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Blind Separation of Speech Mixtures via
Time-Frequency Masking

Özgür Yılmaz and Scott Rickard

Abstract—Binary time-frequency masks are a powerful tool for
the separation of sources from a single mixture. Perfect demix-
ing via binary time-frequency masks is possible provided the time-
frequency representations of the sources do not overlap, a con-
dition we call W-disjoint orthogonality. We introduce here the
concept of approximate W-disjoint orthogonality and present ex-
perimental results demonstrating the level of approximate W-
disjoint orthogonality of speech in mixtures of various orders.
The results demonstrate that ideal binary time-frequency masks
exist which can separate several speech signals from one mix-
ture. While determining these masks blindly from just one mix-
ture is an open problem, we show that we can approximate the
ideal masks in the case where just two anechoic mixtures are pro-
vided. Motivated by the maximum likelihood mixing parame-
ter estimators, we define a power weighted two-dimensional his-
togram constructed from the ratio of the time-frequency repre-
sentations of the mixtures which is shown to have one peak for
each source with peak location corresponding to the relative at-
tenuation and delay mixing parameters. The histogram is used
to create time-frequency masks which partition one mixture into
the original sources. Experimental results on speech mixtures ver-
ify the technique. Example demixing results can be found online:
http://www.princeton.edu/∼srickard/bss.html

I. INTRODUCTION

The goal in blind source separation is to determine the origi-
nal sources given mixtures of those sources. When the number
of sources is greater than the number of mixtures, the problem
is degenerate in that traditional matrix inversion demixing can-
not be applied. However, when a representation of the sources
exists such that the sources have disjoint support in that repre-
sentation, it is possible to partition the support of the mixtures
and obtain the original sources. One solution to the problem of
degenerate demixing is thus to (1) determine an appropriate dis-
joint representation of the sources and (2) determine the parti-
tions in this representation which demix. In this paper, we show
that the Gabor expansion (i.e., the discrete short-time (or win-
dowed) Fourier transform) is a good representation for demix-
ing speech mixtures. Specifically, we show that partitions of
the time-frequency lattice exist that can demix mixtures of up
to ten speech signals from one mixture. Determining the parti-
tion blindly from one mixture is an open problem, but, given a
second mixture, we describe a method for partitioning the time-
frequency lattice which separates the sources.

Özgür Yılmaz (oyilmaz@math.umd.edu) is with the Department of Mathe-
matics, University of Maryland.

Scott Rickard (srickard@princeton.edu) is with the Program in Applied and
Computational Mathematics, Princeton University and is also with Siemens
Corporate Research in Princeton, NJ.

Submitted to IEEE Transactions on Signal Processing, November 4, 2002.

Formally, let S be the family of signals of interest. Typi-
cally S will be some collection of square integrable bandlim-
ited functions. Suppose there exists some linear transformation
T : sj ∈ S 7→ Sj (where T maps the set S to another family of
functions) with the following properties:

(i) T is invertible on S (i.e., T−1(Ts) = T (T−1s) =
s, ∀s ∈ S).

(ii) Λj ∩ Λk = ∅ for j 6= k, where Λj is the support of Sj ,
i.e., Λj = supp Sj := {λ : Sj(λ) 6= 0}.

For example, we can consider the case where S is a collection
of square integrable functions with mutually disjoint supports
in the Fourier domain; any two functions s1 and s2 in S satisfy
ŝ1(ω)ŝ2(ω) = 0 for all ω, where ŝj denotes the Fourier trans-
form of sj . Then if we define T on S as Ts := ŝ, it is clear that
T satisfies (i) and (ii).

For any T with properties (i) and (ii), we can demix a mixture
x1 of signals in S, x1(t) =

∑N
j=1 sj(t), via

sj = T−1(1Λj
Tx1) (1)

where 1Λ is the indicator function of the set Λ. Going back to
our example above, this corresponds to

sj = (1Λj
x̂1)̌ (2)

which is certainly true since the functions in S satisfy (ii). Here
(1Λj

x̂1 )̌ denotes the inverse Fourier transform of 1Λj
x̂1.

Suppose now that we have another mixture x2(t) =
∑N

j=1 ajsj(t− δj), which is the case in anechoic environments
when we have two microphones. In the mixing, aj and δj are
the attenuation and delay parameters respectively correspond-
ing to the j th source. Assume
(iii) supp Ts(· − δ) = supp Ts for any s ∈ S, ∀|δ| < ∆, and
(iv) there exist functions F and G such that aj =

F (Tx1(λ), Tx2(λ)) and δj = G(Tx1(λ), Tx2(λ)) for
λ ∈ Λj for j = 1, . . . , N ,

where ∆ is the maximum possible delay between mixtures
due to the distance separating the sensors. Using (iii)
and (iv), we can label each λ ∈ supp Tx1 with the pair
(F (Tx1(λ), Tx2(λ)), G(Tx1(λ), Tx2(λ))), and Λj is exactly
the set of all points with the label (aj , δj). It follows that given
the mixtures x1(t) and x2(t), we can demix via

sj = T−1(1Λj
Tx1). (3)

Clearly, (iii) will be satisfied for the example above since the
Fourier transform of s(· − δ) will be just a modulated ver-
sion of the Fourier transform of s and thus it will have the
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same support as s. As to the existence of functions F and
G, one can show that F (x̂1(ω), x̂2(ω)) = |x̂2(ω)/x̂1(ω)| and
G(x̂1(ω), x̂2(ω)) = −1/ω^x̂2(ω)/x̂1(ω) where ^z denotes
the phase of the complex number z taken between −π and π,
satisfies (iv). The above described F and G are the DUET at-
tenuation and delay estimators for the special case where the
windowing function W ≡ 1. The DUET estimators are dis-
cussed in Section III-A.

The general algorithm explained above mainly depends on
two major points: (a) the existence of an invertible transforma-
tion T that transforms the signals to a domain on which they
have disjoint representations (properties (i), (ii), and (iii)), and
(b) finding functions F and G that provide the means of la-
beling on the transform domain (property (iv)). Note that in
the description above we required F and G to yield the exact
mixing parameters. Although this is desired since the mixing
parameters provide the perfect labels, and they can also be used
for various other purposes (e.g., direction-of-arrival determina-
tion), it is not necessary for the demixing algorithm to work.
Some function that provides a unique labeling on the transform
domain is sufficient. Moreover, requirement (ii) that the trans-
formation T is “disjoint” is very strong. In practice, one is
usually more interested in transforms that satisfy (ii) in some
approximate sense. Therefore, we are interested in transforms
that result in sparse representations for the signals of interest.

There are many examples in the literature that do use this
type of approach with various choices of T for various mix-
ing models and demixing methods[1–9]. The mixing model in
[1–3, 5, 7, 8] is “instantaneous” (sources have different ampli-
fications in different mixtures) while [4, 6, 9] use an anechoic
mixing model (sources have different amplifications and time
delays in different mixtures). [1–3, 8] consider the time domain
sampling operator as T . The general assumption in these is that
at any given time at most one source is non-zero. [4–7, 9] use
the short-time Fourier transform (STFT) operator as T . Condi-
tion (ii) is satisfied in this case, at least approximately, because
of the sparsity of the time-frequency representations of speech
signals. Empirical support for this can be found in [10], and a
more extensive discussion is given in Section II-A. In principle,
[1–9] all use some clustering algorithm for estimating the mix-
ing parameters, although there are several different approaches
to demixing. [1, 3, 4, 6–8] use a labeling scheme based on the
estimated mixing parameters and thus demix in the above de-
scribed way by creating binary masks in the transform domain
corresponding to each source. That is, given the mixtures x1

and x2, demixing is done by grouping the clusters of points
in (Tx1, Tx2) space, although different techniques are used to
detect these clusters. For example, [4, 6, 7] demix essentially
by constructing binary time-frequency masks that partition the
time-frequency plane such that each partition corresponds to
the time-frequency points that “belong” to a particular source.
The fact that such a mask exists has been observed also in [11]
in the context of BSS of speech signals from one mixture, and
in [12] in the context of source localization. In [2, 8, 9], the
demixing is done making additional assumptions on the statis-
tical properties of the sources and using a maximum a posteri-
ori (MAP) estimator. [5, 8] demix by assuming that the number
of sources active in the transform domain at any given point

is equal to the number of mixtures. They then demix by in-
verting the now non-degenerate M -by-M mixing matrices and
appropriately combining the outputs. The above comparison is
summarized in Figure 1. Alternative approaches to degenerate
blind source separation include [13–15].

mixing model T operator demixing

instantaneous [1–3, 5, 7, 8] sampling [1–3, 8] masking [1, 3, 4, 6–8]
anechoic [4, 6, 9] STFT [4–7, 9] MAP [2, 8, 9]

matrix masking [5, 8]

Fig. 1. A comparison of degenerate demixing methods using disjoint repre-
sentations.

In this paper, we consider the short-time Fourier transform
(STFT) and Gabor expansions (the discrete version of the
STFT) of speech signals. We present extensive empirical ev-
idence that speech signals indeed satisfy (ii) when T is the
STFT with an appropriate window function. Based on this,
we extend the DUET algorithm, originally presented in [4] for
sources with disjointly supported STFTs, to anechoic mixtures
of speech signals. The algorithm we propose relies on esti-
mating the mixing parameters via maximum likelihood (ML)
motivated estimators, and constructing binary time-frequency
masks using these estimates. Thus the method presented here:
(1) uses an anechoic mixing model, (2) uses the STFT as T, and
(3) performs demixing via masking.

In Section II we introduce a way of measuring the degree
of “approximate” W-disjoint orthogonality, WDOM , of a sig-
nal in a given mixture for a given mask M . We construct a
family of time-frequency masks, Φx, that correspond to the
indicator functions of the time-frequency points in which one
source dominates the others by x dB. We test the demixing
performance of these masks experimentally and illustrate that
WDOΦx is indeed a good measure of the demixing performance
of the masks Φx. The results show that binary time-frequency
masks exist that are capable of demixing up to ten speech sig-
nals from just a single mixture.

In Section III we introduce a mixture model based on the re-
sults of Section II and demonstrate that given a second anechoic
mixture, we can approximate these demixing masks blindly. To
construct the masks, we first derive the maximum likelihood es-
timators for the delay and attenuation coefficients. We compare
the performance of these with other estimators motivated by the
maximum likelihood estimators. The modified delay and atten-
uation estimators are weighted averages of the instantaneous
time-frequency delay and attenuation estimates. The delay and
attenuation estimators can be combined and we show that a
weighted two-dimensional histogram can be used to enumer-
ate the sources, determine the mixing parameters, and demix
the sources. The number of peaks in the histogram is the num-
ber of sources, the peak locations reveal the mixing parameters,
and the mixing parameters can be used to partition the time-
frequency representation of one of the mixtures to obtain esti-
mates of the original sources.

In Section IV, we verify the method presenting demixing re-
sults for speech signals mixed synthetically and in both ane-
choic and echoic rooms.
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II. W-DISJOINT ORTHOGONALITY

In this section, we focus on showing that binary time-
frequency masks exist which are capable of separating multiple
speech signals from one mixture. Our goal is, given a mixture

x1(t) =

N
∑

j=1

sj(t) (4)

of sources sj(t), j = 1, . . . , N , to recover the original sources.
In order to accomplish this, we assume the sources are pairwise
W-disjoint orthogonal.

We call two functions s1 and s2 W-disjoint orthogonal (W-
DO) if, for a given a window function W , the supports of the
windowed Fourier transforms of s1 and s2 are disjoint[4]. The
windowed Fourier transform of sj is defined

F W (sj(·))(t, ω) =
1√
2π

∫ ∞

−∞

W (τ − t)sj(τ)e−iωτ dτ (5)

which we will refer to as ŝj(t, ω) where appropriate. For a
detailed discussion of the properties of this transform consult
[16]. The W-disjoint orthogonality assumption can be stated
concisely

ŝ1(t, ω)ŝ2(t, ω) = 0, ∀t, ω. (6)

The two limiting cases for W , namely W = 1 and W (t) =
δ(t), result in interesting sets of W-DO signals. In the W = 1
case, the t argument in (6) is irrelevant as the windowed Fourier
transform is simply the Fourier transform. The condition is
satisfied by signals which are frequency disjoint, such as fre-
quency division multiplexed signals. In the other extreme, sig-
nals which are time disjoint such as time-division multiplexed
signals satisfy the condition. In general, for window functions
which are localized in time and frequency, the W-disjoint or-
thogonality condition is the goal of frequency-hopped multiple
access systems. Indeed, the method presented here could be
applied to time-domain multiplexed, frequency domain multi-
plexed, or frequency-hopped multiple access signals, however,
in this paper we exclusively consider speech signals.

Unfortunately, (6) will not be satisfied for simultaneous
speech signals as the time-frequency representation of active
speech is rarely zero. However, speech is sparse in that a small
percentage of the time-frequency coefficients in the Gabor ex-
pansion of speech capture a large percentage of the overall
power. In other words, the magnitude of the time-frequency
representation of speech is often small. The goal of this section
is to show that speech signals satisfy a weakened version of (6)
and are thus approximately W-DO. The higher the degree of
approximate W-disjoint orthogonality, the better separation re-
sults are possible. Figure 2 illustrates that speech signals have
sparse time-frequency representations and satisfy a weakened
version of (6), in that the product of their time-frequency repre-
sentations is almost always small.

A condition similar to (6) is considered in [17], the only dif-
ference being that the time-frequency transform used was the
Wigner distribution. Signals satisfying (6) for the Wigner dis-
tribution were called “time-frequency disjoint.”

The approximate W-disjoint orthogonality of speech has
been described as the “sparsity” and “disjointness” of the short-
time Fourier transform of the sources[5], “when one source

has large energy the other does not” and “harmonic compo-
nents” which “hardly overlap”[6], “when a datapoint is large
the most likely decomposition is to assume that it belongs to
a single source”[9], “spectra [that] are non-overlapping”[11],
and “useful” time-frequency points containing a “contribution
of one speaker...significantly higher than the energy of the
other speaker”[18]. A quantitative measure of approximate W-
disjoint orthogonality is discussed later in this section.

freq

|sW
1

(t,ω)|

freq

|sW
2

(t,ω)|

time

freq

|sW
1

(t,ω)sW
2

(t,ω)|

Fig. 2. A picture of W-disjoint orthogonality. The three figures are gray
scale images of |ŝ1(t, ω)|, |ŝ2(t, ω)|, and |ŝ1(t, ω)ŝ2(t, ω)| for two speech
signals s1(t) and s2(t) normalized to have unit energy. A Hamming win-
dow of length 64 ms was used as W (t) and all signals had length 3 sec-
onds. |ŝ1(t, ω)ŝ2(t, ω)| contains fewer large components than |ŝ1(t, ω)| or
|ŝ2(t, ω)|. Further analysis of these signals reveals that the time-frequency
points that contain 90% of the energy of s1 contain only 1.1% of the energy of
s2. Similarly, the time-frequency points that contain 90% of the energy of s2

contain only 0.6% of the energy of s1. Thus we claim that the speech signals
approximately satisfy the W-disjoint orthogonality condition.

We can rewrite the model from (4) in the time-frequency do-
main

x̂1(t, ω) = ŝ1(t, ω) + . . . + ŝN (t, ω). (7)

Assuming the sources are pairwise W-DO, at most one of the
N sources will be non-zero for a given (t, ω), and thus

x̂1(t, ω) = ŝJ(t,ω)(t, ω) (8)

where J(t, ω) is the index of the source active at (t, ω).
To demix, one creates the time-frequency mask correspond-

ing to each source and applies the each mask to the mixture
to produce the original source time-frequency representations.
For example, if Mj := 1{J(t,ω)=j} is the indicator function for
the support of source j, one obtains source j’s time-frequency
representation from the mixture via

ŝj(t, ω) = Mj(t, ω)x̂1(t, ω), ∀t, ω. (9)

A. Measuring the W-Disjoint Orthogonality of Speech

Clearly, the W-disjoint orthogonality assumption is not sat-
isfied for our signals of interest. We introduce here a measure
of approximate W-disjoint orthogonality based on the demixing
performance of time-frequency masks created using knowledge
of the instantaneous source and interference time-frequency
powers of speech mixtures. Experiments on speech mixtures
reveal that speech is approximately W-DO. In order to measure
W-disjoint orthogonality for a given mask, we combine two im-
portant performance criteria: (1) how well the mask preserves
the source of interest, and (2) how well the mask suppresses the
interfering sources. These two criteria, the PSR and SIR, are
introduced below.
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First, given a time-frequency mask M such that 0 ≤
M(t, ω) ≤ 1 for all (t, ω), we define PSRM , the preserved-
signal-ratio of the mask M as

PSRM =
‖M(t, ω)ŝj(t, ω)‖2

‖ŝj(t, ω)‖2
(10)

which measures the percentage of energy of source j remaining
after demixing using the mask. Note that PSRM ≤ 1 with
PSRM = 1 only if supp Mj ⊆ supp M .

Now, we define

yj(t) =

N
∑

k=1
j 6=k

sk(t) (11)

so that yj(t) is the summation of the sources interfering with
source j. Then, we define the signal-to-interference ratio of
time-frequency mask M(t, ω)

SIRM =
‖M(t, ω)ŝj(t, ω)‖2

‖M(t, ω)ŷj(t, ω)‖2
(12)

which is the output signal-to-interference ratio after using the
mask to demix.

We now combine the PSRM and SIRM into one measure of
approximate W-disjoint orthogonality. We propose the normal-
ized difference between the signal energy maintained in mask-
ing and the interference energy maintained in masking as a
measure of W-disjoint orthogonality:

WDOM =
‖M(t, ω)ŝj(t, ω)‖2 − ‖M(t, ω)ŷj(t, ω)‖2

‖ŝj(t, ω)‖2
(13)

= PSRM − PSRM/SIRM . (14)

Using the mask M(t, ω) = 1{J(t,ω)=j}, for signals which are
W-DO we note that PSRM = 1, SIRM = ∞, and WDOM = 1.
Moreover, WDOM = 1 implies that PSRM = 1, SIRM = ∞,
and that (6) is satisfied. That is, WDOM = 1 implies that the
signals are W-DO.

Now we establish that binary time-frequency masks exist
which are capable of demixing speech signals from one mixture
and detail their performance in relation to the three presented
measures. Consider the following family of time-frequency
masks

Φx
j (t, ω) =

{

1 20 log(|ŝj(t, ω)| / |ŷj(t, ω)|) ≥ x
0 otherwise

(15)

which is the indicator function for the time-frequency points
where source j dominates the interference in the mixture by x
dB. We will use PSRj(x) and SIRj(x) as shorthand for PSRΦx

j

and SIRΦx
j
, respectively.

To determine the demixing ability of the above mask type,
the masks for various x were applied to speech mixtures of var-
ious order and the demixing performance measures, PSRj(x)
and SIRj(x), were determined. The demixed speech was then
rated by the authors as falling into one of five subjective cat-
egories. The speech signals were selected from 16 male and
16 female continuous speech segments of 3 seconds taken from
the TIMIT and normalized to unit energy. The time-frequency

representation of the 16kHz sampled data was created using a
Hamming window of 1024 samples with adjacent window cen-
ters separated by 512 samples. The results of the 333 listening
tests are displayed in Figure 3. We note that there is a fairly
accurate relationship between the WDO performance measure
and the subjective ratings listed in the table under the figure.
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Fig. 3. Results of subjective listening test. For example, .8 > WDO ≥ .6
implies a “minor artifacts or interference” rating or better

Now that we have some idea how PSR, SIR, and WDO
map to demixing performance, we analyze the demixing per-
formance of the masks described in (15). Figure 4 shows plots
of PSRj(x) versus SIRj(x) and a table of (PSRj(x), SIRj(x))
pairs averaged for groups of speech mixtures of different or-
ders. For N = 2, each source was compared against each of
the remaining 31 sources, resulting in 32 × 31 = 992 tests be-
ing averaged for each data point. For larger N , each source was
compared against a random mixing of N − 1 of the remaining
31 sources. This was done 31 times per source in order to keep
the number of tests per data point constant at 992. As we tested
mixtures from N = 2 to N = 10, a total of 9 × 992 = 8928
mixtures were created to generate the data for Figure 4. Note,
we can average the PSRj(x)’s for different sources together
because all sources have been normalized. In general, how-
ever, for sources with different powers, this averaging would
not make sense as the PSRj(x)’s would be different for each
source. The same is true of SIRj(x). Figure 4 demonstrates
that time-frequency masks exist which exhibit excellent demix-
ing performance.

Now that we know that good time-frequency masks exist, we
wish to determine the dependence of these performance mea-
sures on the window function W (t) and window size. For
this task, we examine the performance of the 0 dB mask, Φ0

j .
Figure 5 shows PSR, SIR, and WDO for pairwise mixing for
various window sizes and types. Each data point in the fig-
ure represents the average of the results for 992 mixtures. In
all measures, the Hamming window of size 1024 samples per-
formed the best. Note, however, that the performance of the
other masks (with the exception of the rectangle) was extremely
similar and exhibited better than 90% W-disjoint orthogonality
for pairwise mixing across a wide range of window sizes (from
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Fig. 4. Time-Frequency Mask Demixing Performance. Plot contains PSRj(x)
(in dB) versus SIRj(x) (in dB) for x = 0, 1, . . . , 30 for N = 1, 2, . . . , 10.
Table contains (PSRj(x), SIRj(x)) in (%,dB) for N = 2, 3, 4, 5, 10 for
x = 0, 5, 10, 15 dB. The different gray regions correspond to different regions
of approximate W-disjoint orthogonality as determined by the lines of constant
WDO. For example, using the x = 5 dB mask in mixtures of four sources
yields 14.32 dB output SIR while maintaining 83% of the desired source power.
This (PSR, SIR) = (83%,14.32 dB) pair results in WDO = 80%, which from
Figure 3 implies perfect demixing performance. In other words, if we can cor-
rectly map time-frequency points with 5 dB or more single source dominance
to the correct corresponding output partition, we can recover 83% of the energy
of each of the original sources and produce demixtures with 14.32 dB output
SIR from a mixture of four sources.

roughly 500 to 4000 samples). Other mixture orders and masks
(i.e., x > 0) exhibited similar performance and in all cases the
Hamming window of size 1024 had the best performance. A
similar conclusion regarding the optimal time-frequency reso-
lution of a window for speech separation was arrived at in [6].

Note that even when the window size is 1 (i.e., T is sam-
pling), the mixtures still exhibit a high level of PSR, SIR, and
WDO. This fact was exploited by those methods that used
the time-disjoint nature of speech[1–3, 8]. However, Figure 5
clearly shows the advantage of moving from the time domain
to the time-frequency domain: the speech signals are more dis-
joint in the time-frequency domain.

The approximate W-disjoint orthogonality of speech is a re-
sult of the sparsity of the Gabor representation of speech. Spar-
sity, in the strict sense, implies that most of the Gabor coeffi-
cients are zero[19]. However, signals of practical interest ex-
hibit only a weakened definition of sparsity, in that most of the
energy of the signal is captured by a small number of the co-
efficients. For different speech signals, it is unlikely that these
coefficients coincide, which leads to approximate W-disjoint or-
thogonality. We close this section by proposing WDOM with
M = Φ0

j as the measure of W-disjoint orthogonality.

Figure 6 shows a table of WDOΦ0
j

values for mixtures of
various order. Again, each data point represents the average
measurement over 992 mixtures. It can be shown using (13) that
the 0 dB mask, Φ0

j , maximizes WDO, and thus the 0 dB mask
line represents the upper bound of WDO for any mask. We thus
say that, for example, speech signals in pairwise mixtures are
93.6% W-disjoint orthogonal.
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Fig. 5. Window size and type comparison. Hamming (◦), Blackman (∗), Hann
(�), Triangle (4), and Rectangle (

�
). PSR, SIR, and WDO for the 0 dB mask

for window size = 1, 2, 4, . . . , 16384 samples for various window types for
pairwise mixing of speech signals sampled at 16 kHz. The Hamming window
of size 1024 has the best performance.

N 2 3 4 5 6 7 8 9 10
WDO 93.6 88.0 83.4 79.2 75.6 72.3 69.3 66.6 64.0

Fig. 6. Percentage WDO for the 0 dB mask for mixtures of various order.

III. PARAMETER ESTIMATION AND DEMIXING

In this section, we will present a demixing algorithm that
separates an arbitrary number of sources using two mixtures.
We start by describing our anechoic mixing model. Suppose
we have N sources s1(t), . . . , sN (t). Let x1(t) and x2(t) be
the mixtures such that

xk(t) =

N
∑

j=1

akjsj(t − δkj), k = 1, 2 (16)

where parameters akj and δkj are the attenuation coefficients
and the time delays associated with the path from the j th source
to the kth receiver. Without loss of generality we set a1j = 1
and δ1j = 0 for j = 1, . . . , N , for simplicity we rename a2j

as aj and δ2j as δj . In addition we assume that the windowed
Fourier transform of any source function, F W [sj ](t, ω) satisfies
the narrowband assumption for array processing, i.e.,

F W [sj(· − δ)](t, ω) = exp(−iωδ) · F W [sj ](t − δ, ω)

≈ exp(−iωδ) · F W [sj ](t, ω). (17)

This assumption is realistic as long as the window function W
is chosen appropriately. A detailed discussion about this as-
sumption can be found in [20].

Now we go back to discussing the mixing model, described
in (16). We take the windowed Fourier transform of x1 and
x2 with an appropriate choice of W . Using the assumptions
discussed above, the mixing model (16) reduces to�

x̂1(t, ω)
x̂2(t, ω) � =

�
1 . . . 1

a1e
−iωδ1 . . . aNe−iωδN ����� ŝ1(t, ω)

...
ŝN (t, ω)

� �	 . (18)
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A. Parameter Estimation and Demixing for W-DO sources

To motivate the Degenerate Unmixing Estimation Technique
(DUET) algorithm which we will describe in the next section,
we first consider the case where the sources are W-DO, i.e.,

ŝi(t, ω)ŝj(t, ω) = 0, ∀(t, ω), ∀i 6= j. (19)

This condition is the idealization of the properties of speech
signals discussed in Section II. We now construct the param-
eter estimators and the demixing algorithm for W-DO signals.
Clearly, when the sources are W-DO, at most one source will
be active at any time-frequency point (t, ω), in particular for
any (t, ω) at which x̂1(t, ω) 6= 0, there exists j = J(t, ω) such
that ŝj(t, ω) 6= 0 and ŝi(t, ω) = 0 for i 6= j. Define the time-
frequency mask Mj as

Mj(t, ω) =

{

1 if ŝj(t, ω) 6= 0
0 otherwise.

(20)

Note that Mj(t, ω)Mi(t, ω) = 0 for all (t, ω) if j 6= i. From
(18) one can easily deduce that

ŝj = Mjx̂1. (21)

This shows that one can demix an arbitrary number of sources
from only one of the mixtures if one can construct the corre-
sponding mask Mj for each source. Next we will describe how
to construct the masks Mj using the mixtures x1 and x2.

Let j be arbitrary, and define Ωj = {(t, ω) : Mj(t, ω) = 1}
so that Mj = 1Ωj

. Note that the Ωj are pairwise disjoint. Now
consider

R21(t, ω) =
x̂2(t, ω)

x̂1(t, ω)
. (22)

Clearly, on Ωj

R21(t, ω) = aje
−iδjω. (23)

In this case |R21(t, ω)| = aj and−1/ω^R21(t, ω) = δj , where
^z denotes the phase of the complex number z taken between
−π and π.

The observation above yields a way of constructing
the sets Ωj and thus a demixing algorithm: we sim-
ply label each time-frequency point (t, ω) with the pair
(|R21(t, ω)| ,−1/ω^R21(t, ω)). Since the sources are W-DO,
there will be N distinct labels. By grouping the time-frequency
points (t, ω) with the same label, we construct the sets Ωj , thus
the masks Mj = 1Ωj

.
The above described demixing algorithm is the motivation

behind DUET. Note that the algorithm separates the sources
without inverting the mixing matrix, which makes it possible
to deal with mixtures of an arbitrary number of sources. Aside
from demixing, it also yields the mixing parameters: the labels
(|R21(t, ω)| ,−1/ω^R21(t, ω)) which we used to construct the
masks are exactly the mixing parameters aj and δj . Motivated
by this fact we define the instantaneous DUET attenuation and
delay parameter estimators as

ã(t, ω) := |R21(t, ω)| (24)

δ̃(t, ω) := − 1

ω
^R21(t, ω) (25)

respectively. We will use these estimators in the next section.
In summary, the DUET algorithm for demixing W-DO

sources is thus,
1) From mixtures x1(t) and x2(t) construct time-frequency

representations x̂1(t, ω) and x̂2(t, ω).
2) For each non-zero time-frequency point, calculate

(ã(t, ω), δ̃(t, ω)).
3) Take the union of the (ã, δ̃) pairs, S =

⋃{(ã(t, ω), δ̃(t, ω)) | ∀(t, ω)}. Note S will be equal to
{(aj , δj) | j = 1, . . . , N}.

4) For each (aj , δj) in S, j = 1, . . . , N , construct
ŝj(t, ω) = 1{(ã(t,ω),δ̃(t,ω))=(aj ,δj)}

(t, ω)x̂1(t, ω) for
(t, ω) with x̂1(t, ω) 6= 0 and ŝj(t, ω) = 0 otherwise.
Note, ŝj(t, ω) will be the time-frequency representations
of one of the original sources. The numbering of the
sources is arbitrary.

5) Convert each ŝj(t, ω) back into the time domain.
Remark 1: Note that the instantaneous DUET delay esti-

mator yields a meaningful estimate at a time-frequency point
(t, w) ∈ Ωj only if

|ωδj | < π. (26)

This follows from the periodicity of the complex exponential.
For (t, w) ∈ Ωj , we have −1/ω^R21(t, ω)) = r(ωδj)δj , with
r(u) := <u>

u where < u >:= (u + π) (mod 2π) − π. When
(26) is not satisfied, the delay estimate obtained using the in-
stantaneous DUET estimator will be a fraction of its true value.
Let ωmax be the element of the set ∪jΩj with the largest mod-
ulus, which is the maximum frequency present in the sources,
and denote by ωs the sampling rate. Let δjmax = maxj |δj |.
Clearly, (26) is guaranteed for all j and for all ω ∈ ∪jΩj if

ωmaxδjmax < π. (27)

Now define δωmax := π/ωmax. Any delay parameter with mod-
ulus less than δωmax can be estimated correctly. Clearly, (27) is
equivalent to the condition δjmax < δωmax. If ωmax = ωs/2, the
Nyquist frequency, then this means that the maximum delay,
δωmax = 2π

ωs
, is exactly equal to the sampling period. In other

words, as long as the delay between the two microphone read-
ings is less than a sample, the estimated phase will be accurate.
While the ωmax is determined by the characteristics of speech
signals, the maximum physically possible delay, which we will
denote by δdmax, is determined by the microphone spacing. For
two microphones separated by a distance d, δdmax = d/c where
c is the speed of sound. Clearly, we have δjmax < δdmax, and
therefore (27) will be satisfied if δdmax < δωmax. This sug-
gests that one can guarantee (27) simply by choosing d, and
thus δdmax, sufficiently small. For example, for a sampling rate
ωs/(2π) = 16 kHz, assuming ωmax = ωs/2 and c = 344m

s ,
we obtain that δdmax ≤ δωmax as long as d ≤ 2.15 cm. If we
knew, however, that ωmax/(2π) = 4 kHz, then this distance
would be increased by a factor of 4 to 8.60 cm. The smaller
the largest frequency present in the signal, the larger the al-
lowable microphone separation (or equivalently the larger we
can choose δjmax) that guarantees accurate phase parameter es-
timates.

B. Parameter Estimation for Approximately W-DO sources
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1) Maximum Likelihood Estimators for Delay and Attenu-
ation Coefficients: In Section II, we have illustrated that the
time-frequency representations of speech signals are sparse,
and one can indeed recover a speech signal from one mixture of
an arbitrary number of sources if one can construct an appropri-
ate time-frequency mask. This suggests that a weakened W-DO
condition holds for speech signals: if at a time-frequency point
one of the sources has considerable power, the contribution of
all the other sources at that time-frequency point is likely to be
small. This observation is the key to the demixing algorithm we
propose in this section. First we shall discuss how to estimate
the mixing parameters.

Instead of the continuous windowed Fourier transform, we
use the equivalent discrete counterpart1

ŝj [k, l] = ŝj(kt0, lω0) (28)

where t0 and ω0 are the time-frequency lattice spacing parame-
ters.

We will say that sj is dominant at [k, l] if |ŝj [k, l]| ≥
|ŷj [k, l]|, where ŷj is as in (11). Note, the 0 dB mask, Φ0

j , in
(15) is the indicator function for the dominant time-frequency
points for source j. Let us concentrate on one source, say s.
Let Ω be the set of time-frequency points [k, l] at which s is
dominant in the sense described above. On Ω, we model the
mixtures x1 and x2 as follows:

x̂1[k, l] = ŝ[k, l] + n1[k, l]

x̂2[k, l] = ae−iδlω0 ŝ[k, l] + n2[k, l] (29)

where n1 and n2 are i.i.d. white complex Gaussian noise with
zero-mean and variance σ2. Here n1 and n2 model the contri-
butions of other sources at the time-frequency points where s is
the dominant source. We model the interfering sources as inde-
pendent Gaussian noise in order to obtain simple closed-form
source and mixing parameter estimators. In reality, the interfer-
ence in the different mixtures will be correlated and may not be
Gaussian distributed. For the model in (29), we want to employ
a ML estimate to find the parameter pair (a, δ) ∈ R

2 as well
as ŝ[k, l] that maximize P (x̂1, x̂2|a, δ). To that goal, we define
the likelihood , L0, of (s, a, δ), where s = (ŝ[k, l])(k,l)∈Λ with
each ŝ[k, l] ∈ C for some index set Λ ⊂ Z2, given the data
x̂1[k, l] and x̂2[k, l], by

L0(s, a, δ):=p(x1, x2|s, a, δ)

= 

(k,l)∈Λ

fN1,N2 (x̂1[k, l] − ŝ[k, l], x̂2[k, l] − ae−iδlω0 ŝ[k, l])

=C exp �� − 1

2σ2 
(k,l)∈Λ

|x̂1[k, l] − ŝ[k, l]|2 +��� x̂2[k, l] − ae−iδlω0 ŝ[k, l]
��� 2 � (30)

where xi = (x̂i[k, l])(k,l)∈Λ. The last equality holds because
we assume i.i.d. complex Gaussian noise. Clearly, maximizing
L0 is equivalent to maximizing

L(s, a, δ) :=− 
(k,l)∈Λ

|x̂1[k, l] − ŝ[k, l]|2+
��� x̂2[k, l] − ae−iδlω0 ŝ[k, l]

��� 2 .

(31)

1The equivalence is nontrivial and only true for appropriately chosen window
functions W with sufficiently small t0 and ω0. An illustrative discussion can
be found in [16].

For this purpose, we want to solve the equations ∂L
∂α[k,l] = 0,

∂L
∂β[k,l] = 0 for all (k, l) ∈ Λ, ∂L

∂a = 0 and ∂L
∂δ = 0 simul-

taneously, where α[k, l] and β[k, l] denote the real and imagi-
nary parts of ŝ[k, l] respectively. We start with ∂L

∂α[k,l] . For any
(k, l) ∈ Λ, we have

∂L

∂α[k, l]
=

∂

∂α[k, l]

(

|x̂1[k, l]− α[k, l] − iβ[k, l]|2 +

∣

∣x̂2[k, l] − ae−iδlω0(α[k, l] + iβ[k, l])
∣

∣

2
)

.(32)

We solve then ∂L
∂α[k,l]

∣

∣

∣

α[k,l]=α∗[k,l]
= 0 for α∗[k, l] and obtain

α∗[k, l] = Re

{

x̂1[k, l] + aeiδlω0 x̂2[k, l]

1 + a2

}

. (33)

Similarly, solving ∂L
∂β[k,l]

∣

∣

∣

β[k,l]=β∗[k,l]
= 0 for β∗[k, l] yields

β∗[k, l] = Im

{

x̂1[k, l] + aeiδlω0 x̂2[k, l]

1 + a2

}

(34)

which we combine with (33) to get the ML estimate s
∗ for s:

s
∗[k, l] =

x̂1[k, l] + aeiδlω0 x̂2[k, l]

1 + a2
. (35)

Next, we consider ∂L
∂δ . We have

∂L

∂δ
=

∂

∂δ





∑

(k,l)∈Λ

∣

∣x̂2[k, l] − ae−iδlω0 ŝ[k, l]
∣

∣

2





= 2a
∑

(k,l)∈Λ

lω0Im

{

x̂2[k, l]ŝ[k, l]eiδlω0

}

. (36)

We now plug in ŝ[k, l] = s
∗[k, l] in (36), which yields

∂L

∂δ
=

2a

1 + a2

∑

(k,l)∈Λ

lω0 |x̂1[k, l]|2 Im
{

R21[k, l]eiδlω0
}

=
2a

1 + a2

∑

(k,l)∈Λ

lω0 |x̂1[k, l]x̂2[k, l]| sin(^R21[k, l] + δlω0)(37)

where R21[k, l] := x̂2[k,l]
x̂1[k,l] . We define the instantaneous DUET

delay estimate for the parameter δ, the discrete version of (25)

δ̃[k, l] = − 1

lω0
^R21[k, l]. (38)

and for convenience, define δ̃[k, l] = 0 if x̂1[k, l] = 0
or x̂2[k, l] = 0. We assume that |^R21[k, l] + δlω0| =
∣

∣

∣
lω0(δ − δ̃[k, l])

∣

∣

∣
is small which is reasonable because we are

considering only the [k, l] where s is dominant and we make the
approximation

sin(^R21[k, l] + δlω0) ≈ ^R21[k, l] + δlω0. (39)

After plugging (39) into (37), we solve the equation ∂L
∂δ

∣

∣

δ=δ∗
=

0 for δ∗ and obtain

δ∗ =

∑

(k,l)∈Λ δ̃[k, l]l2ω2
0 |x̂1[k, l]x̂2[k, l]|

∑

(k,l)∈Λ l2ω2
0 |x̂1[k, l]x̂2[k, l]| . (40)
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Note that δ∗, the ML estimate for the parameter δ, is a weighted
average of the instantaneous DUET delay estimates, with each
estimate weighted by the product magnitude of the mixtures as
well as (lω0)

2. We also observe that the ML estimate δ∗ does
not depend on the attenuation parameter a.

Finally, we will solve the equation ∂L
∂a

∣

∣

a=a∗
for a∗. We have

∂L

∂a
=

∂

∂a





∑

(k,l)∈Λ

∣

∣x̂2[k, l] − ae−iδlω0 ŝ[k, l]
∣

∣

2





=
∑

(k,l)∈Λ

2a |ŝ[k, l]|2 − 2Re

{

x̂2[k, l]ŝ[k, l]eiδlω0

}

. (41)

After setting ŝ[k, l] = s
∗[k, l] and some algebra we get

a∗ − 1

a∗
=

∑

(k,l)∈Λ |x̂1[k, l]x̂2[k, l]| (ã[k, l] − 1/ã[k, l])
∑

(k,l)∈Λ Re

{

x̂2[k, l]x̂1[k, l]eiδ∗lω0

}

(42)
where

ã[k, l] = |R21[k, l]| (43)

is the discrete version of the instantaneous DUET attenua-
tion estimate (24). For convenience, we define ã[k, l] = 1 if
x̂1[k, l] = 0 or x̂2[k, l] = 0.

The estimate for a∗ − 1
a∗

is symmetric in x1 and x2: swap-
ping the mixture labels will only result in a sign change of this
quantity (i.e., (1/a) − (1/(1/a)) = −(a − 1/a)). In the orig-
inal presentation of DUET [4], the logarithm of the attenua-
tion estimates was used solely because it has the same property
(i.e.,log(1/a) = − log(a)). However, motivated by its appear-
ance in the ML estimator (42), we will replace the role of the
logarithm with the DUET symmetric attenuation estimator de-
fined as ã[k, l]− 1/ã[k, l].

Remark 2: Although the estimate given in (42) is not a
weighted average, it is interesting to note that if we replace δ∗ in
(42) with the instantaneous DUET phase estimates δ̃[k, l] which
satisfy

eiδ̃[k,l]lω0 =
R21[k, l]

|R21[k, l]| (44)

we obtain that

Re

{

x̂2[k, l]x̂1[k, l]eiδ̃[k,l]lω0

}

= |x̂1[k, l]x̂2[k, l]| (45)

and in this case, (42) becomes a weighted average of ã[k, l] −
1/ã[k, l].

2) Experimental Evaluation of the ML Estimator: In this
section, we experimentally evaluate the ML estimators as well
as other estimators motivated by the previous section. In order
simulate mixtures, we use the model in (29) and adjust the noise
power to model the different number of interfering sources. The
model in (29) is valid for the dominant time-frequency points
of one source s. In order to determine the set of dominant
time-frequency points Λ, a speech signal taken from the TIMIT
database was compared to a random mixture of 1, 2, 4, or 9
TIMIT speech signals to model the N = 2, 3, 5, 10 mixture or-
ders, and in each case, the time-frequency points corresponding
to the 0-dB mask were selected. The mixtures of interfering

sources were only used to determine Λ and were discarded af-
ter the dominant time-frequency points were identified. In order
to simulate the presence of interfering sources, i.i.d. Gaussian
white noise was added to the dominant time-frequency points
of source s on both channels. The added noise was amplified
to produce a 15.12 dB, 12.26 dB, 9.87 dB, or 7.52 dB SNR so
as to model mixing of order N = 2, 3, 5, or 10, respectively.
These SNR’s were selected to model different mixture orders
because they match the average SIR’s for the 0-dB mask from
Figure 4. That is, 15.12 dB, 12.26 dB, 9.87 dB, and 7.52 dB
are the expected SIR’s after applying the 0-dB mask to mix-
tures of order N = 2, 3, 5, and 10, and thus in order to model
these mixture orders for the dominant time-frequency points of
one source, we add noise to one source to produce the corre-
sponding SNR’s. Note that the dominate time-frequency points
are precisely the support of the source’s 0 dB mask. Thus the
performance of the estimator evaluated with this model at these
SNR’s should approximate the true performance of the estima-
tor in speech mixtures of order N = 2, 3, 5, and 10. All re-
sults in the remainder of this section will be obtained using this
model.

We choose to experimentally evaluate the estimators using
the model as described above as opposed to creating synthetic
mixtures of multiple speech signals because we (1) wanted to
prevent the results from depending on the specific choice of
mixing parameters of the interfering sources and (2) wanted
to evaluate the estimators using the model that motivated
them. The disadvantage of modeling the presence of interfering
sources in this way is that the interference should be correlated
and this correlation is lost when the interference is modeled as
independent noise. Our desire in this section is to explore the
qualitative performance of a family of estimators to motivate
the demixing algorithm, and modeling the interference as noise
is sufficient for this purpose.

Figure 7 shows the ML estimate δ∗ from (40) versus δ as δ
ranges linearly from -5 samples to 5 samples with a = 1. We
can see that the ML delay estimator exhibits bad performance
outside the -1 to 1 sample range, and biased performance in-
side this range. The bad performance for larger delays is due to
the phase wrap around problem discussed in Remark 1 in Sec-
tion III-B.1. The squared frequency weighting factor in the ML
delay estimator accentuates this problem. In addition, such a
frequency weighting would make signals with higher frequency
content have higher likelihood estimates of their delay param-
eters. In the next sections, we will be using these weightings
to construct weighted histograms for source separation and it is
undesirable to assign more likelihood to one set of parameters
simply because their associated source contains higher frequen-
cies. While methods for unwrapping the phase do exist, these
methods are inappropriate for our purposes as different sources
may be active from one frequency to the next. In order to see if
we could reduce the bias, eliminate the wrap-around effect, and
remove the high frequency weighting, we removed the squared
frequency weighting factor in the ML delay estimator and con-
sidered estimators of the following form

δ
(p)
j =

∑

(k,l)∈Λ |x̂1[k, l]x̂2[k, l]|p δ̃[k, l]
∑

(k,l)∈Λ |x̂1[k, l]x̂2[k, l]|p . (46)
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Note that with p = 1, this estimator is the ML delay estimator
with the squared frequency weighting factor removed.
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Fig. 7. Maximum Likelihood Delay Estimator. Plot compares estimated δ
versus true δ for the ML estimator for δ ranging linearly from -5 to 5 samples
when a = 1 for mixture models of 2, 3, 5, and 10 sources.

The estimator in (46) for p = 1/2, 1, 2 is compared with the
ML estimator in Figure 8. For this test, δ ranges linearly from
-5 samples to 5 samples while a − 1/a ranges linearly from
0.15 to -0.15 and the SNR and Λ were selected as before to
model mixture orders of 2, 3, 5, and 10. The p = 1/2 estimator
suffers similar deficiencies as the ML estimator. The p = 1
estimator is clearly biased outside the -1 to 1 delay range, but is
monotonic with increasing δ and exhibits good (although still
biased) performance inside -1 to 1 sample delay. The p = 2
estimator exhibits near perfect estimates.

Figure 8 also shows a∗ − 1/a∗ versus a − 1/a for the same
data as was used for the delay estimates. Similar to the delay
case, in addition to the ML estimator, we consider estimators of
the following form,

a(p) −
1

a(p)
= � (k,l)∈Λ |x̂1[k, l]x̂2[k, l]|p � ã[k, l] − 1

ã[k,l] �� (k,l)∈Λ |x̂1[k, l]x̂2[k, l]|p
. (47)

Note that with p = 1, this estimator is the ML symmetric esti-
mator with substitution of (44) as described in Remark 2 previ-
ously. The ML and p = 1/2 symmetric attenuation estimators
are clearly biased. The p = 1 symmetric attenuation estimator
is also biased, although less so. The p = 2 symmetric attenua-
tion estimator exhibits near perfect performance.

3) Multiple sources and the demixing algorithm: In Section
III-B.1, we derived that the ML estimates for the mixing pa-
rameters aj and δj , the attenuation and delay coefficients for
source j, can be determined via certain weighted averages of
the instantaneous DUET delay (δ̃[k, l]) and DUET symmetric
attenuation (ã[k, l]− 1/ã[k, l]) estimates, at the time-frequency
points at which source j is dominant.

In Section III-B.2 we compared the performance of the set of
weights suggested by the ML estimators with other empirically
motivated weights, and we illustrated that the best estimates of
(aj , δj) are determined by

a
(p)
j −

1

a
(p)
j

= � (k,l)∈Λj
|x̂1[k, l]x̂2[k, l]|p � ã[k, l] − 1

ã[k,l] �� (k,l)∈Λj
|x̂1[k, l]x̂2[k, l]|p

(48)

δ
(p)
j = � (k,l)∈Λj

|x̂1[k, l]x̂2[k, l]|p δ̃[k, l]� (k,l)∈Λj
|x̂1[k, l]x̂2[k, l]|p

(49)

when p = 2 where ã[k, l] and δ̃[k, l] are the instantaneous
DUET estimates for the delay and attenuation coefficients, re-
spectively. To employ these estimates however, we need to first

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

actual δ

e
s
ti
m

a
te

d
 δ

ML   
p=1/2
p=1  
p=2  

(a) delay

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

actual a−1/a

e
s
ti
m

a
te

d
 a

−
1

/a

ML   
p=1/2
p=1  
p=2  

(b) attenuation

Fig. 8. Delay and Attenuation Estimator Comparison. Plot (a) compares
estimated δ versus true δ for the ML delay estimator and the weighted average
DUET delay estimators with p = 1/2, 1, 2 as δ ranges linearly from -5 samples
to 5 samples while a − 1/a ranges linearly from 0.15 to -0.15 for a mixture
model of 5 sources. Plot (b) compares estimated a − 1/a versus true a − 1/a
for the ML and weighted average DUET symmetric attenuation estimators for
the same experimental data that was used to generate plot (a).

construct the sets Λj = {[k, l] : |ŝj(k, l)| > |ŷj(k, l)|} for each
j. Note that these sets would be the discrete version of Ωj of
Section III-A if the sources are W-DO. In the W-DO case we
used the instantaneous DUET estimates as labels for each time-
frequency point (t, ω), and each Ωj consisted of the points with
identical labels. In the approximately W-DO case the instan-
taneous DUET estimates for the time-frequency points in Λj

will not be identical anymore. However, we claim that we can
still use the instantaneous DUET estimates as a means of la-
beling, and thus construct the sets Λj , at least approximately.
Once we know the Λj , we demix simply by partitioning the
support of x̂1[k, l] using Λj and converting the resulting time-
frequency representations back into the time domain. In order
to determine the Λj , we rely on three observations which lead
us to create a smoothed two-dimensional power weighted his-
togram of the (ã[k, l] − 1/ã[k, l], δ̃[k, l]) pairs. Enumerating
the peaks in this histogram estimates the number of sources,
the peak centers estimate the mixing parameters, and the set of
time-frequency points which contribute to a given peak provide
an estimate for the associated Λj .

Observation 1: The time-frequency points with instanta-
neous DUET estimates (ã[k, l] − 1/ã[k, l], δ̃[k, l]) inside a
small rectangle centered on the true mixing parameter pair
(a − 1/a, δ) contain most of the source energy.

We wish to show that the time-frequency points which yield
DUET estimates that are in close proximity to the true mixing
parameters contain most of the energy of the source. Let,

Mb,B[k, l] =

{

1 if |(ã[k, l] − 1/ã[k, l]) − b| < B
0 otherwise

(50)

be the indicator function for time-frequency points with DUET
attenuation estimate within B of b. We are interested in,

PSRMb,B
=

∑

(k,l) Mb,B [k, l] |s[k, l]|2
∑

(k,l) |s[k, l]|2
(51)
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when b = a− 1/a which will show the percentage of energy of
source s with DUET symmetric attenuation estimates within B
of the true value a − 1/a. Plot (a) in Figure 9 shows PSRMb,B

averaged over 100 randomly selected speech signals taken from
the TIMIT database. As before, the model in (29) was used to
model the N = 2, 3, 5, 10 mixture orders. The curves represent
the expected energy close to the true symmetric attenuation for
mixtures of various orders. For example, with B = 0.1 we
expect more than 60% of the source power to be located within
0.1 of the true a − 1/a value in mixtures of 5 sources.

Similarly, for the delay, we define

Md,D[k, l] =

{

1 if
∣

∣

∣δ̃[k, l] − d
∣

∣

∣ < D

0 otherwise.
(52)

Then we are interested in

PSRMδ,D
=

∑

(k,l) Mδ,D[k, l] |s[k, l]|2
∑

(k,l) |s[k, l]|2
(53)

which will show the percentage of energy of source s with
DUET delay estimates within D of the true value δ. Plot (b)
in Figure 9 shows PSRMδ,D

as a function of D for various mix-
ture orders. For example, 70% of the energy of the source is
expected to be within 0.1 samples of the true δ estimate in pair-
wise mixing.
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Fig. 9. Energy distribution of DUET estimates around the true mixing pa-
rameters. Note, for W-DO signals, the corresponding source power distribution
would be 100% for all distances from a-1/a (and δ).

Figure 9 shows that a significant portion of a source’s energy
is contained in time-frequency points with instantaneous DUET
symmetric attenuation estimate localized around a − 1/a and
instantaneous DUET delay estimate localized around δ. We
now show that the source energy is localized simultaneously
around (a − 1/a, δ). To do so, we look at

PSRMb,BMδ,D
=

∑

(k,l) Mb,B[k, l]Mδ,D[k, l] |s[k, l]|2
∑

(k,l) |s[k, l]|2
(54)

which measures the percentage of source power for time-
frequency points which yield estimate within B of b = a− 1/a
and D of δ. Before we examine PSRMb,BMδ,D

, we need to de-
termine the appropriate B to D ratio. Plotting (B, D) pairs for

PSRMb,B
= PSRMδ,D

for the same mixture order reveals that
the (B, D) lie essentially along a line. The least-mean-square
fit of this line determines a ratio of B/D = 1/1.7 samples.
This means that, for example, PSRMb,B

≈ .6 for B = .1 for
N = 5 implies that PSRMδ,D

≈ .6 for D = 1.7 × .1 = .17
samples for N = 5, a property which can be verified from the
data displayed in Figure 9. Figure 10 shows PSRMB,D

versus B
and D for 1.7B = D. Note that the B axis is at the bottom and
the D axis is at the top. For example, 60% of the energy of the
source is contained in a rectangle with dimensions .2-by-0.33
centered on (a − 1/a, δ) for mixtures of three sources. As the
number of sources increases, the energy spreads over a wider
area, but the source energy remains well localized around the
source’s mixing parameters.
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Fig. 10. Energy distribution of DUET estimates in a rectangle centered on the
true mixing parameter pair (a − 1/a, δ).

Observation 2: Observation 1 is true for the individual
sources in mixtures.

This observation is based on the fact that, from the ex-
periments of speech mixtures (see Figure 4), we know that
the time-frequency points when one source dominates main-
tain a significant percentage of the dominating source’s energy.
For N = 2, 3, 4, 5, and 10 the percentage source energy pre-
served when only considering dominant time-frequency points
is 97%, 94%, 91%, 89%, and 78%, respectively. Then, using
the dominance model, considering the time-frequency points
when one source dominates, Figure 10 show that the DUET
estimates in rectangle centered on true estimates maintain a
significant percentage of that source’s power when considering
only the dominant time-frequency points. For example with
N=2 to N=10, with (B, D) = (.33, .2samples) the percentage
ranges from 87% to 50%. Thus, we would expect in pairwise
mixing for example, time-frequency points which yield DUET
estimates (ã[k, l]−1/ã[k, l], δ̃[k, l]) inside a .2-by-.33 rectangle
centered on (a1 − 1/a1, δ1) to contain 87% × 97% = 84% of
source 1’s energy. Similarly, we would expect 84% of source
2’s energy to come from time-frequency points which have
DUET estimate pairs within a .2-by-.33 rectangle centered on
(a2 − 1/a2, δ2). As N increases, the source energy percent-
age we expect to see in a fixed size rectangle centered on each
source’s mixing parameters decreases (it is 39% for N=10),
nevertheless, Observation 1 will hold for mixtures of sources.

Observation 3: The peaks in a smoothed two-dimensional
power weighted histogram of the DUET estimates will be in
one-to-one correspondence with the rectangle centers in Obser-
vation 2.
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One way to determine the mixing parameters for multiple
sources is to look to Mb,B[k, l]Mδ,D[k, l] |x̂1[k, l]x̂2[k, l]|p for
some range of possible choices for b = a−1/a and δ, for some
p. Figure 8 would suggest that we choose parameter p = 2,
but we will see later that p = 1/2, 1, or 2 all result in accu-
rate estimates. If (B, D) is chosen large enough to capture a
large portion of the source power, as determined by Figure 10,
yet small enough so the (B, D) rectangle does not contain sig-
nificant energy contributions from multiple sources, we would
expect the local maxima to occur around the true mixing param-
eter pairs (aj − 1/aj , δj), j = 1, . . . , N . Therefore, one way
of determining the mixing parameters would be to calculate
Mb,B [k, l]Mδ,D[k, l] |x̂1[k, l]x̂2[k, l]|p for the range of interest
of (b, δ) pairs and select the local maxima. A computationally
efficient way of doing this is to construct a two-dimensional
weighted histogram at a high resolution, and then smooth that
histogram with a kernel of the dimensions of the desired (B, D)
rectangle. We perform smoothing to capture the time-frequency
points which are likely to correspond to one source. Recall that
the estimators (48) and (49) averaged the instantaneous esti-
mates over all time-frequency points where the source of in-
terest was dominant. We know from the results shown in Fig-
ure 10 that that a rectangle centered on the true mixing parame-
ters will capture most of the corresponding source’s energy. By
smoothing, we locate the rectangle centers that capture locally
the largest amount of power contribution, and thus estimate the
mixing parameters. Histograms have been used for parameter
estimation of voice mixtures, for example, [21] clusters onset
arrival difference to determine the time delays of the various
sources.

Now we construct a two dimensional weighted histogram
for (ã[k, l] − 1/ã[k, l], δ̃[k, l]), where ã[k, l] and δ̃[k, l]
are the instantaneous DUET estimates, with the weights
|x̂1[k, l]x̂2[k, l]|p for some p. The weighted histogram with res-
olution widths β and ∆ and weighting exponent p, is defined
as

h
(p)
β,∆(b, δ) =

∑

k,l

Mb,β/2[k, l]Mδ,∆/2[k, l] |x̂1[k, l]x̂2[k, l]|p .

(55)
We will use the sampled version of this histogram

h
(p)
β,∆[m, n] = h

(p)
β,∆(mβ, n∆) (56)

which we will smooth with a kernel of size (2nb+1)-by-(2nd+
1), to produce smoothed histogram

H
(p)
B,β,D,∆[m, n] = η

nb
∑

u=−nb

nd
∑

v=−nd

h
(p)
β,∆[m − u, n − v] (57)

where η = 1
(2nb+1)(2nd+1) , nb = dB

β e, and nd = dD
∆e.

Figure 11 shows an example histogram before and after
smoothing generated using the dominant time-frequency points
of a speech signal in a mixture of 5 sources. The presence of
the interfering sources was modeled as additive Gaussian noise
resulting in a 9.87 dB SNR on the dominant time-frequency
points. For the mixing model, a − 1/a was set to .2 and δ to
.5, which match well with the peak location. The importance
of the smoothing is clear in that it combines all the estimates

power in a local region and results in a clear single peak and
thus mixing parameter estimate.
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Fig. 11. Example raw and smoothed p = 2 power weighted histograms for one
speech signal in a mixture of five. The peak location of the smoothed histogram
corresponds to the mixing parameters (a − 1/a, δ) = (.2, .5).

In order to evaluate the usefulness of the histogram as a pa-
rameter estimator, a smoothed histogram was created for each
of the tests used to generate Figure 8 and the peak location
of the histogram was used as the symmetric attenuation and
delay estimate. Figure 12 contains the results of these tests.
Each estimator histogram consisted of 401-by-401 points with
a delay range from -6 to 6 samples and symmetric attenua-
tion from -1.2 to 1.2, and the smoothing kernel had parameters
(B, D) = (.12, .2). Comparing Figure 8 and Figure 12, we
conclude that the histogram based estimators are superior to the
previously considered ML motivated estimators.
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Fig. 12. Histogram Delay and Attenuation Estimator Comparison. Plot (a)
compares estimated δ versus true δ for the smoothed histogram peak estimators
with p = 1/2, 1, 2 for δ ranging linearly from -5 to 5 samples as a − 1/a
ranges linearly 0.15 to -0.15. Plot (b) compares estimated a − 1/a to the true
a − 1/a. Both plots were generated using a model of 5 source mixing.

The similar estimator performance for different choices of p
in Figure 12 suggests that the choice of p should be driven by
other concerns. Identifying the peaks in the histogram is the
crucial step in the separation process. Two important criteria
for the weighting exponent p selection are (1) the shape around
the peak (the “peak shape”) and (2) the relative peak heights.
In order to aid in peak identification, we want the peak shape
to be narrow and tall, and we want the peaks to be roughly of
the same height. Figure 13 compares the histogram peak shapes
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for p = 1/2, 1, 2 for both the a − 1/a and δ axes by taking the
summation along the other axis. That is, Figure 13 contains 1-
D weighted histograms for both a− 1/a and δ. As p increases,
the peak shape becomes narrower and taller. This would sug-
gest that we should select p as large as possible. However, the
larger we choose p, the more the peak heights depend only on
the largest instantaneous product power time-frequency compo-
nents of each source. If these components have different mag-
nitude distributions for different sources, the resulting peaks
heights can vary by several orders of magnitude making iden-
tification of the smaller peaks impossible. While p = 2 results
in the best peak shape, smaller choices of p may result in eas-
ier peak identification. The choice of p is thus data dependent,
however, motivated once again by the form of the ML estima-
tors, we will suggest p = 1 as the default choice.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

δ

p=1/2
p=1  
p=2  

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

a − 1/a

p=1/2
p=1  
p=2  

Fig. 13. Peakshape for p=1/2, 1, and 2.

C. Demixing Algorithm for Approximately W-DO Sources

Recall that in the W-DO case, sources were demixed using
time-frequency masks that were constructed by grouping the
time-frequency points that yield the same instantaneous param-
eter estimates. We demix in a similar way for approximately
W-DO sources. First we estimate the mixing parameters, for
example, using the histogram method described in the previ-
ous section. Then, we group time-frequency points that yield
instantaneous parameter estimates that are “close” to these es-
timated mixing parameters. One natural definition of closeness
is the instantaneous likelihood function for source j

Lj [k, l] := p(x̂1[k, l], x̂2[k, l]|aj , δj)

=
1

2πσ2
e−

1
2σ2 |aje−iδj lω0 x̂1[k,l]−x̂2[k,l]|2/(1+a2

j )(58)

obtained by substituting the instantaneous ML source estimate
(35) into the likelihood function in (30) modified to consider
only time-frequency point [k, l]. Lj [k, l] is, in a sense, the like-
lihood that source j is dominant at time-frequency point [k, l].
One way to demix the mixtures is to construct a time frequency
mask for source j by taking those time-frequency points for
which Lj [k, l] ≥ Li[k, l], ∀i 6= j. The time-frequency mask
for demixing source j is thus

M̃j=1{[k,l]:j=arg maxm Lm[k,l]} (59)

=1
{[k,l]:j=arg maxm|ame−iδmlω0 x̂1[k,l]−x̂2[k,l]|2/(1+a2

m)}
(60)

and defining

Λ̃j = {[k, l] : arg max
m

�� ame−iδmlω0 x̂1[k, l] − x̂2[k, l]
�� 2

1 + a2
m

= j}

(61)
the estimate of the time-frequency points for which source j

is dominant, we can relate this demixing mask to those that
were used in the W-DO case. There are many other ways we
can envision using these likelihoods, for example, some type of
relative weighting resulting in fractional masks instead of the
binary winner-take-all masks created by the scheme we have
proposed. However, we have shown in Section II that the 0-
dB binary masks exhibit excellent demixing performance and
maximize the WDO performance measure so we consider ex-
clusively binary time-frequency masks in this paper.

As before, we estimate the source by converting

˜̂sj [k, l] = M̃j [k, l]x̂1[k, l] (62)

into the time domain. Note, we could apply the mask to x2

as well, and, could combine the two demixtures using the ML
estimate of the source as in (35). However, in order to compare
with the results obtained in Section II, the experimental results
presented in the next section will use (62).

In summary, the DUET algorithm for demixing Approxi-
mately W-DO sources is,

1) From mixtures x1(t) and x2(t) construct time-frequency
representations x̂1[k, l] and x̂2[k, l].

2) For each time-frequency point, calculate (ã[k, l], δ̃[k, l]).
3) Construct histogram and locate peaks:

a) Construct a high resolution histogram as in (56)
b) Smooth the histogram as in (57)
c) Locate peaks in histogram. There will be N peaks,

one for each source, with peak locations approx-
imately equal to the true mixing parameter pairs,
{(aj − 1/aj , δj) | j = 1, . . . , N}.

4) For the N pairs of (a, δ) estimates, construct the time-
frequency masks corresponding to each pair using the
ML partitioning as in (59) and apply these masks to one
of the mixtures to yield estimates of the time-frequency
representations of the original sources.

5) Convert each estimate back into the time domain.

IV. EXPERIMENTS

In order to demonstrate the technique, we present results in
this section for both synthetic and real mixtures. One issue that
we have not addressed in the preceeding discusion is how the
histogram peaks are automatically enumerated and identified.
For the following demonstration, we used an ad hoc technique
that iteratively selected the highest peak and removed a region
surrounding the peak from the histogram. Peaks were removed
as long as the histogram maintained a threshold percentage of
its original weight. The threshold percentage and region dimen-
sions had to be occasionally altered in the course of the tests
to ensure the correct number of sources was found. Indeed,
peak enumeration and identification remains a topic of future
research.
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A. Synthetic mixtures

Figure 14 shows the smoothed histogram (57) for a six source
synthetic mixing example with histogram resolution widths
(β, ∆) = (0.05, 0.12 samples) and smoothing kernel dimen-
sions (B, D) = (0.12, 0.2 samples). The six sources were
taken from the TIMIT database and the (a, δ) the stereo mix-
ture was created using mixing parameters pairs (a, δ) = (1,−2),
(3/2,−1), (3/2, 1), (1, 2), (2/3, 1), and (2/3,−1). It is clear
given only the stereo mixture, one can determine how many
sources were used to create the mixture by enumerating the
peaks in the histogram. Using the ML partitioning, the first
channel of the mixture was demixed and the SNR, PSR, and
WDO measured; the results are shown in Figure 15. For com-
parison, WDOΦ0 , the optimal WDO created using the 0 dB
mask is shown in the last column. The demixtures average over
13 dB SNR gain and the WDO numbers indicate demixtures
which would rate right on the border between “minor artifacts
or interference” and “distorted but intelligible.” Note that even
though the blind method performs reasonably well, the perfor-
mance of the 0 dB mask shows that there exist time-frequency
masks which would further improve the performance. Fig-
ure 16 shows the original six sources, the two mixtures, and
the six demixtures.
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Fig. 14. Six and Ten Source Synthetic Mixing Smoothed Histograms. Each
peak corresponds to one source and the peak location corresponds to the asso-
ciated source’s mixing parameters.

source SNR in SNR out SNR gain PSR WDO DUET WDO 0dB

s1 -7.29 5.92 13.21 0.76 0.57 0.80
s2 -7.29 5.24 12.53 0.78 0.55 0.78
s3 -5.08 6.60 11.67 0.80 0.62 0.81
s4 -9.29 5.35 14.63 0.79 0.56 0.69
s5 -5.03 7.06 12.09 0.78 0.63 0.81
s6 -9.28 5.47 14.75 0.77 0.55 0.66

s1 -9.74 -0.32 9.42 0.58 -0.04 0.70
s2 -7.73 3.14 10.87 0.66 0.34 0.77
s3 -11.64 3.43 15.06 0.68 0.37 0.64
s4 -9.72 -0.60 9.13 0.58 -0.09 0.67
s5 -7.73 3.93 11.66 0.66 0.39 0.73
s6 -11.61 3.14 14.75 0.56 0.29 0.51
s7 -7.75 2.57 10.31 0.56 0.25 0.74
s8 -11.62 1.36 12.98 0.61 0.16 0.62
s9 -9.72 4.70 14.42 0.60 0.39 0.67

s10 -9.74 3.33 13.07 0.60 0.32 0.64

Fig. 15. Six and Ten Source Demixing Performance. Performance of the
blind technique is compared against the optimal time-frequency mask, the 0 dB
mask.

To show the limits of this technique, a ten source stereo
mixture was synthetically mixed. The smoothed histogram for
the mixture is shown in Figure 14 and Figure 15 contains the
demixing performance. The SNR gains are still high, the av-
erage gain above 12 dB, however, the WDO performance has

Fig. 16. Six Sources, Stereo Mixture, and Six Demixtures.

dropped to “very distorted and barely intelligible.” However,
as we are trying to demix ten sources from just two mixtures,
these results are promising. More promising indeed is the fact
that the 0 dB mask’s performance is significantly better show-
ing that there is room for improvement.

B. Anechoic and Echoic Mixing Results

We also tested DUET on speech mixtures recorded in an ane-
choic room. For the tests, each speech signal was recorded
separately and then the signals were mixed additively to gen-
erate the mixtures for the tests. Knowledge of the actual signals
present in each mixture allows us to calculate the performance
measures exactly. For the recordings, the microphones were
separated by 1.75 cm and the speech signals were played from
various positions on a semicircle around the microphones with
the microphone axis along the line from the 0◦ position to the
180◦ position. Two female (F1 and F2) and one male (M1)
TIMIT sound files were used for the tests. Pairwise mixing re-
sults for female-female and male-female mixtures are shown
in Figure IV-B. Again, for comparison purposes, the WDO
obtained by the DUET algorithm is compared to the optimal
WDO which is obtained using the 0 dB mask. The separation
obtained by DUET is nearly perfect and in all but the 30◦ case:
the DUET mask’s performance is essentially the same as the
performance of the optimal mask.

test SNR in SNR out SNR gain PSR WDO DUET WDO 0dB

F1 0◦ -0.58 12.69 13.26 0.92 0.87 0.96
F2 30◦ 0.58 11.25 10.68 0.96 0.89 0.96
F1 0◦ -0.54 15.97 16.51 0.98 0.95 0.96

F2 60◦ 0.54 17.21 16.68 0.98 0.96 0.96
F1 0◦ -0.62 15.29 15.91 0.97 0.94 0.94

F2 90◦ 0.62 15.69 15.07 0.98 0.95 0.95
F1 0◦ -0.49 17.50 17.99 0.98 0.96 0.96

F2 120◦ 0.49 17.36 16.87 0.98 0.97 0.97
F1 0◦ -0.50 15.79 16.29 0.97 0.94 0.94

F2 150◦ 0.50 15.51 15.01 0.98 0.95 0.95
F1 0◦ -0.44 16.29 16.73 0.96 0.94 0.94

F2 180◦ 0.44 14.49 14.05 0.98 0.94 0.95

F1 0◦ 3.54 13.99 10.46 0.96 0.92 0.97
M1 30◦ -3.54 10.35 13.88 0.91 0.83 0.94

F1 0◦ 3.60 18.42 14.81 0.99 0.97 0.98
M1 60◦ -3.60 15.41 19.01 0.97 0.94 0.95

F1 0◦ 3.63 18.92 15.29 0.99 0.98 0.98
M1 90◦ -3.63 15.91 19.54 0.97 0.95 0.95

F1 0◦ 3.69 19.91 16.22 0.99 0.98 0.98
M1 120◦ -3.69 15.79 19.48 0.98 0.95 0.95

F1 0◦ 3.75 19.57 15.82 0.99 0.98 0.98
M1 150◦ -3.75 16.37 20.12 0.97 0.95 0.95

F1 0◦ 3.90 18.47 14.57 0.99 0.97 0.98
M1 180◦ -3.90 15.51 19.41 0.97 0.94 0.94

Fig. 17. Pairwise Anechoic Demixing Performance.

Higher order mixing results are listed in Figure 18. In addi-
tion to the three, four, and five source anechoic mixtures tested,
a three source echoic mixture was tested. All of the speech
signals, three female (F1, F2, and F3) and two male (M1 and



14

M2), were taken from the TIMIT database. The echoic record-
ing was made in an echoic office environment. As the num-
ber of sources increases, the demixing performance decreases,
although the performance is still acceptable in the five source
mixture. As expected, the performance drops off significantly
when switching from the anechoic to the echoic environment
as the method is based on an anechoic mixing model. How-
ever, some separation is still achieved. Figure 19 compares the
one source histograms for anechoic and echoic recordings for
sources at three different angles. The histograms correspond-
ing to the summation of the three sources are also shown. The
anechoic histograms are well localized and the peak regions
are clearly distinct, even in the histogram corresponding to the
summation of the sources. The echoic histograms peak regions
are spread out and overlap with one another. This overlap re-
sults in reduced demixing performance. Note, however, that the
0 dB mask still performs well in the echoic case, so there re-
mains a gap between what we can separate blindly and what
we can separate with knowledge of the instantaneous time-
frequency amplitudes when using time-frequency masking to
demix.

Anechoic
test SNR in SNR out SNR gain PSR WDO DUET WDO 0dB

M1 0◦ -2.72 13.67 16.39 0.92 0.88 0.90
F1 90◦ -2.05 7.96 10.00 0.96 0.80 0.93

M2 180◦ -4.37 13.32 17.70 0.88 0.84 0.87
M1 0◦ -6.93 9.89 16.83 0.78 0.70 0.80
F1 60◦ -3.19 7.11 10.30 0.92 0.74 0.91

M2 120◦ -4.37 6.98 11.35 0.85 0.68 0.89
F2 180◦ -5.05 10.08 15.12 0.86 0.78 0.90

F1 0◦ -9.77 7.97 17.74 0.73 0.62 0.76
M1 60◦ -4.30 7.16 11.46 0.83 0.67 0.86
F2 90◦ -3.77 5.99 9.76 0.91 0.68 0.91

M2 120◦ -5.60 7.05 12.65 0.80 0.65 0.85
F3 180◦ -8.59 8.53 17.11 0.76 0.65 0.82

Echoic
test SNR in SNR out SNR gain PSR WDO DUET WDO 0dB

M1 0◦ -5.20 5.38 10.58 0.56 0.40 0.81
M2 90◦ 0.07 4.33 4.26 0.89 0.56 0.91
F1 180◦ -4.48 6.03 10.51 0.65 0.49 0.87

Fig. 18. Higher Order Demixing Performance. Results for three source, four
source, and five source anechoic mixtures, as well as three source echoic mix-
ing.
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Fig. 19. Anechoic vs. Echoic Histogram Comparison. The left column im-
ages are of the histograms for three anechoic sources at 0◦, 90◦, 180◦, and
their mixture. The histogram of the mixture is essentially the summation of the
individual histograms and the peak regions in the histogram are clearly sepa-
rated. The right column images are of the histograms for three echoic sources
0◦, 90◦, 180◦, and their mixture. While the individual histograms show some
level of localization (left, center, right), peak regions in each histogram over-
lap and the peaks are difficult to identify in the summation image. Thus, the
algorithm performs worse on echoic mixtures.

Figure 20 shows the histogram for the Te-Won Lee real office
room recording consisting of two speakers[22]. The histogram
shows a number of peaks, the peaks with a − 1/a > −0.5 are
all associated with the Spanish speaker, and those along the a−
1/a = −1.0 line correspond to the English speaker. Note that
for this recording, it is the attenuation direction in the histogram
that allows for the separation and that a method that only relied
on delays would not be able to separate the sources. Demixtures
generated from this recording using the DUET algorithm are
compared to several other BSS techniques here [23].
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Fig. 20. Histogram for Te-Won Lee’s “A real Cocktail Party Effect” Echoic
Mixing Example.

V. CONCLUSIONS

In this paper, we presented a method to blindly separate mix-
tures of speech signals. We first illustrated experimentally that
binary time-frequency masks exist that can separate as many as
10 different speech signals from one mixture. This relies upon
a property of the Gabor expansions of speech signals, which
we refer to as W-disjoint orthogonality. W-disjoint orthogonal-
ity in the strict sense is satisfied by signals which have disjoint
time-frequency supports. Speech signals, as a result of the spar-
sity of their Gabor expansions, satisfy an approximate version
of the W-disjoint orthogonality property. In Section II-A, we
introduced a means of measuring the degree of W-disjoint or-
thogonality of a signal in a given mixture with respect to a win-
dowing function W . Listening experiments showed that there
is a fairly accurate relationship between the WDO value of a
particular signal in a mixture for a given time-frequency mask
and the subjective performance of the time-frequency mask to
separate the signal from the mixture.

Next, we addressed the problem of blindly constructing a bi-
nary time-frequency mask that demixes. To this end, we con-
sidered the two mixture case. For strictly W-disjoint orthog-
onal signals, we showed that the DUET attenuation and de-
lay estimators are the anechoic mixing parameters and, using
this fact, described a simple algorithm to construct a binary
time-frequency mask that demixes perfectly. Next we showed,
by modeling the contributions of the interfering sources as in-
dependent Gaussian white noise, that the ML estimators for
the mixing parameters are given by weighted averages of the
instantaneous DUET estimates. Motivated by this, we con-
structed a weighted histogram that is used to enumerate the
sources and partition the time-frequency representation of one
of the mixtures to demix.

In Section IV we presented experimental results showing that
the algorithm works extremely well for synthetic mixtures of
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speech as well as for speech mixtures recorded in an anechoic
room. That is, the performance of the mask generated using the
algorithm was close to that of the ideal mask. In an echoic room
the anechoic model is violated and the quality of the demixing
is reduced. In the echoic case, the demixtures contain some
crosstalk and distortion, but are intelligible. There is, in the
echoic case, a performance gap between the ideal binary time-
frequency mask and the mask generated using the DUET algo-
rithm. Closing this gap is the one goal of our future research.

The algorithm presented in this paper can certainly be im-
proved by using more flexible time-frequency methods. One
possible direction is to choose window functions adaptively in-
stead of using a fixed window. An algorithm of this type is
presented in [24]. It would be also interesting to investigate
whether one could obtain a similar separation algorithm using
wavelet expansions of speech.

In Section III-B.1, we derived the ML estimators for the mix-
ing parameters by using a naive stochastic model for the contri-
butions of interfering sources. A better estimator can perhaps
be obtained by using a more realistic stochastic model for the
Gabor expansions of speech signals and considering the whole
problem in a stochastic setting. [25] used dependent Bernoulli
random variables statistically enforce strict W-disjoint orthog-
onality. [26] eliminated the dependence of the Bernoulli ran-
dom variables and the signal class for which the algorithm is
intended includes signals which occasionally contain hits, time-
frequency points where more than one source is active. For ac-
tual speech signals, [8] suggests a distribution with a sparsity
factor, which may be well suited for further analysis.

As we mentioned in Section IV, the enumeration and identifi-
cation of the histogram peaks is an issue that should be studied.
One technique for identifying and tracking the peak locations
through time is presented in [25]. Rather than constructing a
histogram, [25] tracks the mixing parameters using a gradient
method based on the instantaneous estimates. This allows the
speakers to move in the environment without affecting the sep-
aration results. Source enumeration, however, is not addressed
and remains an topic of future research for approximately W-
disjoint orthogonal signals.
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