Four speakers of French, 2 male and 2 female,
each pronunced 45 to 55 sentences each for a total of
0.46 hours of speech. The database includes sentences
pronunced according to several modes: normal (141),
head (30) and fry (32) [22]. The fry mode was not used
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for evaluation because it was often too irregular to derive
an unambiguous reference F 0 .

4. DB4. English speech was pronunced by two male speak-
ers, and Japanese speech by one male and one female
speaker. The database was created for the purpose of de-
riving prosody rules for speech synthesis [5]. An extract
of 0.51 hours was used here.

The laryngograph data were processed with a version of the
algorithm of [8], with compensation for variations of amplitude
and DC offset. F0 estimates were produced at the same sam-
pling rate as the speech and laryngograph signals (16 kHz for
databases 1,3 and 4, and 20 kHz for database 2).

2.3. Algorithms

We evaluated both algorithms implemented elsewhere and
available as software on the net, and locally implemented meth-
ods. The former have the advantage that they were implemented
and tuned independently, are easily available for replication or
comparison, and are representative of tools in common use. The
latter offer us better control over parameters.

1. pda. This program is part of the Edim-
burg Speech Tools Library (check the URL
<http://www.ircam.fr/cheveign/data/eusp2001/>
for pointers to this and other resources, as well as details
of parameters used). It implements the ”super resolution
pitch determination algorithm” of [18] modified by [3].
Examination of the code suggests that the program uses
continuity constraints to improve tracking.

2. pitch tracker. This program is available for download
(see URL). It is described as ”loosely based” on the algo-
rithm of [18]. Examination of the code suggests that the
program uses continuity constraints to improve tracking.

3. fxac. This program is available as part of the Speech
Filing System. Processing is described as: ’(i) cubing
waveform sample values, (ii) autocorrelation, and (iii)
voicing and fundamental frequency decision’, using 25
ms windows with a repetition time of 5 ms. Examination
of the code suggests that the search range is restricted
to 80-400 Hz. The program provides estimates only for
speech that is judged ”voiced”.

4. fxcep. This program is also part of the the Speech Filing
System. According to the documentation a ’512 FFT
is performed on 40 ms windows of the input speech to
find the log spectrum, and then an FFT of that provides
the ceptrum’. Then the rules of [19] are used to decide
whether the speech is voiced, and if so to derive the F 0 .
Examination of the code suggests that the search range
is restricted to 67-500 Hz.

5. sptk. This program is part of the Speech Signal Process-
ing Toolkit (SPTK) v. 2.0. It implements a cepstrum-
based method.

6. additive. This program is a locally available implemen-
tation of the probabilistic spectrum-based method of [9].

7. acf. This is a simple implementation of the autocorre-
lation method. The autocorrelation function was calcu-
lated as:

ri(�) =
WX

j=1

xj+ixj+i+� (1)

using a 25 ms square window. The function was multi-
pled by a linear ramp that tapered its value to zero at 35
ms (tuned for best performance over DB1). The global
minimum over the 40-800 Hz search range gave the pe-
riod estimate.

8. nacf. Same as above, but the autocorrelation function
was normalized according to:

r
0

i(�) = ri(�)=
p
ri(0)ri+� (0) (2)

9. TEMPO. This is an implementation of the instantaneous
frequency method developped by the second author [17].
Briefly the method uses lower harmonic components to
calculate F0 combined with wavelet analysis. The search
range was set to 40-800 Hz.

10. YIN. This is an implementation of a method developped
by the first author [8]. Briefly, the method combines au-
tocorrelation and AMDF methods[21] with a set of mod-
ifications that reduce errors. It does not require an upper
limit on the F0 search range. The lower limit was set
to 40 Hz. Neither this method nor the previous one use
post-processing.

3. Results and Discussion
The results are shown in Table 1.

Table 1: Gross error rates for each method and each database.
The last column shows the detail of too-high and too-low (often
subharmonic) errors.

gross error (%)
method DB1 DB2 DB3 DB4 Avg. (high/low)

pda 6.7 8.3 9.9 12.0 9.3 (1.4 / 7.8)
pitch track 7.1 10.0 24.6 - -

fxac 8.2 7.1 9.6 7.1 8.1 (0.54 / 7.6)
fxcep 2.9 6.83 3.1 3.0 3.2 (0.55 / 2.7)

sptk 3.3 7.6 18.8 12 10 (9.3 / 0.71)
additive 1.5 1.7 2.2 1.5 1.7 (0.3 / 1.4)

acf 0.28 0.94 4.0 5.1 2.7 (2.6 / 0.13)
nacf 0.27 0.82 3.8 5.0 2.6 (2.5 / 0.08)

tempo 0.61 1.5 4.9 1.1 1.8 (1.5 / 0.28)
YIN 0.18 0.62 1.15 0.56 0.55 (0.36 / 0.20)

Error rates vary widely according to methods and databases
(missing data for pitch track are due to a software incompatibil-
ity with the large size of files of DB4). The relatively large rates
for the freely available methods might have several explana-
tions. One is that several methods implement a voiced/unvoiced
decision that we could not disable. ”Unvoiced” samples are
generally given a value of 0, and thus inflate the ”two low” er-
ror count. The testing conditions may have been different from
those that the methods were tuned for, and we may not have
chosen optimal parameters. These factors should be kept in
mind when judging the results.

The better rates for the more recent methods seem to gen-
eralize well across databases. This is good news, as it shows
that progress can still be made in this field, and that there is
hope for applications that require reliable estimates. A surprise
came from the simple autocorrelation methods that provided ex-
tremely good performance over a relatively extensive (28 speak-
ers) database. The fact that it did not generalize to others illus-
trates the need for large and diversified databases.
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We used what we consider the best methodology for eval-
uation, but it is worth pointing out its limits. First, the need
for a clean laryngograph signal may exclude speech modes that
produce only weak variations of transglottal resistance, as well
as certain morphologies and large amplitude body movement.
Second, the need for regularity excludes portions that are clearly
voiced, but either irregular (vocal fry, creaky voice, isolated
glottal pulses) or with an ambiguous periodicity (diplophony).
These are common for certain modes and speakers. They ap-
pear to carry intonation, and they must somehow be handled in
practical applications, but obviously F 0 is not the best tool for
that purpose. More research is required to characterize irregular
voiced phonation.

4. Conclusion
We described a methodology for evaluation of F 0-estimation
algorithms, and provided results for a set of methods including
some freely available in software format on the network, as well
as several newer methods. The evaluation was performed over
an extensive laryngograph-labeled database aggregated from
several sources comprising speech from a total of 38 speakers.
The results showed large differences in ranking between meth-
ods for different databases, emphasizing the need for extensive
test databases. The two most recent methods [17, 8] were never-
theless uniformly more effective than others. The improvement
ranges up to an order of magnitude, suggesting that progress has
been made in addressing the task of F 0 estimation.
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