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ABSTRACT

This paper describes a new formant analysis technique whereby the
formant parameters are represented in the form of Gaussian mix-
ture distributions. These are estimated from the Discrete Fourier
Transform (DFT) magnitude spectrum of the speech signal. The
parameters obtained are the means, variances and the masses of
the density functions, which are used to calculate centre frequen-
cies, bandwidths and amplitudes of formants within the spectrum.
In order to better fit the mixture distributions various modifications
to the DFT magnitude spectrum, based on simple models of per-
ception, were investigated. These include reduction of dynamic
range, cepstral smoothing, use of the Mel scale and pre-emphasis
of speech. Results are presented for these as well as formant tracks
from analysing speech using the final formant analysis system.

1. INTRODUCTION

The spectral envelopes of many speech sounds are characterised by
several prominent maxima. These represent the resonances of the
vocal tract and are calledformants. Formants are of interest to us for
a number of reasons: they represent the most immediate source of
articulatory information and the source most familiar to us by virtue
of our use of formant information in speech perception. Hence, for-
mant estimators, which are used in applications such as speech cod-
ing, either implicitly or explicitly, examine the spectral envelope.

The problem of automatic formant analysis has received consid-
erable attention during the past two decades, and a variety of ap-
proaches have been explored [6]. Schafer and Rabiner [7] pre-
sented the first detailed approach for automatically estimating for-
mant structure from voiced speech using cepstral analysis. Markel
[4] has presented a simplified procedure for estimating the formant
frequencies using linear prediction techniques. Most of the above
techniques are widely used in speech analysis and perform a de-
convolution to separate the impulse response and the glottal driving
function.

The Fourier transform, in both analog and discrete-time forms, has
been the basis for many important developments in speech analysis
and synthesis. Clearly, the DFT can serve as a basis for formant
analysis of speech, since it directly contains the formant information
in its magnitude spectrum. Once the DFT of the speech signal has
been calculated then other techniques can be applied to obtain the
constituent components of speech.

This paper introduces a new formant analysis technique whereby
Gaussian mixture distributions are fitted to discrete Fourier Trans-
form magnitude spectra. The EM (Expectation Maximisation) algo-
rithm is used to perform the parameter estimation process. The rest
of the paper is organised as follows. The EM algorithm is briefly de-
scribed in section 2. It is then implemented for the problem of for-
mant analysis in the same section and some results are presented.
In section 3 various spectral modifications for improving formant
estimation is discussed which is then followed by results and con-
clusions.

2. MIXTURE OF GAUSSIANS FOR
FORMANT ESTIMATION

Firstly the EM algorithm is reviewed here followed by a discussion
of its application to formant parameter estimation using Gaussian
mixtures.

2.1. The EM Algorithm

This section outlines the basic learning algorithm for finding the
maximum likelihood of a mixture model [2], [5]. The EM algo-
rithm is used to estimate Gaussian mixture distributions from his-
tograms of DFT magnitude data. Viewing the spectrum as a prob-
ability density function the E-step computes the expected complete
data likelihood. For this model this step requires the computation of
the likelihood and the posterior probability for each bin in the his-
togram resulting from each mixture. The M-step re-estimates the
means and variances of the Gaussians using the data set after ac-
cumulating sufficient statistics in order to maximise the likelihood.
Initially the total area under the histogram is calculated; at this point
the means, variances and mixture weights are initialised. The means
are initialised uniformly over the interval. The variances are made
significant with respect to the interval and the number of Gaussians
in the mixture, and finally the mixture weights are set equal values.

The EM algorithm can be used with most distribution types but
Gaussians are generally used in standard applications of the algo-
rithm. The equation for a Gaussian mixture distribution is as fol-
lows:
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In the following sections the implementation of the formant anal-
yser using the above algorithm is outlined with some results.

2.2. Formant Analysis Technique

The speech signal may be considered to be stationary over short pe-
riods of time. For short time spectral analysis to be carried out, it is
first necessary to window the signal so as to reduce the edge effects
at the beginning and the end of the frame. A Hamming window of
length 16ms was used with a frame advance of 8ms. Following this,
the Fourier transform magnitude spectrum is obtained for each such
frame.

Fitting Gaussian mixtures to the DFT magnitude spectra enables
the estimation of the spectral features, and this was achieved by use
of the EM algorithm described above. The means, variances and
mixture weights of the density functions may then be used to calcu-
late the formant frequencies, bandwidths and amplitudes. Figure 1
shows an estimated mixture distribution of four Gaussians superim-
posed over the DFT magnitude spectrum that is obtained by analysis
of one frame of speech. As can be seen, the four formants within
the frequency range have been picked by each of the Gaussians in
the mixture. However, various problems were encountered while

Figure 1: A Mixture of Gaussians fit to a DFT magnitude spectrum.

fitting Gaussians to certain formants such as the case where two
formants are close together in frequency. In order to better fit the
mixture distributions to the magnitude spectra the variation of sev-
eral factors was investigated based on simple models of perception.
The following section reviews these modifications to the spectra and
presents the results obtained.

3. MODIFICATIONS TO THE SPECTRUM

Although in some voiced frames the formant frequencies were ob-
tained from the corresponding Gaussian distribution mean (Figure
1), in other cases their associated bandwidths were rather small as
the distribution would just pick the harmonic at the formant fre-
quency and neglect the adjacent harmonics associated with that for-
mant resulting in a very small variance (Figure 2(a)). Two methods

(a) (b)
Figure 2: Plots of Gaussian mixtures superimposed on a) DFT
magnitude spectrum and b) square root of the DFT magnitude spec-
trum.

(a) (b)
Figure 3: Plots of Gaussian mixtures superimposed on two cep-
strally smoothed spectrums, where a) is a smoothed version of Fig-
ure 2(a) and (b) is an unvoiced section of speech.

were investigated to resolve this problem which occurs frequently
with Gaussian mixture fits to magnitude spectra and they are:

� The dynamic range of the power spectra was reduced using a
non-linear amplitude scale such as the square root or the cube
root of the spectra. Firstly the cube root of the spectra were
modelled but the results obtained were not as good as expected
since the distinction in spectral features in the DFT was con-
siderably reduced in some cases. Thus the square root of the
spectra was used resulting in a better representation of spectral
features. Figure 2 shows a comparison of Gaussian mixture
representations of the original linear dynamic range and af-
ter the square root of the same DFT magnitude spectrum has
been taken. Although the resulting formant frequencies are
the same, the bandwidth of the formants are better modelled
using this modification of the spectrum.

� The application of cepstral smoothing [1], which is the pro-
cess of removing the high-quefrency effects of the excitation
from the spectrum. Figure 3(a) shows the cepstral smoothed
spectrum of Figure 2(a) with Gaussian mixture fit superim-
posed. Figure 3(b) shows that unvoiced sections of speech can
be also modelled well using Gaussian mixtures.

After experiments on various utterances using the above modifica-
tions of the spectra it was deduced that the cepstral smoothing tech-
nique gave considerably better fits and smoother formant trajecto-
ries, specifically for the second and third formants.

From studies of the human ear we know that the human auditory
system does not perceive pitch in a linear manner. It has been shown
that it is favourable to have increased frequency resolution at lower



frequencies, for example the Mel scale is a unit of measure of per-
ceived pitch or frequency of a tone. Also voiced speech spectra nor-
mally have a drop-off of about 6-dB/Octave, which results in a high
spectral dynamic range. In effect, the speech spectra are tilted into
a slightly low-pass form. In order to reduce this effect, the speech
signal is often pre-emphasised to increase the relative energy of the
high frequency spectrum. Mixture densities were fitted to the above
modifications of the magnitude spectra, and in the following sec-
tions results obtained from each is given.

3.1. Formant Analysis Using the MEL-Scale

Figure 4(a) shows a frame with its magnitude spectrum warped us-
ing the Mel scale described by:

Fmel = 1125 log[1 +
FHz

625
]: (3)

This technique does introduce some problems however. As can be
seen in Figure 4(a) one Gaussian has been allocated to the lower
frequency harmonics of the first formant. This occurred frequently
using this analysis technique, and thus the cepstral smoothing tech-
nique described above was used in order to overcome this problem
as shown in Figure 4(b). Although the Mel scale allowed better
resolving of the lower frequency formants, it was found that the
higher frequency formants were not picked as well as with no warp-
ing of the frequency scale, as at higher frequencies the formants
were compressed closer together. Thus, this technique was not used
in the final system.

(a) (b)

Figure 4: Plot (a) shows Gaussian mixtures superimposed on DFT
magnitude spectrum after warping using the Mel Scale, and b)
shows the same analysis frame after cepstral smoothing.

3.2. Formant Analysis Using Pre-emphasis

Finally, in order to increase the relative energy of the higher fre-
quencies, the input speech was pre-emphasised. The pre-emphasis
filter has the following form:

P (z) = 1� �z
�1
: (4)

where� was chosen to be 0.97. Figure 5(b) shows the result of
the Gaussian mixture fits after pre-emphasis of the speech signal.
This figure illustrates that the formant at 3500Hz is picked after pre-
emphasis, but the formant at 2220Hz has been neglected. If Figure
5(a) is looked at closely it can be seen that both these formants have
been allocated a Gaussian before pre-emphasis, and thus by using

pre-emphasis the formant estimates are worsened. This is the prob-
lem with pre-emphasising the signal where in some frames Gaus-
sians are wrongly allocated to higher frequencies. This technique
was not used in the final formant analysis system.

(a) (b)

Figure 5: Plots of Gaussian mixtures superimposed on a) DFT
magnitude spectrum with no pre-emphasis, and b) magnitude spec-
trum with pre-emphasis.

4. CONVERSION OF GAUSSIAN
PARAMETERS

In this section an outline of conversion of means, variances and mix-
ture weights to formant parameters is given. The formant frequen-
cies are obtained from the means of each Gaussian and the ampli-
tudes are the probability density functions at these centre frequen-
cies. The 3-dB bandwidth for each formant is calculated from the
corresponding Gaussian in the probability density function. Refer-
ring to equation 1 the mean�jm and variance�jm in each Gaussian
in the mixture is known, then by using the 3-dB log ratio, the band-
widthBW of the Gaussian distribution can be calculated as:

BW = 2�jm
p

ln[2] (5)

5. RESULTS

So far cepstral smoothing of the DFT magnitude spectrum have pro-
duced the best formant parameters in comparison to the original
signal. It was also deduced that higher number of Gaussians in the
mixture resulted in better fits to the spectrum. A spectrogram of the
sentence “we were away a year ago” is shown in Figure 6, which
also illustrates a spectrogram representation of the Gaussian mix-
tures per frame. The fits were obtained after the application of cep-
stral smoothing to magnitude spectra. The latter clearly shows the
formant tracks obtained using the technique described. The band-
widths are slightly larger than the original which is due to the appli-
cation of cepstral smoothing. Figure 8 is a similar representation of
the sentence “the rain in Spain falls mainly on the plain”. Although
the bandwidths are larger the formant tracks are well represented.

In order to compare the Gaussian mixture formant tracks to other
formant tracking methods, an LPC based formant tracker, namely
ESPS waves+, was used. In this tracker the formant frequencies
are selected from candidates proposed by solving for the roots of a
14th order linear predictor polynomial computed periodically from
the speech waveform. Figure 7 shows the resulting formant tracks
from both the LPC based system and the Gaussian mixture system.
Again this diagram shows agreeable formant trajectories. Note that
the LPC based system uses dynamic programming in order to opti-
mise formant trajectory estimates by imposing frequency continuity



Figure 6: Top diagram shows the spectrogram of the original
speech and the bottom diagram represents above view of estimated
probability density function spectrogram.

Figure 7: Formant tracks from linear prediction and the Mixtures
of Gaussians techniques.

constraints, and as yet there are no frame to frame constraints in this
Gaussian mixture system.

Although the shape of a normal distribution is not directly related
to second order filters commonly used in formant synthesisers, re-
sults from the Klatt synthesiser [3] have yielded intelligible syn-
thetic speech.

6. CONCLUSIONS & FUTURE WORK

The results presented here have demonstrated the effectiveness of
Gaussian mixtures in estimating formant parameters. Further re-
finements to this system require the devise of a formant trajectory
smoothing algorithm in order to exploit known smoothness con-
straints. An application for this technique is low bit rate speech
coding. In Figure 5(a) it can be observed that in the lower frequency
Gaussians a set of pitch pulses have been convoluted by a window

Figure 8: Top diagram shows Spectrogram of original speech and
the bottom diagram represents above view of estimated probability
density function spectrogram.

function and that at the higher frequencies it is largely unvoiced.
This information can be built into a coder. Also, other methods of
reconstructing the time waveform from the parametrised speech that
more closely match the analysis procedure are to be investigated.
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