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Abstract—Studies have shown that variability introduced by
stress or emotion can severely reduce speech recognition accuracy.
Techniques for detecting or assessing the presence of stress
could help improve the robustness of speech recognition systems.
Although some acoustic variables derived from linear speech
production theory have been investigated as indicators of stress,
they are not always consistent. In this paper, three new features
derived from the nonlinear Teager energy operator (TEO) are
investigated for stress classification. It is believed that the TEO
based features are better able to reflect the nonlinear airflow
structure of speech production under adverse stressful conditions.
The features proposed include TEO-decomposed FM variation
(TEO-FM-Var), normalized TEO autocorrelation envelope area
(TEO-Auto-Env), and critical band based TEO autocorrelation
envelope area (TEO-CB-Auto-Env). The proposed features are
evaluated for the task of stress classification using simulated and
actual stressed speech and it is shown that the TEO-CB-Auto-Env
feature outperforms traditional pitch and mel-frequency cepstrum
coefficients (MFCC) substantially. Performance for TEO based
features are maintained in both text-dependent and text-indepen-
dent models, while performance of traditional features degrades
in text-independent models. Overall neutral versus stress classifi-
cation rates are also shown to be more consistent across different
stress styles.

Index Terms—Human factors, nonlinear speech feature, speech
analysis, speech recognition, stress classification, Teager energy op-
erator (TEO).

I. INTRODUCTION

STRESS and its effects on the acoustic speech signal have
been the subject of many studies [1], [2]. Adverse envi-

ronments, such as noisy backgrounds, emergency conditions,
high workload stress, multitasking, fatigue due to sustained
operation, physical environmental factors (G-force), emotional
moods, etc., are some of the factors which introduce stress
into the speech production process. When a speaker produces
speech in the presence of background noise, Lombard effect
[35] will also occur since the speaker must modify his/her
speech in order to increase communication quality over the
noisy environment. Numerous studies [6], [10], [16], [23], [24],

Manuscript received December 22, 1997; revised May 6, 2000. This work was
supported by a grant from the U.S. Air Force Research Laboratory, Rome, NY.
The associate editors coordinating the review of this manuscript and approving
it for publication were Dr. Gerard Chollet and Dr. B.-H. Juang.

G. Zhou was with the Robust Speech Processing Laboratory, Center for
Spoken Language Research, University of Colorado, Boulder, CO 80309 USA.
He is now with Intel’s Architecture Labs, Intel Corporation, Hillsboro, OR
97124 USA.

J. H. L. Hansen and J. F. Kaiser are with the Robust Speech Processing Labo-
ratory, Center for Spoken Language Research, University of Colorado, Boulder,
CO 80309 USA (e-mail: John.Hansen@colorado.edu).

Publisher Item Identifier S 1063-6676(01)01323-2.

[28], [29], [40], [45], [46] have shown distinctive differences
in phonetic features between normal and speech produced
under Lombard effect. Under emergency conditions such
as that in aircraft pilot communications, speech normally is
produced in a fast manner and can have aspects of emotional
fear. High workload, multitasking, and/or fatigue could cause
speech to sound slower, faster, softer, or louder than speech
produced under neutral environments. The physical G-force
movement, which a fighter cockpit pilot experiences during real
maneuvers, or the movement a person might experience while
riding a roller coaster, can disrupt the typical speech production
process. A study by South [2] showed that pilots undergoing
high G-force in a centerfuge resulted in a shrinking versus

(first, second formant) vowel space. Moreover, emotional
arousal can cause changes in respiration pattern and muscle
tension in the vocal tract. Such changes in speech production
brought on by a variety of emotions have been the focus of a
number of research investigations [7], [16], [23], [53].

It is well-known that the performance of speech recognition
algorithms is greatly influenced by the stressful conditions in
which speech is produced. Workload task stress has been shown
to significantly impact recognition performance [3], [4], [11],
[16], [39], [41], [43], [54]. Adverse influence of the Lombard
effect on speech recognition has been reported in [28], [46].
Effects of different stressful conditions on speech recognition
and efforts to improve the performance of speech recognition
algorithms under stressful conditions can be found in [3], [11],
[16], [17], [19]–[22], [41].

For speech recognizers, a typical approach to improve
recognition robustness under adverse conditions (e.g., varying
communication channels, handset differences) is re-training
reference models (i.e., train-test in matched conditions). A
similar method, called multi-style training [34], has been used
to improve speech recognition under stress, but at the expense
of requiring the user to produce speech across a simulated
range of stress styles. In a separate study, it was shown that
multistyle training only works in speaker-dependent scenarios
and that performance actually degrades below neutral training
when applied in a speaker independent application [55].
The reason is that stressful conditions are too diverse to be
represented by limited training data, and that speakers can at
times use a nonuniform set of speech production adjustments to
convey their stress state. A study by Bou-Ghazale and Hansen
[8] explored this notion by developing perturbation models
of neutral-to-stress using a hidden Markov model (HMM)
framework. They were able to synthesize multi-style like
speech recognition models by perturbing the neutral training
tokens of an input speaker using perturbation models from a
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second set of speakers. Their results showed that recognition
performance can be improved, but not to the same degree as
seen for speaker-dependent stress models. It is suggested that
algorithms which are capable of classifying stress could be
used to classify stressed speech from neutral. Model adaptation
techniques can be further used to adapt models so that stressed
speech can be recognized well.

In fact, stress classification cannot only be used to improve
the robustness of speech recognition systems, other scenarios
can also benefit, such as telecommunications, military applica-
tions, medical applications, and law enforcement. In telecom-
munications, in addition to its potential to improve the tele-
phone-based speech recognition performance, stress classifica-
tion can be used to route 911 emergency call services for high
priority emergency calls. Moreover, it can also be used to assess
a caller’s emotional state for telephone response services. The
integration of speech recognition technology has already been
seen in many military voice communication and control appli-
cations. Since many such applications involve stressful envi-
ronments (e.g., aircraft cockpits, military peacekeeping/battle-
field setting), stress classification and assessment become cru-
cial to improve the system robustness in these applications [27].
Furthermore, computerized stress classification and assessment
techniques can be employed by psychiatrists to aid in quanti-
tative objective assessment of patients undergoing evaluation.
Finally, stress classification can also be employed in forensic
speech analysis by law enforcement to assess the state of tele-
phone callers or as an aid in suspect interviews.

Although much research has been conducted on stressful con-
ditions for speech recognition, there has been limited work per-
formed in the area of stressed speech classification. The ma-
jority of studies in the field of speaker stress analysis have con-
centrated on pitch, with several considering spectral features de-
rived from a linear model of speech production [23], [53], [16],
[55], [57]. The number of studies in stress classification is much
more limited. One recent study [24] considered stress classifi-
cation using

1) estimated vocal tract area profiles;
2) acoustic tube area coefficients;
3) Mel-cepstral based parameters (MFCC [13]) including

Mel-cepstral (MFCC), delta MFCC, delta-delta-MFCC,
and a new feature based on the autocorrelation of the
MFCCs (AC-mel).

Stress classification performance using these features were
determined using separability distance metrics and neural
network based classifiers. It was shown that stress classification
performance varied significantly depending on the vocabulary
size and speaker population. However, MFCC and AC-mel
performed better than delta-MFCC and delta-delta-MFCC for
vocabulary dependent tests. A later study showed that by using
target driven features and context dependent phoneme neural
networks, stress classification performance could be measur-
ably improved [55]. Other acoustic features which have also
been shown to be useful as indicators of speech under stress
include fundamental frequency ( ), phoneme duration and
intensity, glottal source structure (especially spectral slope),
and vocal tract formant structure [23].

Fig. 1. Nonlinear model of sound propagation along the vocal tract.

All speech features used in [55], [23], which include the
MFCC, are derived from a linear speech production models
which assume that airflow propagates in the vocal tract as a
plane wave. This pulsatile flow is considered the source of
sound production. According to studies by Teager [49]–[51],
however, this assumption may not hold since the flow is actually
separate and concomitant vortices are distributed throughout
the vocal tract (shown in Fig. 1 [30]).

Teager suggested that the true source of sound production is
actually the vortex-flow interactions, which are nonlinear. This
observation was supported by the theory in fluid mechanics [12]
as well as by numerical simulation of Navier–Stokes equation
[52]. It is believed that changes in vocal system physiology in-
duced by stressful conditions such as muscle tension will affect
the vortex-flow interaction patterns in the vocal tract. There-
fore, nonlinear speech features are necessary to classify stressed
speech from neutral.

It can be stated that there are two broad ways to model the
human speech production process. One approach is to model
the vocal tract structure using a source-filter model [15]. This
approach assumes that the underlying source of phoneme iden-
tity comes from the vocal tract configuration of the articulators.
Recent studies have explored the prospect of decomposing the
system model characteristics for both vocal fold movement [5]
and vocal tract structure [47]. An alternative way to characterize
speech production is to model the airflow pattern in the vocal
tract [52]. The underlying concept here, is that while the vocal
tract articulators do move to configure the vocal tract shape, it
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is the resulting airflow properties which serve to excite those
models which a listener will perceive as a particular phoneme.
Studies by Teager emphasized this approach [49]–[51], with
follow-up investigations by Kaiser [31]–[33] to support those
concepts. Although the airflow pattern shown in Fig. 1 may be
closer to that of the real speech production process, it is very
difficult, if not impossible to model it mathematically, since
complete Navier–Stokes solutions of airflow require accurate
boundary conditions versus time. In an effort to reflect the
instantaneous energy of nonlinear vortex-flow interactions,
Teager developed an energy operator, with the supporting
observation that hearing is the process of detecting the energy.
The simple and elegant form of the operator was introduced by
Kaiser [32] as

(1)

where is the Teager energy operator (TEO), and is a
single component of the continuous speech signal.

One previous study [9] considered stress classification using
a nonlinear feature based on properties of TEO, where the shape
of a pitch normalized TEO profile was used. Good performance
was obtained for speech produced under angry, loud, clear, and
Lombard effect speaking conditions. That study, however, was
limited to stress classification of extracted front and mid vowels.

Our focus, here, is to remove phone or word level depen-
dency in the stress classification task, and thereby concentrate
on correlates of nonlinear excitation characteristics asso-
ciated with stress. For this purpose, we propose three new
features which incorporate TEO-based processing in this
study. The features are entitled TEO-decomposed FM variation
(TEO-FM-Var), normalized TEO autocorrelation envelope area
(TEO-Auto-Env), and critical band based TEO autocorrelation
envelope area (TEO-CB-Auto-Env). These features explore the
prospects of variations in the energy of airflow characteristics
within the vocal tract for speech under stress. We compare the
performance of the proposed TEO-based features to traditional
MFCC and pitch information for the task of stress classification
using speech under simulated and actual stress from data
provided by NATO IST/TG-01 (SUSAS, SUSC-0).1

The paper is organized as follows. In Section II, the back-
ground of the nonlinear Teager energy operator (TEO) is first
described, followed by sections where we propose three new
TEO-based stress classification features. An extensive set of
evaluations and discussion are presented in Section III using
speech under stress from several simulated and actual stress con-
ditions. Finally, Section IV presents conclusions.

II. STRESSCLASSIFICATION FEATURES

A. Background of the Teager Energy Operator

The continuous from of the TEO is shown in (1). Since speech
is represented in discrete form in most current speech processing

1For further information on NATO IST/TG-01 efforts on stress, see their
speech under stress web page at http://cslu.colorado.edu/rspl/stress.html.

systems, Kaiser [31], [33] derived the operator for discrete-time
signals from its continuous form , as

(2)

where is the sampled speech signal. For example, the re-
sulting continuous TEO response for is a con-
stant: ; and the response for the discrete equiv-
alent signal, , is .

The TEO is typically applied to a bandpass filtered speech
signal, since its intent is to reflect the energy of the nonlinear
flow within the vocal tract for a single resonant frequency. Al-
though the output of a bandpass filter still contains more than
one frequency component, it can be considered as an AM–FM
signal, . The TEO output of can
be approximated as

(3)

This notion will be further explored during feature derivation in
Section II-D.

In fact, the TEO profile can be used to decompose an AM–FM
signal into its AM and FM components within a certain fre-
quency band via

(4)

(5)

where
time domain difference signal;
TEO operator as shown in (2);
FM component at sample;
AM component at sample [36],
[37].

On the basis of this work, Maragoset al. [37] proposed a non-
linear model which represents the speech signalas

(6)

where

(7)

is a combined AM and FM structure representing a speech res-
onance at the th formant with a center frequency .
In this relation, is the time-varying amplitude, and
is the frequency modulating signal at theth formant.

Although TEO processing is intended to be used for a signal
with a single resonant frequency, we will find in Section II-D
that the TEO energy of a multi-frequency signal does not only
reflects individual frequency components but also reflects in-
teractions between them. This characteristic extends the use of
TEO to speech signals filtered with wide bandwidth band-pass
filters (BPF). These observations led us to propose the TEO-
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Fig. 2. Waveforms of 150-ms duration obtained from the voiced portion of word “help” spoken by the same male speaker under (a) neutral and (b) simulated
angry conditions.

based stress classification features discussed in the following
subsections.

B. TEO-FM-Var: Variation of FM Component

Voiced speech spoken under stress generally has different
instantaneous excitation variations from voiced speech spoken
under neutral conditions. This can be verified by comparing
voiced speech waveforms spoken under neutral and simulated
angry conditions. For example, Fig. 2 shows sample waveforms
from the voiced part of the word “help” in both neutral and angry
conditions. The differences in pitch excitation is clearly evident.
Therefore, features which represent fine excitation variations,
should be useful for stress classification. This observation must
also be verified across a range of voiced phonemes and speakers.
We consider this later in the evaluation section. However, it
is reasonable to believe that the fine excitation variations ob-
served in the speech signal are due to the effects of modulations.
This point is supported by comparing the waveforms of a pure
steady-state sinusoidal signal and a slowly modulating AM–FM
signal (shown in Fig. 3). We see that the AM and FM compo-
nents cause measurable variations in the resulting waveform.
It is believed that the modulation patterns observed in Fig. 3
are perhaps similar to the modulation variations due to stress in
Fig. 2. Therefore, a stress classification feature is needed which
reflects these modulation variations.

While it might seem straightforward to apply a standard
pitch estimation algorithm to estimate these variations, the
large and erratic pitch changes under stress generally cause
traditional estimation algorithms to fail, thus requiring human
pitch label correction [16]. An alternative is to use the FM
variation of each frame as the feature for stress classification.

Since AM–FM signal analysis requires a carrier frequency
which must be higher than the modulating frequencies within
the signal, we filter the raw input speech through a Gabor
bandpass filter [37] (BPF) centered at the median fundamental
frequency, , with the root mean square (RMS) bandwidth
of . The Gabor BPF is employed since it has excellent
sidelobe cancellation. Here, we are only interested in fine exci-
tation variations which are believed to reflect changing levels
of speaker stress. The absolute magnitude difference function
(AMDF) [42] is employed to automatically estimate the median
fundamental frequency, , based on the TEO profile of the
entire input. The reason to estimate based on the TEO
profile is that the TEO profile usually reflects better and more
consistent period-to-period pitch information than that obtained
in the original speech signal partly due to the square effect of
the TEO. After the Gabor BPF, the TEO is applied and the
resulting profile is used to separate the input speech signal into
its AM and FM components using (4) and (5). The frame-based
FM variations are further computed as the proposed feature.
A flow diagram for extracting the first TEO-based feature
(TEO-FM-Var) is shown in Fig. 4. Example waveforms are
also shown at each stage of the feature extraction for neutral
and stressed speech. We observe considerable differences in
the final and intermediate feature response betweeen neutral
and stressed speech.

C. TEO-Auto-Env: Normalized TEO Autocorrelation Envelope
Area

The second TEO-based feature entitled TEO-Auto-Env also
reflects the instantaneous excitation variations of speech. A flow
diagram is shown in Fig. 5.
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Fig. 3. Sample waveforms from (a) a single frequency (1 kHz) and (b) a modulated AM/FM response.

Fig. 4. TEO-FM-Var Feature Extraction [waveforms represents a segment of /IH/ sound in the word fix under neutral (left column) and stressed (right column)
conditions].

The motivation for the TEO-FM-Var feature is to capture
stress dependent information that may be present in changes
within the FM component. Its processing is based on the entire
band although the final FM variations are computed around the
restricted frequency band. However, the presence of stress may
affect modulation patterns across the entire speech frequency

band. According to the nonlinear model proposed by Maragos
et al. [36], [37], voiced speech can be modeled as the sum of
AM–FM signals of which each is centered at a formant fre-
quency [shown in (6)]. If a filter bank is used to bandpass filter
voiced speech around each of its formant frequencies, the mod-
ulation pattern around each formant can be obtained using TEO
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Fig. 5. TEO-Auto-Env Feature Extraction [all waveforms for B, C, and D are for the 2nd band, 1–2 kHz; waveforms represents a segment of /IH/ sound in the
word fix under neutral (left column) and stressed (right column) conditions].

AM–FM decomposition, from which variations of modulation
patterns across different frequency bands can be obtained. Such
an approach, however, requires tracking all the formant frequen-
cies, which could be difficult to estimate reliably since most tra-
ditional formant tracking algorithms fail when speech is spoken
under stress, due to the large and erratic excitation variation
[16], [23]. To avoid the difficulty of automatic formant tracking,
four fixed bandpass filters are used with frequency ranges of
(0–1 kHz), (1–2 kHz), (2–3 kHz), and (3–4 kHz), respectively.
The number of formants which fall into each of the four fre-
quency bands could range from 0 to 2 under neutral speaking
conditions [14]. Under stressful conditions, however, the for-
mants can shift their location in frequency, and therefore mi-
grate into an adjacent filter (i.e., increase/decrease the location
formants by as much as 6% (a 3%–6% change for, , and
0%–3% for and ) [16]). Different types, or varying de-
grees, of stress will influence the distribution of formant charac-
teristics, and pitch structure and spectral based pitch harmonics
from neutral conditions. As a side note, in addition to the pri-
mary issue of formant migration into adjacent filters, additional
pitch harmonics would also occur. This concept is addressed in
more detail in the following critical band based TEO feature
(i.e., TEO-CB-Auto-Env).

The TEO-Auto-Env feature is obtained by passing the raw
input speech through a filterbank consisting of 4 bandpass
filters (BPF) (see Fig. 5). Each BPF output stream is processed
to obtain an estimate of each TEO profile. Since the TEO
output of a signal is roughly proportional to the square of
both its amplitude and frequency as shown in (3), and the AM
component for a single formant exhibits periodicity similar to
the fundamental frequency, therefore, filtering the TEO profile
with a filter centered at captures variations around . A
Gabor filter with a 3 dB bandwidth roughly equal to
can achieve this. is obtained by using the same method as

that used in the TEO-FM-Var feature extraction. Subsequently,
each Gabor-filtered TEO stream is segmented into frames.
In order to have equivalent averaging effects for the formant
variations, the frame length is set to four times the median pitch
period. Furthermore, the normalized autocorrelation function is
computed for each frame. In the present formulation, if there is
no pitch variation within a frame, the output TEO is a constant
and its corresponding normalized autocorrelation function is
a decaying straight line from (0, 1) to , where is the
frame length. The area under this ideal envelope (a straight
line) for this frame should be . In the case when pitch
variation is present in a frame, its normalized autocorrelation
envelope will not be an ideal straight line, and hence the area
under the envelope will be less than .2 By computing
the area under the normalized autocorrelation envelope and
normalizing it by , we can obtain four normalized TEO
autocorrelation envelope area parameters for each time frame
(i.e., one for each frequency band) which reflects the degree
of excitation variability within each band. Fig. 5 also shows
example waveforms extracted at points during TEO-Auto-Env
feature processing for the second subband (1–2 kHz). By
comparing the extracted waveforms for neutral and stressed
speech, we see significant changes that we believe would allow
the TEO-Auto-Env feature to respond favorably for a task in
stress. Similar degrees of profile variation was also observed
for the other subband frequencies.

D. TEO-CB-Auto-Env: Critical Band Based TEO
Autocorrelation Envelope

The uniform partition of the entire speech frequency band
for the TEO-Auto-Env was performed in an attempt to cap-

2Since the area under the envelope is obtained by tracking the autocorrelation
peaks, its area can at most equal the autocorrelation response only if the auto-
correlation function is a straight line.
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Fig. 6. TEO-CB-Auto-Env feature extraction.

ture stress sensitive changes outside the first formant. The TEO-
Auto-Env feature allows us to probe nonlinear energy changes at
higher frequencies. However, the frequency partition was coarse
(i.e., 1 kHz bandwidth). A finer partition might help derive a
more effective feature for stress classification. Empirically, the
human auditory system is assumed to perform a filtering oper-
ation which partitions the entire audible frequency range into
many critical bands [44], [56]. Based on this observation, the
third proposed feature employs a critical band based filterbank
to filter the speech signal followed by TEO processing (see
Fig. 6). Each filter in the filterbank is a Gabor bandpass filter,
with effective RMS bandwidth being the corresponding critical
band. To extract the TEO-CB-Auto-Env feature, each TEO pro-
file of a Gabor BPF output is segmented into 200-sample (25
ms) frames with 100-sample (12.5 ms) overlap between two ad-
jacent frames. Similar to the extraction of the TEO-Auto-Env
feature, normalized TEO autocorrelation envelope area pa-
rameters are extracted for each time frame (i.e., one for each
critical band), where is the total number of critical bands.
This is the TEO-CB-Auto-Env feature vector per frame. Fig. 6
shows the entire feature extraction procedure.

1) Harmonic Analysis:The TEO-Auto-Env feature extrac-
tion is subject to the accuracy of median extraction,
which is not always reliable. The TEO-CB-Auto-Env extrac-
tion attempts to remove estimation dependency. Although
the TEO-CB-Auto-Env appears similar in structure to the
TEO-Auto-Env feature, both features are actually representing
very different aspects in the speech signal. The TEO-Auto-Env
attempts to represent the variations around pitch caused by for-
mant distribution variations across different frequency bands;
while TEO-CB-Auto-Env is focused more on representing
the variations of pitch harmonics since it has much higher
frequency resolution than the TEO-Auto-Env. When spoken
under stressful conditions, a speech signal’s fundamental fre-
quency will typically change so that the distribution pattern
of pitch harmonics across critical bands will be different from
that of speech spoken under neutral conditions. To verify
this, we manually computed the average harmonic number
in each critical band from 12 voiced tokens for each of
the four speaking styles in the SUSAS (discussed in Sec-
tion III-A) simulated stress domain (shown in Table I). For each
voiced token, average pitch was calculated and the number
of harmonics (based on averaged pitch) which fall in each
critical band was obtained. From Table I, we can clearly
see the differences in harmonic distribution across critical
bands between neutral, angry, loud and Lombard speech. The
difference in the number of harmonic terms within each band,
as well as the regularity of each harmonic, both influence the
resulting TEO features between neutral and stress conditions.
Note that in the analysis for Table I, we did not attempt to
quantify the number or form of the cross harmonic terms,

TABLE I
DISTRIBUTION OF PITCH HARMONICS ACROSSCRITICAL BANDS

due to their increased complexity; but clearly they will also
influence the resulting feature response.

2) Quantitative Analysis:Next, we wish to quantitatively
verify how the difference of pitch harmonic distributions across
critical bands affect the TEO output from each critical band.
We assume that two harmonics and exist in a critical
band under neutral conditions, and that only one harmonic
in the same critical band due to an increased fundamental fre-
quency when the same speech is produced under stressful con-
ditions. As a result, the TEO autocorrelation response from this
critical band under neutral conditions will be different. Let us
assume the output of a particular bandunder neutral speech
conditions can be written as , and under stress conditions
as . Since the fundamental frequency for neutral speech
will be much lower, the critical band will typically possess more
harmonic frequencies. If we assume a male speaker doubles his
pitch under stress;3 then we could assume that the output signal
from the critical band possesses two harmonics for neutral, and
one harmonic for stress as follows:

(8)

(9)

Here, the amplitudes , and should be functions of
time , however, to simplify our discussion, we assume that they
are all constants. Next, we apply the TEO to and ,

3Previous analysis of one sample speaker from SUSAS showed a mean pitch
for neutral speech of 121 Hz and 243 Hz for speech under angry conditions.
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which produces the following relations:

(10)

(11)

If we compare and , we see that the TEO
output of band under stress is a constant, while the same output
under the neutral speech condition is a function of time index

, consisting of two frequencies, and .
This difference in the TEO responses will subsequently influ-
ence their autocorrelation functions. Let us first derive the au-
tocorrelation function for the neutral TEO. We begin with the
basic simple autocorrelation function

(12)
Next, we substitute the final result from (10), and finally we can
obtain

(13)

This final autocorrelation function for the neutral TEO response
is complex, with frequency terms consisting of and

. Similarly, we can obtain the autocorrelation func-
tion for the stressed speech TEO response as follows:

(14)

Clearly, the autocorrelation function for the stress case is a con-
stant, independent of correlation lag.

We again point out that the resulting autocorrelation functions
in (13)and(14) resulted fromthesingleanddoubleharmonicout-
puts from a single critical band filter originally from (8) and (9).
Although this mathematical derivation appears quite complex,
this is in fact the simplest case since we are dealing with only a
singleordoubleharmonics.For this ideal case,onemightsuggest
thatcalculating theTEOautocorrelationfunctions isunnecessary
since they reflect the same variation trends as the TEO profile
itself. In reality, however, critical bandmay possess cross-har-
monic termsinadditionto thepure harmonics.Theremayalso
be amplitude and/or frequency modulating terms corresponding
to each harmonic or cross harmonic term. All of these factors
can cause rapid changes in the TEO profile. The averaging effect
of the autocorrelation calculation can suppress some of the fast-
changing variations and still maintain those fluctuations which
are believed to be due to stress. This process makes it easier to
locate and track the upper envelope from the TEO autocorrela-
tion function than from the TEO profile itself.

As a result, the constant TEO profile will be represented as
the autocorrelation envelope which is a decaying straight line
from (0, 1) to , where is the frame length. Those vari-
ations caused by harmonic distribution differences as well as by
modulations will be reflected by the change in the TEO auto-
correlation envelopes.

3) Waveform Analysis:To further illustrate the output dif-
ferences resulting from each critical band between neutral and
stressed speech, waveform analysis for an arbitrary critical band
wasperformed(band9wasselectedatrandomsinceit isamid-fre-
quencyband).Asegmentwithrelativelystablepitchperiodsfrom
the voiced section of “help” under the angry stress condition was
employed for analysis. Accordingly, a corresponding segment
fromaneutral tokenof “help”wasalsoextracted.For theexample
waveform analysis considered here, the pitch of the neutral seg-
ment was also artificially increased using a pitch-synchronous
overlap-and-add (PSOLA) method [38] to the same pitch level
of the segment under angry stress to obtain a new segment for the
purpose of feature comparison. This step was performed so that
theTEO-basedfeatureswouldreflectonlythechangeinnonlinear
speech or airflow characteristics. In effect, this allows us to sepa-
rate the feature problem into two parts (i.e., suppress in impact of
an increased pitch level. It is believed that the presence of stress
causesan increase in thevariabilityofairflowcharacteristics,due
to differences in muscle tension of the vocal folds. This should
cause changes in airflow patterns above the vocal folds, thus in-
creasing the vortex interactions around the false vocal folds. The
TEO is thus believed to represent a measure of the nonlinear en-
ergy present in this vortex airflow. However, under a stress con-
dition such as anger, the rate of vocal fold movement is much
higher. Therefore, while we believe the TEO output of each crit-
ical band filter will have increased variability under stress, the
number of frequency harmonics in each frequency band will be
lessunderstress (i.e.,due toan increase inpitch).Byadjusting the
pitch of neutral to have the same mean as angry in this example,
we can temporarily remove the impact of some of the resulting
TEO cross-terms present in the given critical band filter.

Fig. 7 shows the output waveforms from critical band 9
(frequency between 1080 and 1270, Table I) for original neutral,
pitch adjusted neutral, and angry. We plot the three speech
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Fig. 7. Waveform analysis. (a) Neutral speech segment with average pitchF0 = 111 Hz, (b) pitch adjusted speech by increasing the pitch for neutral speech
from (a) to 239 Hz, and (c) speech segment under angry stress with average pitchF0 = 240 Hz.

segments, their TEO profiles, and AM–FM energy components.
Fourier transform analysis of this example showed that the

output of critical band 9’s neutral segment has two main peaks,
which correspond to the main pitch harmonics in its spectrum;
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TABLE II
DESCRIPTION OFSUSAS DATABASES

while the pitch-increased segment and the stressed segment
showed one main peak (pitch harmonic) in their spectra.
Distinctive differences in TEO profiles and corresponding
autocorrelation functions are also shown between these three
speech segments [e.g., compare autocorrelation responses for
Fig. 7 (a3), (b3), (c3) ]. From this evaluation, we can see
that the angry speech is more than merely a pitch-increased
version of its neutral counterpart, since there are many other
factors which make it different from neutral. Further studies
are needed to critically compare these factors across multiple
speakers. We also note that the examples here are ideal cases,
and in reality, there are cross-harmonic terms which make
the output of each critical band response very complicated.
In addition, the Gabor bandpass filter centered at each critical
band will include those harmonics in neighboring critical
bands due to the gradual change of filter’s frequency response
characteristics. However, the waveform analysis here has served
to illustrate that under stress, there are measurable changes in
the envelope of the autocorrelation of the TEO response, and
that these changes are partly due to increases in fundamental
frequency under stress, partly due to the variability in the
harmonics present under stress, and partly due to nonlinear
variations occurred in the airflow in the vocal tract.

III. EVALUATIONS

A. Database

In this study, evaluations for stress classification were con-
ducted usingspeech under simulated and actual stress(SUSAS)
[16], [23], [25] database which is now available through LDC.
Table II summarizes the main features of SUSAS. Two domains
of SUSAS (simulated stress from “talking styles” and actual
stress from “amusement park roller-coaster”) were utilized

Fig. 8. Pitch tracking.

for the evaluation. The following subset of SUSAS words
were used: “freeze,” “help,” “mark,” “nav,” “oh,” and “zero.”
Angry, loud and Lombard styles were used for simulated
stress (speakers were requested to speak in that style, and 85
dB SPL pink noise played through headphones was used to
simulate Lombard effect). Data for actual stress was selected
from the subject motion-fear “actual speech under stress”
domain. In the actual domain, a series of controlled speech data
collection experiments were performed with speakers riding
amusement park roller coaster. Background noise levels and
stress levels were monitored during the completion of each
ride. Since the TEO is more applicable for voiced sounds than
for unvoiced sounds, only high-energy voiced sections (i.e.,
vowels, diphthongs, liquids, glides, nasals) were automatically
extracted from the word utterances. All speech tokens were
sampled using a 16-bit A/D converter at a sample rate of 8
kHz. A baseline five-state HMM-based stress classifier with
continuous distributions, each with two Gaussian mixtures, was
employed for the evaluations.

B. Traditional Features

Since all three proposed features are based on nonlinear exci-
tation information, it was determined that it would be useful to
compare their performance to the traditional pitch feature and
the MFCC [13] feature. The pitch feature is obtained using the
pitch tracking method proposed in [48] (flow diagram shown in
Fig. 8). MFCCs have been widely used for speech recognition
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Fig. 9. MFCC extraction.

Fig. 10. Evaluation flowchart of text-dependent pairwise stress classification.

due to their effectiveness in representing the spectral variations
of speech. Fig. 9 shows the extraction procedure of the MFCC
feature. Pitch and MFCC have also been used previously for
stress classification evaluations [24], [55]. Therefore, these two
features represent a good basis of comparison for the new pro-
posed features.

C. Stress Classification Results

To determine which features are better for stress classifica-
tion, we performed three different evaluations. First, text-depen-
dent pairwise stress classification was evaluated to pre-select
good features from the proposed TEO features, and MFCC and
pitch. Based on results from the first evaluation, we selected the
top three features and conducted a second evaluation for text-in-
dependent pairwise stress classification. Finally, a text-indepen-
dent multi-style stress classification evaluation was performed
for the same three features used in the second evaluation.

1) Text-Dependent Pairwise Stress Classification:As the
first step, the task was constrained to be a text-dependent
pairwise stress classification. We trained an HMM model for
the voiced portion of each word using 18 tokens from nine
speakers for each stress style, from the SUSAS simulated
stressed speech domain. One neutral HMM model per voiced
portion of each word was trained using 18 neutral tokens;
and 90 neutral tokens per word were used for pairwise testing
between neutral and stress style trained HMMs. Since only
18 stressed tokens per word for each style are available, a
round-robin method (i.e., for each of 18 tokens, we use the
remaining 17 tokens for training, and test on this token) was
employed for training and scoring. A total of 648 tokens were
used for open test evaluation. For actual speech under stress,
we used seven speakers producing 20 tokens of “freeze,” nine
tokens of “help,” 16 tokens of “mark,” 16 tokens of “nav,”
15 tokens of “oh,” and 18 tokens of “zero” for neutral and
actual stressed conditions. A total of 188 tokens were used for
open test evaluations. Since the speech data from the actual
stress domain contains increased levels of background noise,
a previously formulated single-channel speech enhancement
method was first applied as a preprocessing phase [18] for
all feature extraction methods. Informal listening evaluations
suggest that the enhanced speech sounds much cleaner than the

original, but a small level of perceived background noise is still
present. Round-robin training and scoring were employed for
both neutral and actual data. Fig. 10 shows the diagram of the
stress classification evaluation procedure for this evaluation.

The results of the first evaluation, text-dependent pairwise
classification, are shown in Fig. 11 . For simulated stressed
speech, the results show that the TEO-FM-Var feature can clas-
sify neutral speech from their stress counterparts well (rates
are in the range: 65.0%–82.2%), but it is not as successful in
classifying stressed speech from neutral (rates are in the range:
41.6%–48.2%). The TEO-Auto-Env feature is very consistent
for stress classification across different stress styles (rates fall
in the range: 73.9%–85.2%); while the TEO-CB-Auto-Env fea-
ture keeps the consistency of TEO-Auto-Env but improves the
performance by 13.5% in terms of average classification ac-
curacy (rates range from 87.4% to 98.2%). The two traditional
features, pitch information and MFCC have better average clas-
sification accuracy than the TEO-FM-Var and TEO-Auto-Env
features. However, they seem to have difficulty in differentiating
neutral speech and speech with Lombard effect, and thus are less
consistent across different stress styles than the TEO-Auto-Env
and TEO-CB-Auto-Env features.

For speech from the SUSAS actual stress domain, since
the stress level of speech from roller-coaster rides is far more
severe, stress classification rates were generally higher. The
results for the three nonlinear TEO-based features performed
better than under simulated stress, with the TEO-CB-Auto-Env
feature performing best. The result here, as seen in the sim-
ulated case, is that the TEO-CB-Auto-Env feature performed
substantially better than the traditional MFCC and pitch
features. These results suggest the consistency of the TEO
features from simulated to actual speech under stress domains.
Furthermore, human interaction (manual pitch correction)
is needed to improve the pitch estimation accuracy from
traditional algorithms for actual stressed speech, thus making
automatic stressed speech classification difficult.

During the extraction of the TEO-FM-Var and TEO-
Auto-Env features, pitch information is utilized. For con-
venience, a simple absolute magnitude difference function
(AMDF) method was used. Because of its simplicity, this
method results in lower accuracy than other more sophisticated
pitch-tracking algorithms. Therefore, the relatively lower
classification accuracy by these two features could have been
caused by less accurate pitch estimation. As we observed,
however, even the sophisticated pitch-tracking algorithm as
shown in Fig. 8 cannot give an accurate pitch estimation when
speech is produced under stressful conditions. It is reasonable
to try a new feature which does not depend on the accuracy
of pitch estimation. This partly explains why we proposed the
TEO-CB-Auto-Env feature.
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Fig. 11. Text-dependent pairwise stress classification results using SUSAS database (in-vocabulary test).

Fig. 12. Text-independent pairwise stress classification results using SUSAS database (out-of-vocabulary test).

2) Text-Independent Pairwise Stress Classification:In the
second evaluation, we selected the top three features, which
are the TEO-CB-Auto-Env, MFCC, and Pitch, based on their
performance in the first evaluation, and conducted a text-
independent pairwise classification. The purpose here is to
verify whether these features are dependent on text or phoneme
information when performing stress classification. For this
purpose, only one HMM model for each stress style (i.e.,
angry, loud, Lombard, and actual) was trained from all tokens
available for that stress style; that is, 108 training tokens
for angry, loud or Lombard HMM model, and 94 training
tokens for actual stress model. Two neutral models, one for
the simulated stress domain trained from 108 tokens and one

for the actual stress domain trained from 94 tokens, were
used. For simulated stress domain, a set of 270 voiced tokens
other than those used for training were extracted automatically
for test from the SUSAS database for each stress style; for
actual stress, a set 140 out-of-vocabulary voiced tokens were
extracted automatically for test from the SUSAS actual stress
domain. The neutral test set for both simulated and actual
stress domain consists of 272 out-of-vocabulary voiced tokens
extracted from the SUSAS database.

The results, shown in Fig. 12, indicate that the same three
features have slight-to-measurably lower classification accuracy
for out-of-vocabulary test tokens than those in-vocabulary test
tokens (results shown in Fig. 11).
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It is expected that the MFCC feature would have the largest
performance decrease (average loss in classification rate: from
90.9% to 67.7%) because it is dependent on vocal tract spectral
structure and mainly designed for speech recognition. and thus
relies on text sequence information. The pitch information, in
general, can classify stressed speech from neutral very well, but
does not do as well in classifying neutral speech from stressed.
This is could be due to the lack in the pitch-tracking algorithm’s
ability to provide accurate pitch estimation. In this test, we did
not perform hand correction for pitch estimation results of ac-
tual stressed speech (as was performed in the first evaluation).
Although the performance of the TEO-CB-Auto-Env feature is
reduced, the decrease is the smallest. Its average classification
rate only decreases by 3.9%; while the average classification
rate of pitch decreases by 7.0%, and MFCC by 23.2%. More-
over, the TEO-CB-Auto-Env feature still remains the most con-
sistent across different stress styles compared to the other two
features [standard deviation: TEO-CB-Auto-Env (8.36), MFCC
(8.78), Pitch (17.18)]. If we examine the performance decrease
of the TEO-CB-Auto-Env feature for each stress versus neutral
pair, we can see that the major decrease occurs for the simulated
domain, especially for the two pairs, neutral versus loud and
neutral versus Lombard. As we know, simulated speech under
stress is not as easily identified as actual speech under stress and
it is likely that some acoustic confusion or overlap between dif-
ferent stress styles exist. Also we should note that many more
test tokens were used for the second evaluation. It is reasonable
to conclude that the results here are more reliable statistically
compared with those shown in Fig. 11, and that these perfor-
mance values would be realized in real voice communication
systems where stress classification is to be employed.

3) Text-Independent Multistyle Stress Classification:After
conducting the text-dependent and text-independent pairwise
stress classification evaluations, we considered a more ambi-
tious set of evaluations for text-independent multi-style stress
classification. The same features (TEO-CB-Env, MFCC, Pitch)
as in the second evaluation were used. The goal of this evalu-
ation is first to find out how accurate these features are in de-
tecting neutral versus stressed speech, and further, to see how
well they can classify stressed speech into different stress styles.
We performed our evaluation on the SUSAS simulated domain.
The reason for leaving the actual stress domain out is that actual
stress represents an extreme stressed condition (collected while
speakers were riding roller-coasters) and can be more easily sin-
gled out. The same four HMM models (neutral, angry, loud,
Lombard) and vocabulary-test sets as used in the second evalu-
ation were employed.

Results are shown in Tables III–V. In each table, we first report
correct neutral and stress detection rates [part (a) in each table].
For this part, the three stress models (angry, loud, Lombard) were
grouped together for an overall decision of “stress.” Therefore,
if a neutral test token is submitted, correct detection occurs only
if the neutral model is selected [e.g., 70.6% of neutral test tokens
detectedasneutral for theTEO-CB-Auto-Env feature (TableV)].
Forastressedtoken,ifanyofthethreemodelsareselected,thenwe
say the token was correctly identified as being under stress [e.g.,
for the TEO-CB-Auto-Env feature (Table V), 96.3% ofangry test
tokens detected as stressed speech, where either angry, loud or

TABLE III
TEXT-INDEPENDENTMULTISTYLE STRESSCLASSIFICATION RESULTS

USING MFCC

TABLE IV
TEXT-INDEPENDENTMULTISTYLE STRESSCLASSIFICATION RESULTS

USING PITCH

TABLE V
TEXT-INDEPENDENTMULTISTYLE STRESSCLASSIFICATION RESULTSUSING

TEO-CB-AUTO-ENV

Lombard model picked over neutral]. In part (b) of each table,
we report the individual stress classification rates, assuming we
achieved correct detection (e.g., for the TEO-CB-Auto-Env fea-
ture (Table V), after correctly detecting angry speech as being
stress 96.3% of time, we see that the angry model was actually
selected 65% of the time, with loud and Lombard selected 29.2%
and 5.8% of the time). Finally, when the neutral model is selected
forneutral test tokens,wehavecorrectdetection.Whenneutral to-
kens are detected as stress, we have detection error, and we there-
forewish to identifywhichstressmodelsareselected inerror.The
stress classification rates reported for neutral test speech for part
(b) ineach table reflect theerrorclassification rates,e.g., for those
neutral tokens incorrectly detected 29.4% of the time as stress for
the TEO-CB-Auto-Env feature (Table V), the majority were se-
lected as Lombard (68.8%), while a smaller percentage for the
other two possible stress styles.

It is clear that the MFCC feature (Table III) does not perform
as well as either pitch (Table IV) or the TEO-CB-Auto-Env
feature (Table V) for text-independent multistyle stress classifi-
cation. The performance of TEO-CB-Auto-Env and pitch does
vary, with the TEO-CB-Auto-Env feature performing better for
detection of neutral from stressed, while pitch performs better
for detection of stressed from neutral. This suggests that a com-
bination of pitch and TEO based features could improve stress
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TABLE VI
EVALUATION RESULTS FORINFLUENCE OFSPEECHRECOGNITION ONSTRESSCLASSIFICATION

classification performance. If we examine the distribution of
the stress detection rate across the three stress styles, the most
confusing pairs are (angry, loud) and (neutral, Lombard). As we
commented earlier, all training and test data for stressed speech
are from the simulated domain of SUSAS. Some speakers
might be better at simulating speech on a particular emotion or
style. Even though every speaker simulated each stressed style,
there is still overlap between different styles acoustically such
as angry and loud (e.g., sometimes people show their anger by
speaking louder).

We further conducted a final evaluation in the actual domain
to determine how the speech recognition aspect of these three
features contributes to stress classification performance. MFCC
is currently one of the most successful features for speech recog-
nition; pitch can be combined with other features for speech
recognition; while TEO-CB-Auto-Env was proposed mainly to
characterize the nonlinear airflow excitation during speech pro-
duction and therefore should not be as good at speech recogni-
tion. To verify this, we used 12 text-dependent HMM models
(six for neutral, six for stressed) trained during the first eval-
uation (see Section III-C1). While training tokens were also
used as test tokens, the round-robin method was employed to
ensure open-set testing. During testing, each token was sub-
mitted to all 12 HMM models. Based on the resulting HMM
scores, two rates were computed, that is, the correct rate for
both speech recognition and stress classification, and the correct
rate for only stress classification. Table VI shows these results,
which indicate what we might expect, that pitch and TEO-CB-
Auto-Env are not effective for combined speech recognition and
stress classification, but that TEO-CB-Auto-Env outperforms
the others for stress classification. Combined with results from
the first and second evaluations, we can say that the performance
of MFCC for stress classification heavily depends on its ability
to first achieve reliable speech recognition performance. The
performance of pitch for stress classification can at times benefit
from its speech recognition ability, but only in a limited sense.
The TEO-CB-Auto-Env feature, however, captures factors inde-
pendent of text information during speech production for effec-
tive stress classification. This final evaluation therefore suggests
that the TEO-CB-Auto-Env should be used for stress classifi-
cation, and thereby provide useful information which could be
employed in an MFCC feature based speech recognition system
to improve speech recognition under stress.

IV. CONCLUSIONS

In this study, we proposed the following three new
TEO-based nonlinear features: TEO-FM-Var, TEO-Auto-Env,
and TEO-CB-Auto-Env, for stress classification. TEO-based

features strive to reflect what is believed to be the variation in
nonlinear airflow excitation during speech production under
stress. Evaluation results using the SUSAS database for speech
under stress showed that the TEO-FM-Var and TEO-Auto-Env
features are not as effective for stress classification because they
depend on pitch estimation accuracy. The traditional MFCC
feature heavily depends on its speech recognition ability, and
thus works well for text-dependent pairwise stress classification
but degrades rapidly for text-independent stress classification.
Pitch can be a useful feature for stress classification, but
lacks consistency and reliability partly because user input
correction is needed to repair its estimation accuracy for speech
under high degrees of stress. The TEO-CB-Auto-Env feature,
however, is the best feature evaluated for stress classification in
terms of both accuracy and reliability. Furthermore, evaluation
results showed that this new feature does not depend on text
information, but is capable of capturing those factors, which we
believe, are nonlinear airflow excitation changes which cause
listeners to perceive stressed speech sounding different from
neutral.
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