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ABSTRACT

A hierarchical system for audio classi�cation and retrieval based on audio content analysis is presented in
this paper. The system consists of three stages. The audio recordings are �rst classi�ed and segmented into
speech, music, several types of environmental sounds, and silence, based on morphological and statistical analysis
of temporal curves of the energy function, the average zero-crossing rate, and the fundamental frequency of audio
signals. The �rst stage is called the coarse-level audio classi�cation and segmentation. Then, environmental
sounds are classi�ed into �ner classes such as applause, rain, birds' sound, etc., which is called the �ne-level audio
classi�cation. The second stage is based on time-frequency analysis of audio signals and the use of the hidden
Markov model (HMM) for classi�cation. In the third stage, the query-by-example audio retrieval is implemented
where similar sounds can be found according to the input sample audio. The way of modeling audio features with
the hidden Markov model, the procedures of audio classi�cation and retrieval, and the experimental results are
described. It is shown that, with the proposed new system, audio recordings can be automatically segmented and
classi�ed into basic types in real time with an accuracy higher than 90%. Examples of audio �ne classi�cation and
audio retrieval with the proposed HMM-based method are also provided.

Keywords: audio content analysis, audio classi�cation and retrieval, audio database, hidden Markov model,
Gaussian mixture model.

1 INTRODUCTION

Audio, which includes voice, music, and various kinds of environmental sounds, is an important type of media,
and also a signi�cant part of audiovisual data. Compared to research done on content-based image and video
database management, very little work has been done on the audio part of the multimedia bit stream. However, as
there are more and more audio databases in place at present, people start to realize the importance of management
of audio databases relying on audio content analysis.

Content-based audio classi�cation and retrieval have a wide range of applications in the entertainment industry,
audio archiving management, commercial musical usage, surveillance, etc. For example, it will be very helpful
to be able to search sound e�ects automatically from a very large audio database in �lm postprocessing, which
contains sounds of explosion, windstorm, earthquake, animals, and so on. There are also distributed audio libraries
in the World Wide Web for management. While the use of keywords for sound browsing and retrieving provides
one solution, the indexing task is however time- and labor-consuming. Moreover, an objective and consistent
description of sounds may be lacking, since features of sounds are very di�cult to describe. Content-based audio
retrieval could be an interesting alternative for sound indexing and search. Content analysis of audio is also
useful in audio-assisted video analysis. Current approaches for video indexing and retrieval mostly focus on visual



information, thus neglecting the content of the accompanying audio signal. Actually, there is an important portion
of information contained in the continuous ow of audio data which often represent the theme in a simpler fashion
than the visual part. For instance, all video of gun �ght scenes should include the sound of shooting and/or
explosion, while the image content may vary signi�cantly from one video clip to another. This observation suggests
that audio analysis can be used as the main tool for audiovisual data segmentation and indexing.

Existing research on content-based audio data management is very limited. There are in general three directions.
One direction is audio segmentation and classi�cation. One basic problem is speech/music discrimination[1], [2].
Further classi�cation of audio may take other sounds into consideration, as done in [3], where audio was classi�ed
into \music", \speech", and \others". This work was developed for the parsing of news stories. In [4], audio
recordings were classi�ed into speech, silence, laughter, and non-speech sounds, for the purpose of segmenting
discussion recordings in meetings. The second direction is audio retrieval. One speci�c technique in content-
based audio retrieval is query-by-humming, and work in [5] gives a typical example. Two approaches for generic
audio retrieval were presented, respectively, in [6] and [7]. Mel-frequency cepstral coe�cients (MFCC) of audio
signals were taken as features, and a tree-structured classi�er was built for retrieval in [6]. It turns out that
MFCC do not work well in di�erentiating audio timbres. In [7], statistical values (including means, variances, and
autocorrelations) of several time- and frequency-domain measurements were used to represent perceptual features
such as loudness, brightness, bandwidth, and pitch. This method is only suitable for sounds with a single timbre.
The third direction is audio analysis for video indexing. In [8], audio analysis was applied to the distinction of
�ve kinds of video scenes: news report, weather report, basketball game, football game, and advertisement. In [9],
audio characterization was performed on MPEG sub-band level data for the purpose of video indexing.

Audio classi�cation and retrieval is an important and challenging research topic. As described above, work in
this area is still at a preliminary stage. Our objective in this research is to build a hierarchical system which consists
of coarse-level and �ne-level audio classi�caiton and audio retrieval. There are several distinguishing features of
this system. First, we divide the audio classi�cation task into two steps. In the coarse-level step, speech, music,
environmental audio, and silence are separated. This classi�cation is generic and model-free. Then, in the �ne-level
step, more speci�c classes of natural and synthetic sounds are distinguished within each basic audio class. Second,
compared with previous work, we put more emphasis on the environmental audio, which is often ignored in the
past. Environmental sounds are an important ingredient in audio recordings, and their analysis is inevitable in
many real applications. Third, the audio retrieval is achieved based on audio classi�cation results, thus obtaining
semantic meanings and better reliability. Irrelevant or confusing results, as often appearing in image or audio
retrieval systems, are avoided by this way. Finally, we investigate physical and perceptual features of di�erent
classes of audio, and apply signal precessing techniques (including morphological and statistical analysis methods,
heuristic method, clustering method, hidden Markov method, etc.) uniquely to the representation and classi�caton
of extracted features.

The paper is organized as follows. An overview of the proposed hierarchical system is presented in Section
2. Audio features which are important for classi�cation and retrieval are analyzed in Section 3. Basic concepts
and calculations in the Gaussian mixture model and the hidden Markov model, which are critical to the �ne-level
classi�cation and retrieval methods, are introduced in Section 4. The proposed procedures for audio classi�cation
and retrieval are described in Section 5. Experimental results are shown in Section 6, and concluding remarks and
future research plans are given in Section 7.

2 OVERVIEW OF PROPOSED SYSTEM

The proposed hierarchical system for audio classi�cation and retrieval includes three stages. In the �rst stage,
audio signals are segmented and classi�ed into basic types, including speech, music, several types of environmental
sounds, and silence. It is called the coarse-level classi�cation. For this level, we use relatively simple features
such as the energy function, the average zero-crossing rate, and the fundamental frequency to ensure the feasibility
of real-time processing. We have worked on morphological and statistical analysis of these features to reveal
di�erences among di�erent types of audio. A rule-based heuristic procedure is built to classify audio signals
based on these features. This audio coarse classi�cation method is model-free, and can be applied under any



circumstance. It is necessary, as the �rst step processing of audio data, for almost any content-based audio
management system. Also, an on-line segmentation and indexing of audio/video recordings is achieved based on
the coarse-level classi�cation. For example, in arranging the raw recordings of meetings or performances, segments
of silence or irrelevant environmental sounds (including noise) may be discarded, while speech, music and other
environmental sounds can be classi�ed into the corresponding archives.

In the second stage, further classi�cation is conducted within each basic type. For speech, we can di�erentiate it
into voices of man, woman, child as well as speech with a music background. For music, we classify it according to
the instruments or types (for example, classics, blues, jazz, rock and roll, music with singing and the plain song). For
environmental sounds, we classify them into �ner classes such as applause, bell ring, footstep, windstorm, laughter,
birds' cry, and so on. This is known as the �ne-level classi�cation. Based on this result, a �ner segmentation and
indexing result of audio material can be achieved. Due to di�erences in the origination of the three basic types of
audio, i.e. speech, music and environmental sounds, di�erent approaches can be taken in their �ne classi�cation.
In this work, we focus primarily on the �ne classi�cation of environmental audio. Features are extracted from
the time-frequency representation of audio signals to reveal subtle di�erences of timbre and change pattern among
di�erent classes of sounds. The hidden Markov model (HMM) with continuous observation densities and explicit
state duration densities is used as the classi�er. Each kind of timbre in one audio class is represented as one state
in HMM and modeled with the Gaussion mixture density. The change pattern of timbres in the audio class is
modeled by the transition and duration parameters of HMM. One HMM is built for each class of sound. The �ne
classi�cation of audio �nds applications in automatic indexing and browsing of audio/video databases and libraries.

In the third stage, an audio retrieval mechanism is built based on the archiving scheme described above. There
are two retrieval approaches. One is query-by-example, where the input is an example sound, and the output is
a rank list of sounds in the database, which shows the similarity of retrieved sounds to the input query. Similar
to that in the content based image retrieval system where image search can be done according to color, texture,
or shape features, audio clips can also be retrieved with distinct features such as timbre, pitch, and rhythm. The
user may choose one feature or a combination of features with respect to the sample audio clip. The other one
is query-by-keywords (or features), where various aspects of audio features are de�ned in a list of keywords. The
keywords include both conceptual de�nitions (such as violin, applause, or cough) and perceptual descriptions (such
as fastness, brightness, and pitch) of sounds. In an interactive retrieval process, users may choose from a given
menu a set of features, listen to retrieved samples, and modify the input feature set accordingly to get a better
matched result. As the databases are organized according to audio classi�cation schemes, audio retrieval is more
e�cient (for example, the retrieval may be conducted only within certain classes), and irrelevant results are avoided.
Applications of audio retrieval may include searching sound e�ects in producing �lms, audio editing in making TV
or radio programs, selecting and browsing materials in audio libraries, and so on.

The framework of the proposed system is shown in Figure 1. Details about features, procedures, and experi-
mental results of the coarse-level classi�cation and segmentation were described in our previous work [10]. In this
paper, we emphasize on audio features, data models, procedures and examples for the �ne-level classi�cation and
retrieval.

3 AUDIO FEATURES FOR CLASSIFICAION AND RETRIEVAL

There are two types of audio features: physical features and perceptual features. Physical features refer to
mathematical measurements computed directly from the sound wave, such as the energy function, the spectrum, and
the fundamental frequency. Perceptual features are subjective terms which are related to the perception of sounds
by human beings, including loudness, pitch, timbre, and rhythm. For the purpose of coarse-level classi�cation,
we have used temporal curves of three kinds of short-time physical features, i.e., the energy function, the average
zero-crossing rate, and the fundamental frequency. Brief concepts of these features are given below, while detailed
descriptions can be found in [10]. For the �ne-level classi�cation, one of our most important tasks is to build
physical and mathematical models for the perceptual features with which human beings distinguish di�erent classes
of sounds. In this work, we consider two kinds of features: timbre and rhythm.



Figure 1: A hierarchical system for content-based audio classi�cation and retrieval.

3.1 Physical features

1. Short-time energy function. The short-time energy of audio signal provides a convenient representation of the
amplitude variation over time. For speech signals, it is a basis for distinguishing voiced speech components
from unvoiced speech components, as the energy function values for unvoiced components are signi�cantly
smaller than those of the voiced components. The energy function can also be used as the measurement to
distinguish silence when the SNR is high.

2. Short-time average zero-crossing rate (ZCR). In discrete-time signals, a zero-crossing is said to occur if
successive samples have di�erent signs. The short-time average zero-crossing rate gives rough estimates of
spectral properties of audio signals. It is another measurement to di�erentiate voiced speech components from
unvoiced speech components, as the voiced components have much smaller ZCR values than the unvoiced
components. Compared to that of speech, the ZCR curve of music has a remarkablely lower variance and
average amplitude. The environmenal audio of various origins can be briey classi�ed according to the
di�erences in ZCR curve properties.

3. Short-time fundamental frequency (FuF). The short-time fundamental frequency reveals harmonic properties
of audio signals. In the FuF curve, the amplitude is equal to the fundamental frequency when the sound is
harmonic, and is set to zero when the sound is non-harmonic. Sounds from most musical instruments are
harmonic. In speech, voiced components are harmonic while unvoiced components are non-harmonic. Most
environmental sounds are non-harmonic except that there are some examples which are harmonic and stable,
or harmonic and non-harmonic mixed.

3.2 Perceptual features

1. Timbre. Timbre is generally de�ned as \the quality which allows one to tell the di�erence between sounds of
the same level and loudness when made by di�erent musical instruments or voices". From the physical point
of view, timbre depends primarily upon the spectrum of the stimulus. It also depends upon the waveform,
the sound pressure, the frequency location of the spectrum and the temporal characteristics of the stimulus
[11]. In music, it is normally believed that timbre is determined by the number and relative strengths of the
instrument's partials. However, this is only close to be true [12]. The problem of building physical models
for timbre perception has been investigated for a long time in psychology and music analysis without de�nite



answers. Nevertheless, we may get the conclusion from existing results that the temporal evolution of spectrum
of audio signals acounts largely for timbre perception. We observed a large amount of various environmental
sounds, and found that the timbre patterns were well reected in the spectrograms of audio waveforms. Here,
we extend timbre from a term originally used for harmonic sound (music and voice) to the perception of
environmental sound, and analyze it on the time-frequency representation (such as spectrogram) of audio
signals. We consider timbre as the most important feature in di�erentiating di�erent classes of environmental
sounds, and to build a model properly for timbre perception based on the spectrogram is one major problem
in our research. Figure 2 illustrates the spectrogram of two environmental sounds. The sound shown in
Figure 2(a) includes two kinds of timbres: the bird's cry (of higher frequency) and the river ow sound in the
background (in lower frequency bands), which can be clearly observed from the spectrogram.

2. Rhythm. Rhythm is a term originally de�ned for speech and music. It is the quality of happening at regular
periods of time. Here, we extend it to environmental sounds to represent the change pattern of timbres in a
sound clip. One example is shown in Figure 2(b), where the rhythm of footstep is a signicant feature of the
sound. Other sounds in which rhythm plays an important role in the perception include clock tick, telegraph
machine, pager, door knock, etc.

(a) (b)

Figure 2: The spectrogram of audio signals: (a)bird-river, (b)foot-step

4 HIDDEN MARKOV MODEL AND GAUSSIAN MIXTURE MODEL

The hidden Markov model (HMM) and Gaussian mixture model (GMM) are powerful statistical tools widely
used in pattern recognition. They are used to characterize the timbres and their change pattern(s) in one sound
clip or a class of sounds in this work. GMM can be viewed as one component of HMM under certain circumstances.

4.1 The Gaussian Mixture Model

A Gaussian mixture density is a weighted sum of M component densities, as given by the following [13]

p(~xj�) =
MX
i=1

pibi(~x); (1)

where ~x is a D-dimensional random vector, bi(~x), i = 1; : : : ;M; are the component densities, and pi, i = 1; : : : ;M ,
are the mixture weights. Each component density is a D-variate Gaussian function of the form

bi(~x) =
1

(2�)D=2j�ij1=2
expf�

1

2
(~x� ~�i)

0

��1i (~x� ~�i)g (2)

with mean ~�i and covariance matrix �i. The mixture weights have to satisfy the constraint
PM

i=1 pi = 1.



The complete Gaussian mixture density is parameterized by the mean vector, the covariance matrix and the
mixture weight from all component densities. These parameters are collectively represented by

� = fpi; ~�i;�ig; i = 1; : : : ;M:

In the training process, the maximum likelihood (ML) estimation is adopted to determine model parameters which
maximize the likelihood of GMM given the training data. For a sequence of T training vectors X = f~x1; : : : ; ~xT g,
the GMM likelihood can be written as

p(X j�) =
TY
t=1

p(~xtj�):

The ML parameter estimates are obtained iteratively using the expectation-maximization (EM) algorithm. At
each iteration, the parameter update formulas are as below, which guarantee a monotonic increase in the likelihood
value.

Mixture weight update:

pi =
1

T

TX
t=1

p(ij~xt; �): (3)

Mean vector update:

~�i =

PT
t=1 p(ij~xt; �)~xtPT
t=1 p(ij~xt; �)

: (4)

Covariance matrix update:

�i =

PT
t=1 p(ij~xt; �)(~xt � ~�i)(~xt � ~�i)

0

PT
t=1 p(ij~xt; �)

: (5)

The a posteriori probability for the ith mixture is given by

p(ij~xt; �) =
pibi(~xt)

�M
k=1pkbk(~xt)

: (6)

4.2 The Hidden Markov Model

A hidden Markov model for discrete symbol observations is characterized by the following parameters [14].

1. N , the number of states in the model. We label the individual states as f1; 2; : : : ; Ng, and denote the state
at time t as qt.

2. M , the number of distinct observation symbols in all states, i.e., the discrete alphabet size. We denote the
individual symbols as V = fv1;v2; : : : ;vMg.

3. The state-transition probability distribution A = faijg where

aij = P [qt+1 = jjqt = i]; 1 � i; j � N:

4. The observation symbol probability distribution B = fbj(k)g, in which

bj(k) = P [xt = vkjqt = j]; 1 � k �M;

de�nes the symbol distribution in state j, j = 1; 2; : : : ; N .

5. The initial state distribution � = f�ig in which

�i = P [q1 = i]; 1 � i � N:



Thus, a complete speci�cation of HMM includes two model parameters, N and M , the observation symbols,
and the three sets of probability measures A, B, and �. We use the compact notation

� = (A;B; �)

to indicate the complete parameter set of the model. It is used to de�ne a probability measure for observation
sequence X, i.e., P (Xj�), which can be calculated according to a forward procedure as de�ned below.

Consider the forward variable �t(i) de�ned as

�t(i) = P (x1x2 : : :xt; qt = ij�); (7)

which is the probability of the partial observation sequence x1x2 : : :xt, and state i at time t, given the model �.
We can solve for �t(i) inductively as follows.

1. Initialization
�1(i) = �ibi(x1); 1 � i � N: (8)

2. Induction

�t+1(j) = [

NX
i=1

�t(i)�ij ]bj(xt+1); 1 � t � T � 1; 1 � j � N: (9)

3. Termination

P (Xj�) =
NX
i=1

�T (i): (10)

4.3 HMM with Continuous Observation Densities

When observations are continuous signals/vectors, HMM with continuous observation densities should be used.
In such a case, some restrictions must be placed on the form of the model probability density function (pdf) to
ensure that pdf parameters can be updated in a consistent way. The most general pdf form is a �nite mixture
shown as follows:

bj(x) =

MX
k=1

cjkN (x; �jk ;�jk); 1 � j � N; (11)

where x is the observation vector, cjk is the mixture weight for the kth mixture in state j and N is any log-concave
or elliptically symmetric density. Without loss of generality, we assume that N is Gaussian with mean vector �jk
and covariance matrix �jk for the kth mixture component in state j. The mixture gains cjk satisfy the stochastic

constraint
PM

k=1 cjk = 1; cjk � 0; 1 � j � N; 1 � k �M:

By comparing (11) with the Gaussian mixture density given in (1), it is obvious that the Gaussian mixture
model is actually one special case of the hidden Markov model with continuous observation densities, when there
is only one state in the HMM (N = 1) and N is Gaussian. The parameter update formulas in the mixture density,
i.e., cjk, �jk , and �jk , are the same as those for GMM, i.e. formulas 3-6.

4.4 HMM with Explicit State Duration Density

For many physical signals, it is preferable to explicitly model the state duration density in some analytic form.
That is, a transition is made only after an appropriate number of observations occur in one state (as speci�ed by
the duration density). Such a model is sometimes called the semi-Markov model. We denote the possibility of d
consecutive observations in state i as pi(d). Changes must be made to the formulas for calculating P (Xj�) and
updating of model parameters. We assume that the �rst state begins at t = 1 and the last state ends at t = T .
With the forward variable �t(i) now de�ned as

�t(i) = P (x1x2 : : :xt; stay in state i ends at tj�): (12)

The induction steps for calculating P (Xj�) are given below.



1. Initialization
�1(i) = �ipi(1) � bi(x1); 1 � i � N: (13)

2. Induction

�t(i) = �ipi(t)
tY

s=1

bi(xs) +
t�1X
d=1

NX
j=1

j 6=i

�t�d(j)ajipi(d) �
tY

s=t+1�d

bi(xs); 2 � t � D; 1 � i � N: (14)

and

�t(i) =

NX
j=1

DX
d=1

�t�d(j)ajipi(d)

tY
s=t+1�d

bi(xs); D < t � T; 1 � i � N: (15)

where D is the maximum duration within any state.

3. Termination

P (Xj�) =
NX
i=1

�T (i) (16)

5 PROCEDURES OF AUDIO CLASSIFICATION AND RETRIEVAL

5.1 Coarse-level Audio Segmentation and Classi�cation

For on-line segmentation and classi�cation of audio recordings, the short-time energy function, average zero-
crossing rate, and fundamental frequecy are computed on the y with incoming audio data. Whenever there is an
abrupt change detected in any of these three features, a segment boundary is set. Each segment is classi�ed into
one of the basic audio types according to a rule-based heuristic procedure. The procedure includes the following
steps: (1) separating silence; (2) separating environmental sounds with special features, i.e., sounds which are
\harmonic and unchanged" or \harmonic and stable"; (3) distinguishing music; (4) distinguishing speech; and (5)
classifying other environmental sounds to one of the following types: \periodic or quasi-periodic", \harmonic and
non-harmonic mixed", \non-harmonic and stable", or \non-harmonic and irregular". Finally, a post-processing
procedure is applied to reduce possible segmentation errors. For details of these processes, we refer to [10].

5.2 Fine-level Audio Classi�cation

The core of �ne-level classi�cation is to build HMM for each class of sounds. Currently, two types of information
are contained in HMM, i.e. timbre and rhythm. Each kind of timbre is modeled as one state of HMM, and
represented with the Gaussion mixture density. The rhythm information is denoted by transition and duration
parameters in HMM. Once HMM parameters are set, sound clips can be classi�ed into available classes by matching
to models of these classes.

5.2.1 Feature Extraction

As mentioned earlier, the timbre of sound is determined primarily by the frequency energy distribution of
the sound. A key point in modeling timbre perception with HMM is the way to extract the feature vector from
the short-time spectrum. Up to now, we have used the most direct way to extract features from the frequency
distribution, i.e. to use the spectrum coe�cients themselves. Trying to maintain a low dimension of the feature
vector while at the same time keeping necessary information, we take 128-point FFT of audio signal, thus obtaining
a feature vector of 65 dimensions (i.e., the logarithm of amplitude spectrum at each frequency sample between 0
and �). FFT is calculated for every 100 input samples. Therefore, for audio signals sampled at 11025Hz, there are
about 110 feature vectors obtained per second for each sound.



5.2.2 Clustering

The feature vectors of one class of sounds are clustered into several sets, with each set denoting one kind of
timbre, and modeled later by one state in HMM. We adopted an adaptive sample set construction method [15] for
clustering with some modi�cations. The resulting algorithm is stated as follows.

1. De�ne two thresholds: t1 and t2, with t1 > t2.

2. Take the sample with the largest norm (denote it as x1) as the representative of the �rst cluster: z1 = x1,
where z1 is the center of the �rst cluster.

3. Take the next sample and compute its distance to all the existing clusters di(x; zi), and choose the minimum
of di: minfdig.

(a) If minfdig � t2, assign x to the ith cluster, and update the center of this cluster: zi.

(b) If minfdig > t1, form a new cluster with x as the center.

(c) If t2 < minfdig � t1, do not assign x to any cluster, as it is in the intermediate region of clusters.

4. Repeat Step 3 until all samples have been checked once. Calculate the variances of all the clusters.

5. If the variance is the same as last time, meaning the training process has converged, go to Step 6. Otherwise,
return to Step 3 for further iteration.

6. If there are still unassigned samples (in the intermediate regions), assign them to the nearest clusters. If the
number of unassigned samples is larger than a certain percentage, adjust thresholds t1 and t2, and start with
Step 2 again.

The above procedure works well for clustering feature vectors. For example, setting t1 = 20 and t2 = 15,
the sound of dog bark is clustered into three states: bark, intermission, and the transition period in between.
Similar results were obtained with sounds of cough, footstep, etc. The sound of chime is clustered into four states
corresponding to the evolution of sounds over time. Simple timbred sounds such as river ow and clock ring are
clustered as having just one state. The number of states can be adjusted by changing the threshold values. As
GMM is able to handle the slight di�erences within each state, we tend to keep the number of states as such that
states have distinct di�erences and physical meanings.

5.2.3 Building Model

There are three cases in building HMM models for sound clips. For the �rst case, neither durations nor
transitions of states are restricted for similar sound identi�cation. Examples for this case include the single-state
sounds and sounds such as the river with bird sound where the bird sound may happen anytime and for any length
of duration upon the background river sound. For the second case, there are speci�c transitions among states, but
the durations of states can be arbitrary. For the third case, both the duration and the transition information are
critical in sound classi�cation and retrieval, such as sounds of footstep and clock tick. The three cases have the
same training process, through which a complete set of HMM parameters are obtained for each class of sounds.
While during classi�cation and retrieval, the user may choose which case is suitable for sound characterization. For
the �rst case, only Gaussion mixture density parameters will be matched. For the second case, both GMM and
transition parameters should be matched. For the third case, the whole set of HMM parameters are matched.

We denote the complete parameter set of HMM as � = (A;B;D; �), with A for the transition probability, B for
GMM parameters (including mixture weights, vector means, and covariance matrices of all states), D for duration
pdf parameters, and � for initial state distribution. The standard way for parameter estimation in HMM is an
iterative procedure based on expectation-maximization method. However, when an explicit state duration density
is included, the procedure becomes complicated with the computational load greatly increased. Besides, in such
cases, there are normally fewer state transitions and much less data to estimate the duration pdf than those in
standard HMM. Thus, we can simplify the procedure by breaking it into three steps.



At the �rst step, the observation density parameters B = fBj ; 1 � j � Ng are estimated for each state,
respectively. The feature vectors in one cluster are used to train GMM parameters for that kind of timbre according
to the update formulas of (3)-(6). Several implementational issues should be mentioned. First, the number of
mixture components M in GMM is normally determined by experiments. In our case, we choose M = 5. Second,
diagonal covariance matrices are selected for the ease of computation. Full covariance matrices are not necessary
in GMM because the e�ect of using a set of full covariance Gaussians can be equally obtained by using a larger
set of diagonal covariance Gaussians. Third, the initial mixture weights are random values between 0 and 1 which
satisfy:

PM
i=1 pi = 1 for each state. Elements in the initial mean vectors are random values between 5 and 15,

which is the concentrated range for feature vector element values. The diagonal elements in the covariance matrices
are set to 1. Fourth, when there are not enough data to su�ciently train a component's variance vector or when
using noise-corrupted data, the variance elements can become very small which may produce singularities in the
likelihood. To avoid such singularities, a variance limiting constraint is applied as given below.

�2i =

�
�2i if �2i > �2min
�2min if �2i � �2min

(17)

We choose �2min = 0:0001. Finally, it is possible that the exponential item in (2) becomes very large (especially
when the dimension of the feature vector is relatively high), and the Gaussion mixture density becomes so small
that it exceeds the precision range of the computer. To keep numerical stability of the training process, a scaling
factor expfcg is calculated for each computation of the Gaussian mixture density, which is multiplied to every bi(~x)
in (1) to keep p(~xj�) from being too small. As shown in (6), the scaling factor is canceled out in the a posteriori
probability so that it does not a�ect the parameter update. For the GMM likelihood, we can take the logarithm
so that the term due to the scaling factor becomes a subtraction.

At the second step, the transition probability matrix A = faijg is calculated as aij = tij=ti; 1 � i; j � N , where
ti is the number of transitions from state i to all other states, and tij is the number of transitions from state i to
state j. The self-transition probabilities are set to 0 when explicit state duration is included, i.e. aii = 0; 1 � i � N .

At the third step, the duration pdf D is estimated state by state. We choose the pdf form to be the Gaussion
density, i.e. pi(d) = N (d; �i; �

2
i ); 1 � i � N , where �i and �2i are estimated statistically from the state indices

of feature vectors, which are obtained through the clustering procedure. Since normally there is no restriction on
which state the sound should begin with, the initial state distribution is set as �i = 1=N; 1 � i � N . It should be
noted that this simpli�ed training procedure is not a strict HMM process. In HMM, it is unknown which vector
belongs to which state (it is hidden). Here, vectors are assigned to states according to the clustering results.

5.2.4 Classi�cation

Assume that there are K classes of sounds modeled with parameter sets �i; 1 � i � K. For a piece of sound to
be classi�ed, feature vectors X = fx1;x2; : : : ;xT g are extracted. Then, the HMM likelihoods Pi(Xj�i); 1 � i � K,
are computed. Choose the class j which maximizes Pi, i.e. j = argmaxfPi; 1 � i � Kg, and the sound is classi�ed
into this class.

As mentioned earlier, there are three kinds of situations in matching the sound to the HMM model. For the
case that the complete set of parameters are to be matched, the forward procedure described in formulas (12)-(16)
are used. For the cases that the durations of states are not concerned, (7)-(10) are used to compute the likelihood
with the self-transition probabilities set to 1, i.e. aii = 1; 1 � i � N . Furthermore, when the transition information
is also not concerned, all transition probabilities are set to 1, i.e. aij = 1; 1 � i; j � N .

There are two problems in implementation. The �rst one is about the way to choose the model matching mode.
During the training process, a mode index (1, 2, or 3) is assigned to each class according to the characteristics of
sounds in that class. Then, the model matching mode is chosen in consistency with this index in classi�cation.
Since the way of computing the likelihood is di�erent for di�erent classes, there is a normalization procedure so that
a comparison can be made among these likelihoods. Currently, this normalization is accomplished experimentally.
An analytic solution is under our investigation. The second problem is related to numerical stability. It can be seen
from the forward procedure that as t becomes large, each term of �t(i) starts to approach to zero exponentially.



Two elements are inserted into the computation of P (Xj�) to keep variables from exceeding the precision range of
the computer. One is to multiply each term with a scaling factor and the other is to take the logarithm of each
term. Since there are addition operations in the formulas, the process is a little bit more complicated than in the
training procedure.

5.3 Audio Retrieval

HMM is built for each sound clip in the audio database in the query-by-example audio retrieval. With an input
query sound, its feature vectors X = fx1;x2; : : : ;xT g are extracted, and the possibilities P (Xj�i); 1 � i � L are
computed according to the forward procedures, where �i denotes the HMM parameter set for the ith sound clip
and L is the number of sound clips in the database. The user will choose, according to the characteristics of the
query sound, the model matching mode and apply it to the matching of the input query to every sound in the
database. A rank list of audio samples in terms of similarity with the input query will be obtained by comparing
values of P (Xj�i).

6 EXPERIMENTAL RESULTS

6.1 Audio Database and Coarse-level Classi�cation Result

We have built a generic audio database which includes around 1500 pieces of sound of various types to test the
classi�cation and retrieval algorithms. We also collect dozens of longer audio clips recorded from movies to test
the segmentation performances. The proposed coarse-level classi�cation scheme achieves an accuracy rate of more
than 90% with this audio database. Misclassi�cation usually occurs in the hybrid sound which contains more than
one basic type of audio. When testing with movie audio recordings, the segmentation and classi�cation together
can be achieved in real time. The boundaries are set accurately and each segment is properly classi�ed. One such
example can be found in [10].

6.2 Example of Fine Classi�cation

For a brief test of the �ne classi�cation algorithm, we built the HMM parameter set for ten classes of sounds,
including applause, birds' cry, dog bark, explosion, foot step, laugh, rain, river ow, thunder, and windstorm.
Feature vectors extracted from 6-8 sound clips were used for building the model for each class. Then, �fty sound
clips (with �ve pieces of sound in each class) were used to test the classi�cation accuracy. Within the test set,
most were new sound clips, while there were also some clips taken from the training set due to the lack of the
sample sound in certain classes. It turned out that 41 out of the 50 sound clips were correctly classi�ed, achieving
an accuracy rate of over 80%. Misclassi�cation happened with classes with percetually similar sounds, such as
applause, rain, river, and windstorm.

6.3 Example of Audio Retrieval

In an experiment of audio retrieval, 100 short pieces of sound from 15 classes were selected to form a small
database, with the HMM parameter set trained for each piece of sound. Then, we chose a sound clip of applause as
the query sound, and matched it to each of the 100 HMMs. The resulting top ten sounds in the rank list belonged
to the following classes: no.1-5: applause; no.6: rain; no.7-9: applause; no.10: rain. This result is reasonable,
because the pouring rain and applause by a crowd of people sometimes sound alike. For another example, a sound
clip of plane taking o� was used as the input query, and the top ten retrieved sounds were: no.1-6: plane; no.7-10:
rain. There were only 6 pieces of plane sound in the database, and they were ranked at the �rst 6 places, while the
rest 4 places were taken by sounds of large rain.

7 CONCLUSION AND EXTENSIONS

A hierarchical system for audio classi�cation and retrieval based on audio content analysis and modeling was
presented in this paper. The audio recordings were �rst classi�ed and segmented into speech, music, several types of



environmental sounds, and silence based on morphological and statistical properties of the temporal curves of three
short-time features. This procedure is generic and model free, and achieved an accuracy rate of more than 90%
tested with our audio database. In the next steps, sounds were further classi�ed into �ner classes within each basic
type, and content-based audio retrieval was acomplished on top of the achiving scheme. We focused on modeling
environmental sound with the hidden Markov model for the �ne-level audio classi�cation and audio retrieval. Two
kinds of perceptual features of audio, i.e. timbre and rhythm, are included in the model by extracting features
from the short-time spectrum of audio signals. We believe that timbre and rhythm together determine how a sound
sounds to us. Preliminary experiments showed that accuracy rate of over 80% can be achieved with the proposed
�ne classi�cation method. Results of audio retrieval also proved the HMM-based approach to be promising.

Future work will be done to re�ne the proposed system. First, we would like to enhance the coarse-level
classi�cation by taking hybrid-type sound and sound with noise into consideration. Second, we will look for more
e�cient feature vectors in the �ne-level classi�cation. Third, we want to investigate better ways in �xing model-
matching mode and normalizing likelihood values.
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