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Chapter 1

Introduction

Man has wondered h.>w the human mind works for as long as history has

been recorded. It is oniy in the last t.entury that scientigts a.."ld engineel'3 ha.ve

seriously b~gun to focus on the mechanisms that underlie human thinking and

perception. The way that people perceive their environment has been a mystery

that we are j"U!lt begin."1iDg t·o unravel.

Scientists have seriously studied our hearing mechanism for appr9ximately

100 years. While we are very knowledgeable in some areas of acoustics and hearing,

in other areas we are just beginning to understand the a.:nazing complexity and

capabilities of the auditory system. One of these capabilities is the ability of people

to listen to one person speaking in the presence of other speakers.

This thesis is concerned with how a person can listen to one person speaking

in the presence -,f a..'1 interfering talker using a monaural recording of the conversa­

tion. Of course people have two ears, and the directional capabilities that a person

gai.ns from using two ears to focus on one talker are very important. However,

even using only one ear, a p~rson's t:apability to focus on a si.,gle sOWld is still far

beyond what is achievable witt! today', teclmology.

This thesis represents an important step towards an understanding of how

the auditory system accompli~he: this selective listening task. The theory and

codels th~t are d.i~cl1Ssed in this theftis could not have been developed 'Aithout

relying on the large body of auditory literature. It is my hope that students of

audition will use the knowledge in this thesis to continue" to build and increase our
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understanding of the mechanisms and inner workings of the auditory system.

1.1 Problem Statement

1.1.1 Definition of Terms

The popularity of computers coupled with the possibility of communicating

with a macltine through speech input and output has made speech recognition

a popul.v and growing field. Speech scientists, engineers and other prores~lionals

have been working on speech recognition and synthesis for many years.

The goal of $peech recognition is to transform the recorded signal of a person

speaking (a sequence of numbers which represent the pressure variations in the

air) into the text which represents what was spoken. Speech under~tanding i.s

concerned v:ith how a computer can comprehend the meaning of what was said

by a speaker and make an appropriate response.

Since the late 1970's, speech enhancement has been a rapidly developing field

of study. "Thus the main objective of speech enhancement is ultimately to improve

one or more perceptual aspects of speech, such as overall quality, intelligibility, or

degree of listener fatiguen [Lim 1983}. A related goal is speech redoration which is

concerned with processing a speech signal in noise to compute ~ estimate of the

sptiech signal which is as dose as possible to the original-isolated speech signal.

A new field of sound separation is concemed with the processing of an acous­

tic signal which is a combination of different environmental sounds, and the trans~

formation of this signal i!!.to an internal representation that can be ~ed to recog­

nize the different sOlU1ds that are present. This writer defines sound separation as

'the processing of an incoming acoustic signal which assi!Jts in the recognition of

each of the sOWlds that are present in the listener's environment'.

Sound separation is different from speech restoration. In attempting speech

restoration, one may not be able to accurately estimate the spectrum of the speech

signal because the background noise is too loud. A very lo~d background noise

which lasts for a short period of time may make it impossible to ac.curately estimate

the speech signal during that time. However, it does not necessarily mean that a
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sophisticated recognition system will not be able to recognize what has been said.

Contextual information from surrounding words, along with timing informatic.n of

how long the noise masked the speech ;iignal may allow such a recognition system

to continue to work even when speech restoration is impossible.

What is important in the preceding example is that the processing system

know that the desired signal has been masked, and to do the best that it can given

the circUDlstances. Sound se9aration is conceme~ with the interpretation of the

incoming signal, and determining which parts of the sound signal were generated

by which sound sources. Sound separation consists of accurate estimation of the

speech and interfering signals whenever possihle, and using interpolation and other

mechani~msw!ler. it is not possible to obtain reliable estimates.

Sound separation is concerned with the accurate estimation of each of the

sounds present in the environment. Sound separation is also concerned with the

accuracy of each of the spectral estimates, since this information can be very useful

to a !ystem concerned with recognizing what sounds were said. Although sound

separation may try to achieve accurate spectral estimates of each of the !ounds

pre!ent, the more practical current goal of sound separati~n is to assi!t a sound

recognition system in interpreting incoming sounds.

1.1.2 Need for Sound Separation

In most environmental conditions, the sound that a computer records will

contain not only the speaker's voice, but other s.ounds that are also present. Many

of today's speech recognition systems are b".::i~d on matching spectral templates

of the input signai with those stored !n the recognition system. If other sounds

are pregent besides the pel'9on speaking, then the !pectraJ representation of the

incoming sound will be a combination of the spectrum of the p~on speaking and

of the interfering sound. The spectral distortion caused by the interfering sound

will cause ·the speech recognition performance to decrease.

The desire to use speech recognition systems in environments where there are

background noise~ has generated an interest in how computers can recogni1:e speech

sou.TJ.ds in the presence of other interfering 30unds. Although it is desirable to



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

eliminate the inteJ'fering sounds from the listening em ironment so that a computer

may more easily recognize incoming speech, it is not always practical or possible to

pursue this option. In many situations, external noises will be present that cannot

be eliminated. Unless one requires that the speech to noise ratio be extremely high,

computers will be faced with the problem of interpreting incoming speech in the

presence of other interfering sounds. Sound separation is therefore an important

issue if speech recognition is to become a viable mode of commurJcation with

computers.

Although it is desirable to build a speech recognition system that can func­

tion in the presence of interfering sounds, it has been hard enou~ to build a

recognition system that works in a quiet environment. The recognition of speech

is a difficult task and has had only limited success over the past decade. This

difficult ;grobl'!m is made even harder ..•..hen ether sounds are present. The ability

of the human auditory system to recognize souna"s in either a quiet or a noisy

environment is still far above the performance of any computer.

In an effort to improve recognition performance, recent resear.:h has focused"

on how the human auditory system works. It is hoped that if one models the

algorithms used by the human auditory system, the computer's performance can

approach the level of a human listcmer.

To understand how people separate sounds and how the auditor)' ilyste:m

functions is a challenging and fascinating subject. There is an overwhelming vol­

ume of information about the human auditory '5jstem which needs to be put

together into a conceptual framework. The puzzle of how BOWlds are separated

and interpreted in the auditory 5ystem will be goIved only by the steady inquiries

that researchers wiH continue to make in years to come. The 9uperb ability of

the auditory syst-em to interpret incoming sounds challenges researc.h scientists

to understand the mechanisms that allow people to hear so well, and to use trn!!

understanding in the construction of machines that recognize :lounds.
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1.2 Relationship of Speech Enhancement to Sound
Separation

Speech enhancement is concemed ~th making ~ incoming signal that

contains speech plm interfering background noise more intelligible. The goal is to

process thE speech signal which is n.ol very intelligible, and make it more intelligible

for a person listening to the processed output sound.

What algorithms can one use to process speech corrupted by an interfering

sound to make the output more intelligible to a listener? The basic approach taken

by peGple working ;n speech enhancement is to compute an estimate of the speech

signal, and to resynthesize this estimate for a person to listen to. If the estimate

of the speech signal is very accurate, then when the estimate is resynthesized, it

will sound like the original speech before the addition of the w.terfering signal, a..'J!d

will therefore be more intc:lligible than th2 speech plus noise case.

Thie section will briefly review the different teclmiques that have been pre·

sented in the literature on how to estimate the speech signal's spectrum in the

presence of interfering background noise. This section makes the important point

that speech enhancement techniques are not capable of handling the masking of

one person speaking by a nonstationary hackground noise (such as another penon

speaking).

Speech enhancement techniques can enhance speech only in a limited cla5s

of background noise signals. A mechanism is needed to separate speech from

interfering signals that are more complex than stationary backgroWld noises. That

mechanism wiil be provided later in this thesis when the processing of the human

auditory system will be discussed.

1.2.1 Speech Enhancement Techniques

Many current speech enhancement systems have tried to increase the intel·

ligibility of a speech signal that has been corrupted by an interfering noise source.

The incoming degraded speech is processed and an estimate of the speech signal's

spectrum is computed. This estimated speech spectrum is used to resynthesize
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a waveform which is then played to a human listener to determine whether the

processed speech is more intelligibk than the degraded speech.

A good review of the different speech enhancement techniques in the lit­

erature can be found in Lim [19831. This section will briefly review some of the

major approaches to speech enhancement. The different techniques used for speech

enhancement are listed below:

1. Speech Spectrum Estimation through Noise Subtraction

The major teclmiques which use subtraction of the noise signal are 'power

spectrum subtraction' and 'correlation subtraction'. [Nawab et. al. 1981,

Peterson and Boll 1981, BoJJ 1979, Berouti et. a1. 1979, Lim 19781 In power.

spectrum subtraction, it is assumed that the noise's power density spectrum.

is known beforehand. This technique can be applied when the bac.kgroWld

noise power spectrum is stationary, and can be measured when the person

is not speaking. This knowledge allows the noise pvwer spectrum to be

subtracted from the total power spectrum to yield an ~~timate of the speech

power spectrum.

The spectral subtraction technique is applicable only in situa.tiOIl! where the

noise spectrum is constant. If the spectrum of the noise changes over time,

these changes wiU result in corresponding errors in the estimation of the

speech signal. Lim [1979] has shown that spectral subtraction teduuques

result in a higher signal to noise ratio, improved speech quality, but demon·

strated no increase in the intelligibility of the speech signal.

2. Speech Enhancement of Voiced Speech using Periodicity Information

This technique makes we of the periodicity of voiced speech to separate the

speech from the noise. IHanson et. al. 1983, Parsons 1976,. Lim et. al.

19781 In this situation, the noise spectrum need not be stationary, and may

be either nonperiodic or periodic with a different period of repetition from

the periodic speech signal. Two different techniques U5ed for estimating the

speech spectrum are 'adaptive filteri..,g' and 'harmonic selection'. In adaptive

comb filtering, the period of repetition of the voiced sp-eech is estimated,
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and the speech plus noise is passed through a comb filter that enhances

frequencies near multiples of the fundAmental frequen::y and suppresses other

freque::l.~Y r~gions (which are not multiples of the fundamental frequency of

the voiced speech). The output" from this adaptive comb filter is the enhanced

speech. signal. In harmonic: !leledion, first the period of repetition of the

voiced speech i!l estimated, and then the spectral amplitude of harmonics of

the fundamental is ~stimatcd and used for the ~esynthe!li!l of the enhanced

,peech,

Both adaptive comb filtering liJ'ld harmonic !lelection rely on the periodicity

of the voiced speech for enhancement. This method cannot enhance nonpe­

riomc speech in a background noi.se, since there is no periodicity information

present in nonperiodic speech. These methods typically compute the period

of repetition of the speech signal using noise-free speech. Since the pitch

has been estimated with reasonable precision and reliability from noise-free

speech, these tecl'tPJques can focus on how intelligibile the enhanced speech is

with correct pitch information. By using all 'accurate' estimate ofthe pitch

track from the noise-free speech, an upper limit to the enhanced speech's in­

telligibility can be measured (since errors in the pitch will result in mistake3

in the estimation of the speech signal). The results of the a.daptive comb

filtering show that the signal to noise ratio .increaSes, but the intelligibility

of the processed speech decreases as the filter length increases (from 3 to 13

pitch periods) due to the nonstationarity of the speech signal [Lim 1978aJ.

3. Speech Estimation using an All Pole Model of Speech

This tecl:..~ql1e of speech enhancement consists of estimating the parameter~

to an all pole model of the speech signal, followed by the resyiltfiesis of the

speech signal from these parameters. [Lim and Oppenheim 1979, Grenier

et. aI. 1981, Lim 19781 The estimation techniques used to estimate the pa­

rameters of the aU pole speech model are m~mum. likelihooci estimation,.

minimum mean squared error estimation, and maximum a posteriori estima­

tion. One major a5sumption in the parametric estimation techniques is that
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the background must be white gaussian noise. It is claimed that this does

not result in any restrictions since the noise can be whitened by passing the

specch plus noise -through a filter which will whiten the noise ILim 19781.

However, in order to whiten the noise, the noise !pectrwi:l must be known

oeiorehand which results in the same stationary noise condition discussed

under the noise spectrum subtraction technique. The results uf wing an all

pole model to enhance speech in a white backgroWld·noise environment !how

that the speech quality is improved at various signal to noise ratios, but no

claims of improved intelligibility of !peech are made ILim 19831.

1.2.2 Limitations of Speech Enhancement Processing

III some situations, there is so much interfe!'ing noise that people have trou­

ble Wlderstanding what is being said. The objective of speech enhancement is to

process _the incoming signal so that people are better able to Wlderstand what is

said. Many speech enhancement systems have tried to increase the intelligibility

of a speech signal that has been corrupted by an interfering noise source. The

incoming degraded speech is processed, an estimate of the speech signal is com­

puted, and the speech signal is then resynthesized and played back to a human

listener to determine whether the processed speech is more intelligible than the

degraded speech.

Current speech enhancement techniques are designed to enhance the speech

signal by using some acoustic property which differentiates the speech from th.:

noise. Assumptions typically made are that the noise is stationary (which allow~

for spf'ctral subtraction of the noise from the tetal signal) or that the speech is

peril>dic and the noise is not (enabling the amplitude of the speech harmonics to

be estimated). These assumptions limit the complexity of the sound separation

task, and focus on the acoustic differences between the speech signal and the noise

signal for the estimation of the original speech parameters.

The speech enhancement techniques that were discussed earlier are appli­

cable only in .:ertain :;~tuations. The sounds to be separated must differ along

some dimension so that a technique can be developed to exploit this difference.
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Speech enhancement techniques exploit' known differences between the speech and

interfering noise in order to obtain an estimate of the speech spectrum. The di­

mensions along which speech and noise sounds differ have been constrained to

those dimensions that offer theoretical mathematical teclmiques for their solution..

Even though these techniques have been demonstrated to enhance the sub·

jective 'quality' of the processed speech, they have not succeeded in improving the

intelligibility of degraded speech. Human listeners report that the resynthesized

speech sounds less noisy, but their intelligibility scores remain at or below th~ level

of the unprocessed speech.

Why has it been so difficult tQ improve the intelligibility of speech in the

presence of other interfering sounds? This writer's opinion is that it. is unlikely that

one can improve the intelligibility of speech corrupted by an additive background

noise. Below are listed three reasons why it may not be possible to improve the

intelligibility of speech in the presence of interfering sounds:

1. The auditory system wes the same i..11formation (such as known noi~e spec­

tral density, or periodicity information) to separate sounds as the speet'..h

en.'lancement systems. In order to improve the intelligibility of the degraded

speech, a computer must use the same information 'better' than the auditory

system uses it. Since the human auditory system's capabilities are currently

far above those of any machine, it seems unlikely that a computer could use

a ;-articu1,ar piece of information bett'i!r than the auditory system.

2. Although the auditory system uses many sources of information for separat­

ing sOWlds, only one technique is used by any speech er.hancement technique.

Each of the speech enhancement systems uses only a single type of informa·

tion (such as known noise spectral density, OF periodicity information) to

estimate the !·pec trum of the speech signal. The auditory system is free

to use both of these information sources as well as many other knowledge

sources (use of pitch dynamics, onsets and offsets, amplitude modulation)

for separating speech from the interferinB noise.

3. Even if speech enhancement techniques were able to estimate the speech
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spectrum with the same ac-::uracy as the auditory system, the auditory sys­

tem uses information about the interfering noise to aid it in its recognition

of the speech signal. H the interfering noise is very loud, it may be difficult

or impossible to estimate the parameters of t~e speech sign~. The auditory

system can use this knowledge that the speech signal is Imasked' by the noise

signal to aid it in its attempt to recognize the speech signal. The resynthe­

sized sound of the speech en!lancement ter.hniqUe9 contains no information

about the interfering noise or the uncertainty of the speech estimate.

These difficulties make it uncertain whether speech enhancement will ever be

able to improve the intelligibility of speech degraded by an interfering noise source.

Spee~1. enhancement has only been shown to improve the quality of proce~sed

speech and decrea:..~ l!~~ener fatigue in normal hearing subjects [Lim 1983J.

A more appropriate goal for the processing of degraded speech is sOWld sep­

aration. Sound separat.:on is the processing of an incoming signal which assists in

the recognition of each of the sounds that are present in the listener's environment.

Instead of a.iding a person in the separation of speech from interfering sounds, a

sound. separation device could aid a computer in its recognition of speech in a

noisy environment.

Speech enhancement systems, originally designed to improve the intelligibil­

ity of speech in the presence of noise for human listeners, are now being considered

as preprocessors for speech recognition systems. Recognition systems currently

work by classifying sequences of incoming spectrrJ. sU..es as: one of the p':'!!'!ib!e

words in the allowable lexicon. Speech enhancement systems could be added to

a speech recognition system to provide estimates of the speech spectrum in the

presence oi interfering sounds. Even though speech enhancement systems have

been Wlable to improve the intelligibility of degraded speech for a human listener,

a computer that is trying to recognize speech may find the enhanced speech to be

of great benefit over the unprocessed signal.

An important point that is emphasized in this thesis is that sou.."1~ separation

and :;ound recognition in the auditory system are not disjoint systems that work

i..J. a ~erial fashion, but work together in order to interpret incoming sounds. The

10
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integration of separation and re'ognition processing into a joint interpretation

model has advantages over the previous approach of a cascade model of separation

and recognition.

Sound recognition can provide sound separation mechanism! with feedback

to improve t,he capability and performance of the separation system. Besides

providing a recognition system with a spectral estimate of the speech signal, it

can also provide the recognition system with information about the accuracy of

the spectral estimate and an estimate of the spectrum of the interfering noise.

These quantities are not provided as output because current speech recognition

systems do not use tillS information, since they have been designed for sound

recognition in a quiet environment where no other interfering sounds are present.

In summary, current speech enhancement techniques are designed' to en­

hance the speech signal by using a single .acoustic property which differentiates

the speech from the noise. The dimensions along which speech and noi2e sounds

differ have been constrained to those dimensions whic.h offer theoretical mathe­

matical techniques for their solution. Limiting assumptions (such as known noise

spectral density, or that the speech is voiced) are made which allow t~e speech

enhancement techniques to exploit known differences between the speech and in­

terfering noise in order to obtain an estimate of the speech spectrum.

Even though these techniques have been demonstrated to enhance the sub­

jective 'quality' of the processed speech, they have not succeedecL in improving

the intelligibility of degraded speech. It is not clear to the author if improved

intelligibility is an achievable goal. Instead of focusing on speech enhancement,

emphasis should be directed towards sound sepaxation. Instead of focusing on

helping people recognize speech in a noisy environment (which they already do

quite well), sound sepaxation focuses on aiding a computer to recognize a person

speaking in the presence of other interfering sounds.

1.3 Research Goals

The capabilities anG performance of the human auditory system in inter·

preting incoming sounds axe superior to those achieva.ble by a computer. Any

11
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computer system that could claim to separate and recognize sounds as well as

the auditory system would be an instant success and in high demand. Since the

auditory syst~m is r.e.pabie of such a high level of performance and since we do not

know currently how to achieve this level, this thesis focuse! on how the auditory

system separates sounds.

This research focuses on developing a conceptual approach concerning what

knowledge and information the auditory system ~es to !eparate sounds, and how

the auditory system uses this information to separate them. This research is

also concerned with the construction of a detailed model of the sound separation

processing. The next two sections will discuss in more detail what this thesis has

set out to accomplish.

1.3.1 How Doe. the Auditory Sy.tem Separate Sound.?

A detailed theory that explains how the auditory system separates sounds

does not currently exist. The goal of this research is to understand how the audi·

tory system s(parates sounds using acoustic infonnation present in the incoming

signal. One objective of this research is to understand what information is used

by the auditory system to separate sounds. A second objective is to discover what

transformations and representations the peripheral auditory system performs on

the incoming sound. A third objective is to learn the ways in which this intorma­

tion is used by the auditory system to separate and interpret the incoming sOWlds

that it hears.

The development of a theory of how the auditory system separates sounds

encompasses many different are83 of auditory research. The relationships of sound

separation with these different fields have been carefully reviewed by this writer.

The diverse areas of auditory research which provide insight into the separation

mechanism are:

• Mech81Jics of the cochlea and the transduction of sounds

• Representation and encoding of sounds by auditory nerve fibers

12
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• Theories and psychological experiments to determine how the auditory sys·

tem peIceives and uses periodic information

• PsychoacouStic experiments concemed with when the auditory system will

perceive two sounds, and when two acowtic stimuli will fuse into a single

percept

• Theories and psy.chological experiments on selective attention, and how the

auditory system is able to focus itl; proc<,;.:Ising on a single sound source

• Similarities between the interpretation of sounds and the interpretation of

visual iP...formation

• Gestalt psychology and how the mind organizes, reasons with, and interprets

information

This wealth of information about the auditory system has shown that the

separation mechanism is an extensive and complicated process. It is hypothesizl!d

in this thesis that sound separation operates on several different 'levels' of pro­

cessing and interacts with sound recognition and sOWld understanding to jointly

interpret incoming information. This research focuses on a single part of the

overall separation mechanism· how the peripheral auditory system uses acoustic

~rmation to separate sounds. "The focus is on how the auditory system sep­

arates sOWlds using 'bottom up' or 'data driven' processing. Each of th~ above

areas of research has contributed to an understanding of how the auditory system

uses acoustic information in its interpretation of the sounds that it hears.

The writer has developed a theory of how the auditory system uses acoustic

information for the separation of incoming sounds. This theory deals with the

goals of auditory sound separation as well as the mechanisms it uses to achieve

its goals. The information, representation, and transformations that the auditory

system uses to separates sounds are hypothesized. Thi! theory along with other

relevant information is reviewed in chapter 2, where the operation of the auditory

system is discussed in some detail.
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Even with the current level of informat.ion about how the auditory system

works, we are still far away from a precise understanding of the actual operations

and transformations that tne auditory system uses. Although the theory 'Jf sound

separation is based on a hypothesis of how the auditory system separates sounds,

the actual details of how information is combined and how different quantities are

computed and used in the auditory system are unknown. Therefore, the details

that a!e necessary to complete this model of auditory sound separation are not

currently known.

Human pitch perception is an example of an ,luditory process that has been

extensively studied for many years now. Experimental data has been unable to

distinguish between the different theories of pitch perception. The·actual mech·

anisms that the auditory system uses to compute the pitch of a signal remain

unknown. The large effort that has gone into studying pitch perception and the

uncertainty that still exists about the pitch processing mec..~=mism has important

implications for students of the auditory system. It is this writer's opinion that

it will be a ve~ long time before the actual mechanisms of the auditory syste~

are documented and Wlderstood. Until these details are Wlcovered, it is useful to

hypothesize and test theories and model~ of how the auditory system processes

sounds.

This writer has developed a computer model which separate9 sounds based

on the theory of human sound separation. The goals and objectives of the computer

model will now be discussed in more detail.

1.3.2 The Construction of a Computer Model

The construction of a computational model of auditory processing would be

nearly trivial if we knew what operations are performed by the auditory system.

The algorithms of the computer model are only estimates of the actual algorithms

used, since we do not know the precise details of how the auditory system operates.

It is extremely difficult to determine, (out of all the possible mechanisms that could

account for the auditory system's behavior) what the auditory system actually

14
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The current research effort has used a large body of experimental literature

to develop the theory of auditory sound separation. A computer model which

implements this approach to auditory sOlUld separation processing has also been

developed. The construction of this detaile~ model has rai~ed many questions and

issues, and has helped to jointly evolve an understanding of what the auditory

system is trying to accomplish as well as how it accomplishes this.

When one is trying to model some process, there are several different types

of models that one can construct. Since these models can differ in their objectives,

listed below are three different types of auditory models that can be constructed:

Literal Model: In a Literal model, the model's parameters and output
correspond to actual variables and quantities that exist
in the original system that is being modeled.

Black Box Model: A black box model computes the same output that the
original system computes, but the computational mecha·
nism for aJriving at the output may be different from the
actual process.

Functional Model: A functional model hypothesizes both the computational
mechanism and the output of the system, and tries to
functionally simulate what is occurring in the original
system.

The computer model presented in this thesis is a 'functional model'. The

intent \s to compute the same quantities that the auditory s.~parationsystem com­

putes, and to use .. :em in the samE way that the auditory separation system uses

the information. The computational model of auditory sound separation is con·

cemed with what i,; computed by the auditory system and how these computations

contribute to the successful separation of sounds. Our current understanding of

the detailed computations performed by the auditory system is primarily limited

to the peripheral auditory system. Not much is known about the detailed process·

ing of the central auditory nervous system. Both the computer model's output

and the mecha...~sms for achieving this output are hypothesized as the mechanisms

and representations that the auditory system uses to separate sounds.

Due to the number of different interacting factors in an auditory model, the

model's complexity is too great for it to be understood on paper alone. The use

15
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of computers allows one to simulate how the model will function in different cir·

cumstances. In a complex model, not all of a model's bt!-~avior can be predicted

beforehand. By studYing the output of computer simulations of the sound sepa­

ration process, one me.y observe different effects not foreseen before the model's

construction. A computer model has the advantage of not only specifying precisely

what algorithms are used, but of being useful in studying the intricate interaction

between the many factors that influence the sound separation process.

The computational model of sound separation presented in this thesis tries

to functionally simulate the important steps in the use of acoustic information

for the separation of sounds. It is based on the theory that the auditory system

computes similar quantities, even if the algorithms and the representations tha.t

the auditory system uses differ slightly from those presented in this thesis.

The current implementation is focused <,m the sound separation process at

the lowest levels of auditory processing. It does not make any use of higher level

linguistic information used by the auditory system when it separates sounds. A

detailed model of the complete separation process is a very large project and

is beyond the scope of this thesis. A detailed model of the complete auditory

separation process would require the addition of an auditory recognition unit that

.....ould interact with the separation mechanism to jointly interpret the incoming

information.

How does one evaluate a computer mode! of the lower levels of auditory

separation processing when the upper limit of separation performance is not known

and when it is not dear what the optimum solution to the separation problem

is? This thesis has developed !Oeveral techniques to evaluate the accuracy and

performance levels of the separation algorithms that have been developed. In

addition, the separation output is comlected to an existing speech recognition

system in a cascade fashion to measure the recognition accuracy of the separated

ou~put.

16
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1.3.3 Limitations of the current focus

The auditory system is a complex mechanism that is not fully undentood.

To limit this thesis to a reasonable size, s~vera1 aspects ofseparation processing are

not dealt with. Below are listed some of the issues not addressed by this research:

1. How to separate sounds when the noise is stationary and of known spectral

density. This thesis focuses on interfering sounds which are complex in their

nature and are not known beforehand. It attempts to separate two people

who are speaking at the same time.

2. How to separate sounds wji,h binaural information. It is clear that the use of

binsural information c·an improve the performance of a separation system.

One could also use ~ m~crophone anay to focus on a particular diIedion of

incoming sounds. The auditory syst;::m performs the separation of s;"Wlds

suffieiently weH with a single ear; it is important first to understand how it

accomplishes thJs without introducing additional input channels.

3. How the auditory system uses high level knowledge to improve the separation

processing. Although feedback from a recognition system can help improve

separation performance, the separation algorithms employed here use strictly

Ibottom up' processing in the !:eparation of sounds.

4. How the auditory system separates sounds that are not independent of each

other. How does the auditory system pick out one violin out of the many

instruments playing in an orchestra ~d selectively listen to it? How does

the auditory system recognize that there are two voices singing or reciting

the same text rather than one voice? This is a difficult issue too complex to

be addressed at the cunent time. It is also not dear that the auditory sys­

tem can actually accomplish selective separation using acoustic information

alone, and it may be that this process relies extremely heavily on the use of

predictions of what it expects to hear to achieve this goal.

The goal of this re!earch, then, is to understand how the auditory system

separates sounds using acoustic information present in the incoming signal. The
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objectives of th~ separation theory are to understand what information is used

by the au.ditory 9ystem, the way that this information is used to separate sounds,

and what tramformations and representations the peripheral auditory system per­

forms. The computational model of sOWld separation presented in this th~sis is

intended to functionally simulate the important steps in the use of acoustic in·

formation Cor the separation of sounds. It is claimed that the auditory system

effectively computes similar .quantities, even if the algorithms and the represen­

tations that the auditory system uses differ slightly from those presented in this

thesis.

1.4 Overview

This writer's theory of auditory monaural sound separation is presented in

chapter two. An overview of the separation processing will be presented, alan:

with e~erimental result! which will show that: (1) the auditory system uses

many different types of information for sound separation, (2) sOWld separation

occurs at diff~ent levels in the auditory system, and (3) :mund separation and

sound recognition work together and can be viewed as a part of the perceptual

organization of the incoming data. Even though this thesis focuses only on the use

of acoustic information for sound separation, the joint workings of the separation

and recognition mechanisms will be stressed to emphasize how they collectively

decide what parts of the incoming sOWld came from which sound sources. Aftr.r the

overview of auditory sound separation, a model d the auditory m~ch~nism wl':d

for separation will be discussed in det3il. The different reprl':sentations employed

and de<isions that the auditory syst.em must face are stressed.

A computational model based on thi, theory of auditory sound separation

is presented in chapter three. It reviews the different representations and trans­

formations W1ed in the separation algorithms. Models of cochlear filtering and the

use of periodic information by the auditory system are discussed. The limitations

of the first version of the computer model are presented along with a detailed

description of the second generation of computer modeling of auditory sound sep­

aration. How the 5yst~"::;.:l determine.1 how many sounds are present, and how the
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spectral estimates of each sound present are computed are also presented.

An evaluation of the current theory and algorithms is presented in chapter

four. Experimen~al results document the accuracy and capability of each compo­

ne..'1t in the computer model. The limitations of the current computational model

are reviewed to point out what the problems are and what issues the model leaves

unsolved.

Chapter five will discuss the future directions of research on sound separa·

tion. Suggestions about how the computational model un be improved will be

discussed as well as the addition of other mechanisms sp,ch as binaural processing.

It will focus on the interface of a separation system with a recognition system,

and what requirements and modifications this imposes on a classification system.

Psychoacoustic experiments that are needed to better understand the auditory

separation system are discussed. A summary and discu!!siCOD of t.he potential of

this approach to sound separation are also included.
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Chapter 2

A Theory of Auditory 1\1onaural
Sound Separation

2.1 Need for an Auditory Mode! of Sound Separation

If one examines any book on speech perception, one will typically find

several different theories on how the auditory system perceives speech. Some

of the theories usually listed are the di.Jtinctivt feature model, the motor theory

model, and the analy," by .synthe,,,·, llladel [Sanders 1972J. These theories of

speech perception differ i':l some ways (e.g., pa3sive versus ac_tive models) but are

all models of how the auditory system hears a single sound. A typical model of

speech perception is shown in figure 2.1.

The model of speech perception that appears in figure 1 shows the processing

that occun during the interpretation of a single sound. Different signal processing

operations axe performed on the incoming sound, which is followed by a sophis­

ticated hierarchical classification algorithm. What is missing from this model of

the auditory system is how extraneous information from another sound present

is handl~d (or recognized as being extraneous and not belonging to this speaker).

There are no mechanisms that separate sounds, or which recognize one speech sig­

nal in the presence of other interfering sound3. This chapter will present a theory

of how the auditory system separates sounds, and how one sound is recognized in

the presence of other sounds.
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0". polJibl. model of illfo'molion·flow du,itlg spt«h pel'clpliOl'l.
Note lhell 0 IlVmw of 1....1, moy '~;ll wilhin I<Ith of Ih. p'oCllJing lllJ<illS
id,"lilied her•.

Figure 2.1: A model of the perception of a single sOWld source [Cooper 19191

2.2 Goals of Early Auditory Processing

The starting point for auditory processing is the cochlea'g transformation

of pressure vibrations in the air into a neural representation of the sound that

is heard. The cochlea filters the incoming sound into many different frequency

regions along the length of the basilar membrane. The organ of corti detects the
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vibrations of the membrane, and represents them as neural firings on the fibers

in the cochlear nerve. These neural firing events are the only representation of

information availa.ble to. the early auditory system.

Each neural firing can be viewed as having ce!taL'l. properties, such as the

time it occurred, and ~he properties of the neuron from which it came. It can also

be viewed as having other properties associated with it~ depending on the relation­

ship between this neuron firing and other neuron firings (such as the simultaneoU8

firing of other neurons, or the time between this firing and the previous firing of

this neuron). It is the relationship between these neural firings (which compose

th..! :representation of the sound) that must be used by the auditory system to

separate sounds.

One goal of early audition is defined as determining what parts of the

incoming sound belong together. The individual neural firings are the fun­

damental objects manipulated by the auditory system. Based on the properties

in a local frequency-time region (computed from the relationship bet-ween the dif­

ferent neural events), a determination is made whether the events in this local

frequency-time regions are the result of t.ht' same incoming sound source, or are

from different sound sources.

The auditory system must determine both how many sotuld sources are

present and what each sotuld source consists of. The separation system can be

viewed as computing what sounds must have been present to have caused the

auditory representation that is observed.

The process of determining which sound source caused the obs~rved neu­

raJ. firings in a local frequency-time region is a part of the overall interpretation

proces.sing that the auditory system performs on an incoming sound. Other, pre­

sumably higher.level parts of the interpretation process are the 'clas.sification' of

the incoming sound and the 'understanding' (the Imeaning') of what the .sound

is. The determination of what sound source the. incoming neural firing belongs to

fa.cilitates the classification of what the sOWld is. The separa~ion, recognition, and

under.standing mechanisms work together in the auditory system to interpret the

incoming 5otuld.
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This view is similar to the role of perceptual organization proposed by Witkin

and Tenenbaum {1983! in the context of vision:

"We propose that perceptual organizatiqn is not a description of the

image at all, but a primitive, skeletal causal explanation. ... The

basis for these primitive inferences is the discovery of similarities ­

literal spatiotemporal ones - that are extremely unlikely to arise by

accident. Within the constraints that non-accidental regularities

provide, deeper interpretation proceeds by labeling, refining, and elab­

orating the mitial model, discovering new regularities along the way

as additional knowledge can be brought to bear!' {Witkin and Tenen­

baum 19831

Witkin and Tenenb?um claim that when people view two parallel lines, they

can be quite certain that there is some reason for that similarity. It is highly

unlikely that two unrelated lines would happen to be parallel. The perceptual

system ~knows' that when it sees two parallel lines it is highly likely that there is

some underlying causal explanation. It is the similarity between the two pare-lIel

lines which implies some relationship between them. This relationship can be

attributed to some underlying process responsible for the observed paral!elism

between the lines.

The same reasoning applies to the perception of sounds. Suppose that at

some instant in time, there is a sudden onset in several different frequency re­

gions. It is highly unlikely that two independent sOWlds s~a=ted at precisely the

same time, and that the simultaneous responses in different frequency regions were

caused by independent sound sourceS. It is more likely that the auditory repre­

sentation was generated by a single sound sourCe and all the onsets that occurred

at that time can be attributed to the onset of a single sound source.

In the processing of incoming sounds, if at some time two different frequency

regions have properties in common (similar onsets, similar period of repetition, or

other features), then one can conclude that there is probably some relationship

between these two regions. The greater the similarity between the properties of the
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different frequency regions and the greater the number of properties, the stronger

the relationship between the two. Similar features betw~en th,: two frequency

regions implies that there is some relationship between them that is unlikely to

arise by accident. Typically, this means they have come frO!D the same sound

source, although it is possible they have been generated by different sources (as

in an orchestra or a choir when the sounds are not independent). Whether or not

they have actually been generated by a single sound source, they are perceived as

a single unit, as if they actually did come from the same source.

The physical processes that generate sounds obey tht'! 'laws of physics and

are theJ'efore limited in the different sounds that can be produced. '~he time and

bandwidth limitations of the sounds that we hear depend on the properties and

mechanisms of the sound source. The rate at which spectral changes can occur

is one constraint on natural sounds. Different frequency regions generated by

natural sounds are constrained to have similar properties such as onsets, offsets,

and periodicity. The auditory system uses these constraints for separating the

different sounds that are present. When two pieces of information are present

that are not likely to have been generated by th~ same sound source, the auditory

system will in general hear them as belonging to separate sOWld sources.

The auditory system also uses the independence between two sounds to help

it separate them. Most of the sounds that we hear are independent of each other.

There are comparatively few sOWlds, such as an orchestra or a choir, where the

different sound sources are not independent. Each of the sounds we hear has

its own dynamics, spectral characteristics, onsets and offsets. Since each of the

sounds is typically independent of the others and will have its own properties, it

is unlikely that two sounds will have exactly the same information cues !Witkin

19831. Therefore, the probability that two sounds will have the same pitch contour

or onset time is small. When the auditory system sees t-.....o different pitch contours

that overlap in time, it concludes that each of the contours has come from a

ciiJferent sound source.

Psychologists have used the principles of similarity, proximity, good cantin·'

uation, and common fate to explain how the perceptual system organizes its input
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[D. Weintraub et al 1966J. The separation of sounds is a part of the perceptual

organization that the auditory system impos~s on the incoming sounds.

The goal of determining what parts of the incoming sound belong together

is very different from the goals of speech enhancement techniques, or from the

goals of the 'equalization-cancellation' theory of binaural noise suppression. The

equalization and cancellation (Ee) mode) of binaural noise suppression consists

of the tqualization of the noise components in the two ears (by using time delays

and amplitude scalingL followed by the canullation of the noise components (by

subtracting the output of one ear from the equalized version of the other ear). This

model has been primarily applied to explain binaural unmasking data (increase in

detectabilityand intelligibility through the use of binaural information).

Both the spectral subtraction techniques of speech enhancement and the

equalization and cancellation technique use a subtraction operation which consti­

tutes the enhancement of the desired signal. In neither case is there any need for

further analysis of the noise signal by the recognition or understanding mecha­

nisms. Instead of focusing on extracting the signal based on similar features, the

focus is on cancelling the noise.

The di1ferenc~ between noise suppression and signal extraction can be illus­

tra.ted with the following example. The subtraction of the output of one ear from

the other ear can only form a null zone for noise coming from a single direction.

The EC model will therefore have great difficulty in separating a signal from noise

when there are several noise sources coming from different directions. In the limit

when the noise signals in each ear are different independent noise sources, the EC

mechanism is una.ble to cancel the noise in one ear from the other ear. However a

mechanism that focuses on signal extraction will use the knowledge about which

direction the signal is coming from to extract the signal from the noise that comes

from a different direction.

To summarize the use of the different information cues by the auditory

syste!ll: When the auditory system encounters sound patterm that are not likely

to have a!'isen from .\ single SOWld source, the auditory system interprets them

as coming from different sound sources. It uses the regularity and continuity
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that natural sounds contain in order to determine how many sounds are present

and what each sound consists of. It focuses on finding common properties in the

represotntation which indicate a causal relationship between the local events in

different frequency-time regiorn.

2.3 Overview of Auditory Separation

2.3.1 Use of Multiple Knowledge Sources in Sound Separation

One objective of tW3 research is to understand what information cues are

used by the auditory system to separate sounds. Another objective is to under­

stand both how the auditory system computes these different information cues;

and how it uses this information to separate two sOWlds. This s~ction will present

an overview of the auditory separation mechanism and ...till focus on detelmining

what information is used by the auditory system to separate sOWlds.

Psychoacoustic experiment! will be reviewed that show the auditory system

uses many njfferent types of information for the separation of the sounds tha~ it

hear!. These information cues are: pitch,l pitch dynamics, the onset and offset of

sOWlds, spectral continuity, local ampJit:ude modu1at~on fluctuations, v!!ua! infor­

mation (e.g., lip-reading cues), and linguistic information (phonetic transitional

probabilities, word transition probabilities, phrasal and message content).

Besides these monaural cues for sound separation, there are also binaural

cues that aid the separation of sounds. Binaural infoi'mation processing is hypoth­

esized as consisting of w.i\l1Y levels, just a~ monaural processing does. The lowest

level of binauxal processing is the best known and focuses on how the auditory

system uses the timing and intensity differences between the cochlear output of

the two ears. Binaural information at the higher levels consists of the fusion of

monaura! processing performed separately in eacli e::.r. Although binaurai infor­

mation has been shown to improve auditory separation performance, and the use

of binaural information in the computer model would probably result in an in­

crease in separation performance, the goal of this research is to understand how

lIn much uf the literature on speech. the term pitch is ujed to refer to iunaamental frequency.
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monaural sound separation is p~rfutlD.ed.

It is important to understand how the monaural auditory system uses the

different pieces of information available to it for sound separation. The results

of psychoacoustic experiments (discussed later in this section) can be viewed as

follows: when it is highly unlikely tha.t the information pattern (that the auditory

system is attempting to interpret) was generated by a single sound source, the

auditory system will hear two sound sources. Information cues that are highly

unlikely to have come from the same sound soW'ce are heard as coming from

different sound sources.

2.3.1.1 Use of Pitch in Sound Separation

Research on the use of periodic information for the separation of sounds

dates back to experiments by Broadbe,ilt and I.adefoged in 1957. The perception

of periodk information has been extensively investigated in the literature and

constitutes the best known cue for the separation of !lounds.

In Broadbent and Ladefoged's experiments, when two formant resonators

(locations of peaks in the spectral contour) wee excited by pulse trains with

ciia"erent periods of repetition (different fWldamental frequencies), they failed to

fuse into a single sound image and two sounds were heard.. Experiments by Cutting

[19161 showed ~hai; formant patterns presented in dichot.ic lister-Jng tasks will fail to

fuse into a single sound image when the difference in fWldamentals between the two

ears is as small as two Hz (100 Hz fundamental in one ear and 102 Hz fundamental

in the other). Results by Darwin [1981l also confirm that two sounds are heard

when formant resonators are excited by different fundamental frequencies.

In a different series of experiments, Darwin [19111 showed that if the funda­

mental frequency changes abruptly during the synthesis of a continuous formant

pattern, two sounds will be heard by the auditory system. While the spectral

shape changed continuously over time, the pitch contour changed discontinuously

between two different steady state values. At any po41t in time, there is only one

fundamental frequency present. Each of the different frequency regions (at any

any moment in time) will have the same periodicity and both are heard as coming
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from the same sound source. However regions in time across the pitch disconti­

nuity are not heard as coming from the same :1ound, but are assigned to different

sound sourccs.

Presumably this happens beci\use the human vocal system is not capable of

producing abrupt pitch discontinuities during voiced speech. It is also not capable

of producing different frequency regions having different ~damental frequencies.

Therefore, when the auditory system encounters a situation where the sound pat­

tern could not have been generated by a single speaker, it believes that two sound

sources were responsible for generating the observed periodic information.

These two series of experiments have different implications about the au­

ditory system's use of periodic information for sound separation. In the first

example (two simultaneous formants with different fWldamental frequencies), dif­

ferent frequency regions are heard as coming from different sOWld sour.:es. The

auditory system has determined that the!'e are two periods of repetition present

at the same time, and that these periodic sounds could not have been generated

by the same sound source. Each frequency region that has one period of repeti­

tion is assUlJ'.ed to come from one sound source, but those frequency regions with

a different periodicity are assumed to come from a different sound source. This

experiment demonstrates that two simultaneous frequency regions can be inter­

preted as coming from different sound sources if there is more than one period of

repetition.

In the second example (pitch discontinuity of a continuous formant contour),

different time segments of the sound are heard as belongiu!!: to different sound

sources. This experiment demonstrates that differellt. nonoverlapping segments of

a sound can be assigned to different sound sources if the pitch changes abruptly

and the resulting pitch tracks could not have come from a single sound source. The

difficulty here is to determine what are the possible pitch contours that could have

been generated by a. single sound source. If the pitch change bad been very gradual

instead of abrupt, the auditory system might have assigned the whole segment to

a single person speaking. This would imply that there exists a boundary for the

rate of pitch change: if the pitch changes faster than this boundary rate, the
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auditory system concludes that two soUnds are pt'esentj if it changes slower than

this rate, the auditory 9ystem hears only a 3ingl~ sound present. [Note: this also

raises questions about how the auditory system perceives diplophonic speakers.j

Shadowing experiments also have shown that pitch continuity is important

for sOWld separation. In a shadowing experiment, a listener has a different message

played to each ear, and is told to repeat what is heard in one ear as quickly as

possible whiie ignoring what is heard in the other ear. If the message that a

person is shadowing (the message that the person is trying to isolate) suddenly

switches to the other ear, the listener will continue to follow the message that is

now in the wrong ear for a short period of time [Treisman 1960]. Experiments

by Sim:nc...d~ ':"''1d Darwin IDarwin 19781 showed that a listener would follow the

wrong message depending on whether the intonation pattern was continuous. If

the intonation patte..-n in the shadowing ear was continuous across the semantic

break (when the message switched ears), the listener would hesitate but correctly

shadow the incoming message. If the intonation pattern switched ears along with

the message, thE listener would mistakenly follow the message in the wrong ear.

These experiments show that pitch-continuity information is an important cue

when a person is listening to a message.

The exp.~imentsdiscussed above have shown that two sounds will be heard

when two frequency regions have different periods of repetition, or when the period

of repetition of a frequency region changes too abruptly. Periodic sounds produ~ed

by the human voice are constrained to have only a single period of repetition at a

single time, and are also constrained to continuous changes in the pitch dynamics.

Regions in frequency and time that are in conflict with the single sound hypothesis

will be assigned to different sound sources.

2.3.1.2 Use of Pitch Dynamics in Sound Separation

Researchers have begun to study the effects of fundamental frequency dy­

namics on sOWld separation. When the fundamental frequency of a natural sound

changes, the frequencies of the harmonic components of that sOWld will also change

proport~ofjally to the change in the fundamental component. Experiments by
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McAdams (19841 indicate that when frt:quency components do not exhibit coher­

ent frequency movement, two sound9 are heard. The components that exhibit

different frequency dynamics will stand out and be heard as a separate sound

source.

The experimenh performed by McAdams used different types of frequenc)"

modulation such as vibraLo (periodic :=odulation), jitter (aperiodic modulation)

and pitch glides. In one of his experiments, when 15 harmonic components of

a 16 component tone are modulated coherently (with a random change in the

~damental frequency) ~d one of the harmonics is modulated incoherently, that

harmonic component is easily heard as being separate.

Rasch 119781 performed a series of experiments on the detection of a softer

note in the presence of a louder note. He found that a frequency vibrato on

the pitch of the test note (depth= 4 percent, frequency= 5 Hz.) decreased the

d~teetion threshold (the amplitude that the weaker note could be detected) relative

to the masking note by 17.5 db. These results indicate that the auditory system

can use fundamental frequency dynamics to improve the separation of one tone

from another.

When two periodic sounds are presmt, some of the harmonics from each

sound will be close in frequency to those of the other sound. The independent

motion of the fundamental frequency of the different sound sources can improve

separation since the auditory system r.an use such cues to prevent the as::;ignment

of harmonic energy to the wrong sound source.

2.S.l.S Use of Onsets and Offsets in Sound Separation

Amplitude changes in different frequency regions can be used by the audi­

tory system as an indication of whether the two different frequency regions were

created by the same sound source. For many types of sounds, when a sound

segment begins, the different frequency regions will all start at roughly the same

time. The simultaneous starting and stopping of the cochlear output in differ­

ent frequency regions can be used by the auditory system to determine when two

frequency regions h<lve originated from the same soun~ source.
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Rasch {1918J demonstrated that if two mwical notes start at different times,

they will not fuse into a single 'sound object' bu~ will be heard as separate notes.

If the starting ~screpancies are as small as 30 rosec, subject will not hear one

note as starting before the -other but will hear two separate notes. Rasch claims

that "the t""wo notes are pen::eivel'! as two separate but simultaneously occurring

sounds."

Bregman and Pinker !1918b] demonstrated that the relative onset between

two pure tones is an important factor in how the auditory system perceives them.

A pair of roughly synchronous tones (cailed B a.."1d C) were alternated with aJ10ther

tone {called A} which \Va3 approximately the same frequency as tone B. IT the

tones B and C had simultaneous orusets, they were more likely to be perceived a.s

belonging to the same stream. As the difference in time of omet between the two

tones increases, the two tones are less likely to belong to the same sou,,"1d stream

and tone B was more likely to stream with tone A. Thi9 experiment indicates that

the relative onset time between two different frequency regions is an important

cue as to whether they have originated from the sam~ sound source.

Experiments by Darwin (1984bj have shown that if a harmonic 'of a vowel

starts or stops at a different time from the rest of the vowel's harmonics, it will

be perceptually segregated from the vowel. This effect is presen.t even at an onset

d.i~parity of 32 msec, but longer differences between the onset or offset of the

harmonic and the vowel allow better separation of the harmonic from the vowel.

In other experiments he showed that "a harmonic that starts at the same time as

a short vowel but continues after the vowel has ended contributes almost as little

to the vowel's phonetic quality as a harmonic that starts before but slops at the

same time as the vowel." {Darwin 1984al

The expei!!lf'.nts discussed above demonstrate that th~ simultaneous onset

and offset of different frequency regions are important factors in the per" ~': ~ion of a

single sOWld. A difference in onset times can'cause the auditory system to perceive

that two sOWlds are present. H different frequency regions have different onset or

offset times, the auditory system may interpret this difference as an indication

that they came from different sound sources.
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:1.3.1.4 Use of Common Amplitude Modulation in Sound Separation .

Whereas the pitch dynamic! information cue dealt with a common motion of

the period of repetition in eaf;h frequency channel, common amplitude modulation

deals with the common fluctuations in amplitude in different frequency regions.

The term 'common a!D.plitude modulation' differs from onsets and offsets of sounds

since it is defined as the change in amplitude of an already existing sOWld. Once

a sound has started, the amplitude fluctuations present in cc.ch frequency channel

can be measured.

Hall, Haggard and Fernandes 119841 have performed some important work

which demonstrates that common amplitude modulation can be used by the au­

ditory system to improve the detectability of a pure tone in noise.

"Detectability ot a 400 msec 1000 lIz. pure-tone signal was exam­

ined in bandlimited noise where different spectral regions were given

similar waveform envelope citaracteristics. As expected, in random

noise the threshold increased as the noise bandwidth was increased up

to a critical bandwidth, but remained constant for further increases in

bandwidth. L'1 the noise with envelope coherence however, threshold

decrealea when the Hoi3e bai1dwidth was m.ade ......ider than the criti-

cal bandwidth. The improvement in detectability was a~tributed to a

process by which energy outside t~e critical band" is used to help dif­

ferentiate signal from masking noise, provided that the waveform en­

velope characteristics of the noise inside and outside the critical band

are similar. With B.ankin..~ coherent noise bands either lower or higher

in frequency than a noise band centered on the signal, it was next de·

termined that the frequency relation and remoteness of the coherent

noise did not particularly influence the magnitude of the unmasking

effect." IHall, Haggard, Fernandes .\984, p.50!

In or:ler for the common waveform envelopes in different frequency regions

to improve the detectability of a tone, the auditory system must be capable of

comparing local amplitude fluctuations in different frequency channels. These
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experiments also demonstrate that the auditory system can determine if the am­

plitude modulation contours in different frequency regions are the same. IT a single

sound were present, it would have the same amplitude modulation envelope. The

waveform envelope modulation used in these experiments was low-pass noise (0-50

Hz). The noise used implies that modul...tion envelopes on the order of 20 msec

or longer can be used by the auditory system to improve detectability of a tone in

noise.

The similarity "in loca! amplitude fluctuations between different frequency

channels can also be used to distinguish between different saun&!. Experiments

[Warren and Verbrugge 19841 have shown that a person can tell the difference

between a blJt.tle which is bouncing from one that has broken. Synthetic: sounds of

a bouncing bottle and one that has broken upon impact were generated with the

same average spectrum, but they differ in the simultaneousness of the local ampli­

tude fluctuations in different frequency regions. Listeners were able to differentiate

accurately between these two cases.

These experiments should not be interpreted to mean that a lack of am­

plitude modulation routinely gives rise to the perception of two sOWld sources.

They have demonstrated that the audit.ory system can compare the local ampli­

tude modulation envelopes across frequency regions and use this information for

sound separation.

2.3.1.5 Use of Visual Cues in Sound Separation

While the previous four sections have dealt with fOUI different acoustic

cues for sound separation (pitch, pitch dynamics, onsets and offsets, amplitude

modulation), the next two sec:tioIl! deal with higher-level information cues for the

separation of sounds. The use of visual and linguistic information are discWlsed

in the next two sections even though they are not included in the C\UTent compu­

tational ~odel (discwsed in chapter three). The computer model focuses on the

use of acoustic: information for sound separation. The use of visual and linguistic

information in a computer model of sound sepM'ation is beyond the scope of the

current thesis but is included here for the sake of perspective.
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Lip reading has long been used by deaf people to Wlderstand what other

people are saying. They are able to look at Ute facial motions of someone speaking

and Wlderstand what is being said. Cherry 11953] suggested that reading lips is

helpful for separating voices from interfering sounds.

McGurk demonstrated that visual cues play an important part in the recog­

ni.tion of sounds [McGurk and MacDonald 19761. The 'McGurk effect' occurs when

visual and auditory cues conflict, and the result is some intermediate perception.

When subjects see a speaker articulating Igal and hear the wc:d loa/, they often

rp.port hearing the sequence Ida/. Other experiments [Mas~aro and Cohen 19831

demonstrated that as the acoustic signal changes gradually from a /ba/ to a Ida/,
the perception of the Iba/·/da/ bOWldary shifts when visual information con­

Blcb with auditory infotm~tion. These experimental results indicate that visual

information is used by the auditory system for the recognition of sounds.

Although this evidence suggests that visual cues are used for sound recog­

nition, they do not prove that they are used for sOWld separation. Visu:l1 infor­

mation can be very useful to the auditory system for improving the separatiop.

performance in the presence of interfering sounds. The Wonnation obtained from

looking at the movement of a speaker's lips is useful not only for determining what

the speaker is saying, but for determining when he is speaking. The knowledge

about when a person moves his lips can be very U5eful for knowing that the ::5OWld

that we are currently perceiving is coming from that speaker. The synchronization

of a\:oustic events with the desired speaker's lip movement can be a powerful cue

for determining which speaker an acoustic event belongs to.

Although visual infor~ation has not heen shown to be used by the auditory

system Cor sound separation, it is reasonablp. to suppose that visual information

can be of great benefit in the cocktail party phenomenon. The visual system

provides information about when a person is speaking and what he is saying.

2.3.1.6 U g~ of Linguistic Information in Sound Separation

Linguistic information is commonly used in theories and models of auditory

sound processing. Its typical use is in the recognition of sounds at different acoustic
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levels (phonemes 1 words 1 concepts).

EIpuimental results of the intelligibility of speech in noise (Rubenstein and

Pollack 1963; Mi~er Heise and Lichten 1951; Howes 19571 demonstrated that when

the predictability of a word increases, the intelligibility of that word also increases.

Linguistic information is therefore used s~mewhere ill the system to improve the

recognition performance. There are two possible mechanisms for this increase in

intelligibility. The first mechanism is the use of context information to improve

the spectral estimates of the sounds to be separated, and these improved spectral

estimates are responsible for the increase in intelligibility. The second mechanism

is the use of cC'ntext information to allow the recognition system to eliminate

spurious word sequences and correctly classify what it hears.

Context information can also operate at the phoneme level. When there

are two sounds presmt and one sound is much louder than another sound, it is

e..'!:tremely difficult to hear the weaker sound. When the softer sO\U1d is masked by

a loud sound, it may be impossible to estimate the weaker sOWld using acoustic

information. The auditory system can use contextual cues of neighboring regions

to interpolate what sounds could have been present in the m&.!lked interval.

A series of experiments by Warren [1971, 1972, 19741 demonstrated that if

predictable phonemes are deleted from a sentence and replaced by a loud noise,

listeners perceive both the loud noise and the missing phoneme. The perception

of sounds that are not present has' been called 'auditory induction.' The synthesis

and perception of the missing phonemes has been called 'phonemic restorations'.

When it appears that a sound has been masked, the auditory system supplies

the soWld most likely to have occurred, based on the linguistic constraints that a

sentence provides. By contrast 1 if the phoneme is deleted and replaced by silence,

listeners do not fill in the silent interval and perceive that a phoneme is missing.

Expectations about the different sound! which are present. allow listeners

to improve their separation performance. This improved performance is possible

both in repeated listening to a sound segment and when the listener has :~ priori

knowledge of the sound (e.g. listening to familiar music). Expectations about the

desired and interfering sounds, as well as knowledge of what ea<:h of the different
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instruments sounds like, are used to improve separation performance. Since the

auditory system knows what it expects to hear and what the timbre of the different

sound sources are, our pe,rception that we are able to clearly separate out one sound

from the other sounds present suggests that we are peruitJing the model of a SCU-Tld

and not the acoustic information present in the original signal.

Another way in which the auditory system uses linguistic information can

be seen in the following example. Suppose that we are listening to a male and a

female voice. The male voice says the digit /threeJ, and the female voice then says

the digit JsevenJ. The digit waveforms can be spliced together digitally so that

the digit Jseven/ starts as soon as the digit /threeJ ends. When this sequence

is played to a listener, he hears a male v..:;ice saying the digit JthreeJ, followed

immedi~tely by a female voice saying the digit /sevenJ. However, if we delete the

JeTenJ part of the digit Iseven/, what is left is the digit Ithreel followed by the /sl
of the digit /seven/. When people listen to this waveform, they wiU hear the word

/ threes/. Since the voiced part of the female voice is missing, the auditory system

interprets the lsI as belonging to the male voice. It is only after the listener hears

the voiced part of the female digit seven that the lsi is correctly interpreted as

belonging to the female voice.

Two information cues aid the auditory system in determining which speaker

is responsible for saying the /s/. The presence of smooth spectral transitions be­

tween the /s/ and the surrounding voiced regions is one cue that can help the

auditory system de"ermine which speaker said the lsi. Another somee is lin·

guistic constraints:. Knowledge about phonemes and phoneti:: transitions can be

helpful for determining which speaker produced the frieated segment. Linguisti­

cally, the interpretation of the /s/ as forming a part of the digit /seven/ is a better

explanation of the incoming sound than assigning the /s/ to the digit /thnef.

The determination of wr..ich speaker the fricated energy belongs to is a differ­

ent computation from the problems of spectral t':stiination. In this ezample, there

are no overlapping speech signals that need enhancement. It is trivial to estimate

the spectrum of the ~peech sound present since the segments are nOhu.-.eriapping.

The issue is how to determine which part of the incoming sound was generated
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by which speaker. This example illustrates a conceptual limitation of the speech

enhancement approach.

In the experiments on sound separation performed by Cherry {19531, listen·

ers attempted to separate two simultaneously spoken messages. In the listener's

transcriptioIl! of what was said by the intended speaker, it was observed that:

"No transpositions of phrases between the messages occurred in this

examplej in other examples extremely few transpositions arose, but

where they did they could be highly probable frODl the text."

This observation supports the hypothesis that the assignment of incoming sound

segments to the approp:iate speaker uses linguistic contextual information.

Sound separation uses linguistic knowledge about allowable phonetic transi·

tions bEtween speech segments, along y,ith the expectations of what we uped to

hear each person say, in order to determine which segment was spoken by which

speaker. Linguistic information is also used by the separation system. in determin·

ing what was said in regions where a masking sound obscures the sound that is

being focwed on.

2.3.2 Integration of Separation and Recognition

If sounds could be separated solely on the basis of their acoustic information

cues, it would not be necessary for separation and re<:ogniticm to work together

to interpret the incoming sounds. Recognition processing would occur after the

separation mechanism had separated the incoming sound~. However, the masking

of one sound by interfering sounds, and the changing of the characteristics of a

speaker's voice (e.g., from periodic to nonperiodic) make it difficult to separ&te

sounds using only acoustic information. The recognition mechanism can work with

the separation meciJ.anism to jointly separate ami recognize the incoming sound.

This section discusses the relationship between sound separation and sound

recoo:n1tin,\ mechanisms. Experimental result! will. be presented which demon~

strate that the 'recognition' mechanism does much more than classify the incoming

sound patterns into categories.
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When sounds can.•'lot be separated on the basis of their acoustic cues, it is

still possible for the auditory system to identify several simultaneous sounds. E:J:~

periments by Scheffers {1970, 19821 presented listeners with two synthetic TOWelS

that could not be separated based on their acoustic properties, since both vow­

els had similar onsets and offsets and used the same excitation function in the

synthesis process (either both excitation functions wu~ periodic with the .same

fundamental frequency or both excitation function.! were the same white noise

excitation). He demonstrated that listeners were still able to identify both vowels

present remarkably well (each vowel was chosen from a set of 8 vow~h~i both vowels

were correctly identified 45% of th~ time when both vowel.! were .oiced, 26% of

the time when both vowels were unvoiced). This demon.strates that even when

the s~parationmecl1anism is unable to separate the incoming sound using acoustic

information, the recognition mechanism is still able to recognize each of the two

sounds. The recognition mechanism is capable of recognizing several simultaneous

overlapping patterns.

Other aperiments demonstrate that even when the separation mechanism

does we acouStic information to !eparate an incoming signal, tLe recognition mech­

an.i!m may put tlot.., lleparated output back together for the classification of the

sound (as if the sound had not been ~ep.~ated). Experiments by Darwin [19811

and Cutting [19761 synthe!!zcd each of a vowel's two formants with different fun·

damental frequencies. Even though two sounds were h~ard, the listener was able

to correctly identify the vowel t.hat was presented. Ii the separation mechanism

had assigned each formant to a different sound stream, and if the recognition

mechanism had access to only one sound stream, then it would not have been

possible to r~cogniz~ the vowel pre.sent. The recognition mechanism must have

access to both wu:::.d streams, so that it can put the information back togeth~r

and c?Tfectly classify the incoming sound.

Even though the recognition mechanism correctly identifi~d the input as a

word, it did not reverse the deci.sion of the separation mechani.s.m that there were

two sounds present. Since each formant was excited by a different fundamental

frequency, the separation mechanism us~d the periodic information to decide that
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there were two sounds present. Neither formant alon~ could be classified by the

recognition mechanism, but the two formante together made up a vowel. The

decision of how many sounds are heard is made based on the acoustic cues of the

incoming souna, and although the recognition mechanism may disagree with the

results of the separation processing for classification purpc!es, it does not change

the perception about the number of sounds present.

Both the experiment described above and other experiments have shown that

the recognition system does not function by simply classifying the 'desired' signal

alone. Experiments [Bregman 1978d] have shown that the auditory interpretation

system must have access both the 'desired' signal and the '~terfering' signal in

order to classify an incoming sound correctly. If a section of a continuow pure

tone is chopped out of a signal and replaced by a wide band noise bunt (whose

onset and offset match the section of the tone that was extracted), the tone will

be perceived as continuing through the noise. The maximum length of the noise

segment for which the tone will be heard as continuing through the noise is roughly

250 to 300 msec !Rasch 1978J. If a segment of the pure tone is chopped out of the

signal and no noise is added to fill in the silent interval, the tone will be heard as

stopping and then restarting at a later time. luso, if the noise that is added to fill

in the g&P does not fill up the whole silent interval (the noise starts after the tone

has stopped and stops before the tone starts again), the tone will not be hear~ as

continuing through the noise.

These experiments demonstrate that the classification system uses both

sounds present to interpret which sounds were there. If the recognition system

had access only to the tone, it would not hear the tone continuing through the

noise (when the noise completely fills the silent interval). The recognition system

must have access to both separated sounds present to conclude that pari; of one

sound is missing because it was masked by another sound.

This point is nicely illustrated in the visual domain in figure 2.2 and figure

2.3 {taken from Bregman 1981J. In figure 2, one can see only one part of the visual

represe.!ltatior. !in::e lr:.e occludlilg figure is not present. In figure 2.2, it is diJicult

to determine what is present in the picture. In figur~ 2.3 where the occluding
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figure is present, the picture is much easier to interpret.

These examples demonstrate that the auditory system does not represent

the desired signal and ignore the noise as current enhancement techniques do.

The auditory system represents and processes both the signal and the interfering

sounds to a high level. This point will be also be discussed in section 2.4.5.

Sound recognition consists :l~t co!'Jy of the classification of what sounds are

present, but of determining when some part of the acoustic input is missing, or

which acoustic segment is present that does not belong. How a recognition mech­

anism would determine that a part is missing from the current sound or belongs

to the other sound is a difficult question that remains unanswered and is beyond

the scope of the current research effort. It appears that the recognition system

required by this a.pproach to sound separation is very similar to the recognition

system needed for the visual recognition of objects. The recognition of objects

with missing or extra line segments in the visual domain is similar to the sound

recognition problem of recognizing a sOWld segment with missing or extra events.

Experimental results have been presented in this section which demonstrate

that the 'recognit:c·n' mechanism does much more than classify the incoming sound

patterns into categories. When sounds C81Ulot be separated on the basis of their

acoustic: cuoes, it is still possible for the auditory system to identify the different

simultaneous sounds that are present. Other experiments demonstrated that even

when the separation mechanism does use acoustic information to divide an incom­

ing signal, the recogroJtion mechanism may put the separated output back together

for the classific...tion of the sound (as if the sOi.iiid had not been separated). The

recognition system must have access to both separated sounds present to know

that part of one sound is missing because ii was m<:\sked by another sound. Sound

recognition consists not only of the classification of what sOWlds were present, but

of determining when some pari. of the acoustic input is missing, or which acoustic

segment is present that does not belong.
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Figure 2.2: O!l.!y t.he picture fragments which were not occluded are shown. IBreg­
man 19811

2.3.3 Limits of Auditory Sound Separation

In Cherry', experiments (where people attempt to separate two ,i.m.ulta­

UO:VUS 3peakers), listeners reported that the task was very difficult. Listeners

would need to concentrate very hard on the material, and listen repeatedly to

the recording of two people speaking simultaneously. After playing the recording

many times, listeners were able to separate the incoming sounds fairly well. IT the

messages from each of the two speakers were a series of cliches (contained no 10;1g

contextual strings), "message separation appeared impos::lible" ICheny 1953\.

The experimental resulh of Warren {1971, 1972, 10741 (discussed in section
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Figure 2.3: Both the picture fragments and the occludi~g blob are shown. [Breg­
man 19811

2.3.1.6) imply that linguistic processing plays an important part in the separation

of sounds. If phonemes are deleted and re~b;:~d with a loud noise, listeners will

hear both the noise and the phoneme that was deleted. When the auditory sys·

tem has a difficult time in acoustically separating two sound sources, the listener

may use linguistic contextual information to perform phonemic restorations of the

missing sound. Since listeners perceive the phoneme as if it were actually present,

this might lead a listener to perceive that the sounds were easily separated, while

in fact the auditory system was unable to estimate the mask~d sounds using acous­

tic information. Although people may believe that they can separate sounds from
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interfering souncb with apparent ease, these experimental results indicate that

sounds which are perceived as separated by the auditory system do not corre­

spond to sounds ~hat can be acoustically separated. It demonst:-ates that people

perceive their models of what sOWlds are present, and not "the acoustic information

obtained from the separation processing.

The fact that people perceive their models of what information is present,

and not what they ~tuaJly separate using acoustic information, makes it practi­

cally impossible to determine the limitations of auditory separation using acoustic

information cues.

Even though it may be difficult to determine the performance level of the

auditory system, there are certain sounds that the audi~ory system cannot sepa­

rate. If there are two sound sources and each sound source is a steady state sine

wave of the same frequency, it is impossible to determine the amplitude of each

sine wave. Similarly, two steady state noise-like sounds are impossible to separate.

"The sounds that are to be separated must differ along some dimension.

This section has shown that the auditory system uses acoustic differences

in pitch, pitch dynamics, onsets, offsets, and amplitude modulation to distinguish

between the different sOWlds it hears. It also uses visual information and lingui.stic

information to aid in the separation of the sounds that it hears. Although we may

not be able to determine the performance levels of auditory acoustic sound sepa~

ration, we can explore how the auditory system uses this information to separate

the sounds that it hears. The next section will review the mechanisms that the

auditory system uses for the separation of sounds.

2.4 Modeling Auditory Sound Separation

The previous section has shown that different information sources are used

in the separation of sounds; this section will focus on how that information is used.

It will focus on the representations th~t the auditory sr3tem uses, and will discuss

differe."l!; ways that the information cues can be used to separate the incoming

~ound.
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2.4.1 Definition of Terms

This author hypothesizes that there are three different. levels of the auditory

system's representation'of sounds at different points in the separation processing.

These levels are called 'Neural Event', 'Group Object', and 'Sound Stream'. These

terms are defined below:

Neural Event: An event occurs wh.mever a cochlear neuron fires. This
neural encoding of an incoming sound is the fundamental
quantity manipulated by the <l.uditory separation system.
(see section 3.2 where the relation between this event and
auditory neural arrays is explained)

Group Object: A group object is a collection (acros! both frequen~y and
time) of neural events, having similar properties, thct
are perceived as a. wlit. It is an intermediate level in' the
representation of sounds and corresponds to the natural
segmentation of the incoming sound into frequency· time
regions that have similar properties.

Sound Stream: .>\. sound stream is an internal acoustic representation of
a particular sound source, which consists of a temporal
succession of group objects. Group objects that are as·
signed to a given sound stream are thought to originate
from thE- 5aUle sound source.

Incoming sounds are encoded by' the auditory system by using a neural

representation. The firing of a neuron is the basic object manipulated by the

auditory system in the separation of sounds. Each event has certain information

associated with it that depends on the relationship between this event and other

neural firings (such as the simultaneous firing of other neurons, or the time between

one neural firing and the previous firing of this same neuron). The way that

n~urons encode an incoming sOWld is discussed in more detail in the next section.

By describing a sound as consisting of many different local events, a system

can analyze the incoming sound by finding relationships between the different

parts. It!~ this similarity in the features of the di~erent events that implies a

causal relationship between them. It is this relationship that binds the events
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together, which allows the1!1 to be interpreted as coming from the same sOWld .

source.

Events are "not directly assigned to a sound stream. Events with similar

properties are joined together into an intermediate representation called a group

object. It is these group objects that are assigned to one sOWld stream or another.

The reason for the intermediate representation is that the neural events do not

act independently, but act as a cohesive unit.

The presence of an intermediate representation can be seen in several differ­

ent experiments. In Bregman's streaming experiments (see section 2.3.1.3), pure

tones are assigned to either one sOWld stream or another. A tone is never split

where one part of the tone is assigned to one sound stream and another part is

assigned to a different sOWld stream. Each tone behaves as a cohesive 'unit' or

'group' where all its events (which result from the response of the cochlear model

to that tone) are assigned to the same sound stream.

The example of a male speaker saying the digit /three/ followed by a female

saying the digit /seven/ was discwsed in section 2.3.1.6. When the auditory system

hears the male vowel/eel from the digit /three/, all the events are periodic and

form a repeated structure. After th1': vowel/eel. the auditory system encounters

an onset of fricated energy and a series of events that have no periodic stnlcture

to them, These incoming nonperiodic events are grouped together and this gr('lUp

object (whose phonemic representation is an Is/) of nonperiodic events is initially

assigned to the same sound stream as the other sounds of the same speaker. When

the periodic segment /even/ from the female digit /seven/ is heard, the auditory

!ystem changes the assignment of the group object lsi from the male speaker to

the female speaker. The aesignment of events (which represent the fricated energy

of the /sf) to Olie ~ound str~am or the other are manipulated as a Wlit and not

individually.

At the highest level of a sound's representation is the sound stream. A

sound ::trearn is the internal representation that corresponds to a sound source

that humans hear. Group objects are assigned to a sound stream if the auditory

system concludes that the group object repre~ent9 a sound that emanated from
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the appropriate sour..:e.

2.4.2 The Neural Encoding of Sounds

The transformation of sounds into a neural representation occurs through

a series of complex mechanisms. Sound is transformed from pressure variations

in the air into mechanical motion at the eardrum (tympanic membrane). The

vibration of this membrane moves several small bones in the middle ear cavity.

These bones are also attached to the oval window of a fluid-filled chamber (the

cochlea or inner ear). The vibrations of this oval window causes the fluid in the

cochlea to move, which in turn causes the motion of another membrane (the basilar

membrane). Attached to the basilar membrane is an intricate structure of celis

(the hair cells of the organ of corti) which are in tum connected b the neurons

that encode the incoming sound into neural firings. !Yost & Nielsen 19771.

One end of the basilar membrane responds best (large displacements in the

membrane) to high frequency stimuli, while the other end of the basilar membrane

re:!ponds mostly to low frequency stimuli. The 'place' along the length of. the

basilar membrane is an important dimension, closely related to the frequency that

causes the maximum displacement of the membrane. Attached along the length

of the basilar membrane are approximately 30,000 nemons [Chow 195!j which

encode the incoming sound.

The length along the basilar membrane is often called the place dimension.

Neurons along the length of the basilar membrane are organized in a 'tonotopic'

manner (i.e. with place mapping to tone frequency). The place dimension along

the basilar membrane is preserved through many auditory regions in the central

nervous system. "It is unlikely that place along the basilar membrane would be

prf"!Ierved throug."'. successive levels of central processing ii it were no~ an important

parameter of the internal representa.tion of sound." IYoung & Sachs 19191

At low !Itimulus intensities, auditory neurom: do not increa.se their neural

firing rate above their spontaneous level (the firin~ rate with no signal present).

Rather, they tend to synchronize the spontaneous neural firings with the motion

of that place on the basilar ffit'mbrane (Johnson 1980J. As the sound's intensity
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increases, the neurons increase both the synchrony of the firings and the firing

rate. Above a certain amplitude level, a neuron will reach a maximum in the

Isynchronization index' (degree of phase-locking of neural firing with stimulus)

and will approach 'its maximum rate of neural firing.

The intensity of a tone required to make a neuron change its firing pa.tt~m

from the spontaneous firing pattern is measured as a function of the tone frequency

and is plotted as a ltu.-ung curve'. Each neuron has a 'charactezistic frequency',

which is the frequency for which the least amplitude is required to change its firing

pattern. The high frequency slope of a tuning curve (the frequency side above the

characteristic frequency) is typically 100 to 400 dB/octavei the low frequency side

of the tuning curve will typically flatten out at a level approximately 40 dB above

the neural threshold [Sachs &< Abbas 19741.

The temporal fine structure of a stimulus is maintained in the phase-lockmg

of neurons to the sO\Lld lJavel 1980, Rose et a1 19711. Period histograms (the

number of neural firings in each time increment of a periodic stimulus) shows a

highly significant correlation between the positive amplitude of the stimulus and

the numbez of neural firings recorded at that time.

The observed response of neurons to periodic steady-state vowels IYoung &:

Sachs 1919] can be Wlderstood as follows: at low levels, the spectral shape of the

vowel can be discerned from either the average firing rate of an array of fibers or

from the synchronized rate. At higher levels, the fibers have saturated, and the

average rate will no longer yield the spectral information. The synchronization of

neural firings with a vowel's harmonics can be used to reveal the spectral shape,

even in spite of interfering random noise, whereas average rate will not.

For steady-state vowels whose intensity is less than 60 dB 8PL, those neurons

whose characteristic frequencies are dose to the formants of the vowel will have

a firing rate which is greater than other neurons. The spectrum of the vowel

can be characterized by a profile of the neural firing rate as a ~Unction of place.

However, for sounds whose intensity is much above 60 dB SPL, the firing rate

profile saturates at the maximum firing rate. Average firing rate no longer reflects

the spectrum of the incoming vowel. The phase-locking of the neurons to the vowel
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han::J.onics, however, is maintained at high stimulus levels {Sachs & Young 19801.

These experimental results "indicate that the spectrum of a sound is not

conveyed to higher nervous centers of the auditory system by way of the (average)

discharge rate in different nerve fibers. It is·more' likely that such information

is carried in the time pattern of the discharges of single auditory nerve fibers"

[Moller 1981J. Voigt, Sachs, and Young (19811 also conr.I'!J-ded that "'The temporal·

place representation of vowel spectra is superior to the rate-place representation

at :i!loderate to high vowel levels. In addition it retains information about vowel

spectra in the presence of background noise. The rate-place representation does

not reflect the fonnant structure of the vowel even at moderate signal-to-noise

ratios."

Based on this understanding of the neural encoding of an incoming sound,

it is possible to understand why ScheJfers [1982] observed that people could iden­

tify two simultaneous voiced vowels (even though they were genexated with the

same fundamental frequency) better than two simultaneous unvoiced (whispered)

vowels. For the unvoiced vowels, the auditory system cannot accurately encode

the spectrum of the two vowels in terms of neural firing rate. It can encode the

simultaneous voiced vowels wit.h more accuracy, since the neurons use timing in­

formation to convey spectral information.

Our k:iowledge about the neural encoding of a sound has been gained through

a large number of experiments done OVE:&" many years. However, our knowledge

of how the auditory system uses this information is minimal [Moller 19791. This

lack of information about the central nervous system makes it impossible to accu­

rately model any detailed mechanisms that the auditory system might use in the

processing of sounds.

Modern spectral analysis techniques may accurately measure the spectral

amplitude of s~eech sounds, but the auditory system relies heavily on timing

information to encode the speech. At moderate levels, it does :::.,~ rely on rate

information, but uses the timing of the neural firings to represent the sounds that.

it hears. The next section will deal with how tho auditory system uses this timing

information for the interpretation and separation of sounds.
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Figure 2.4: Licklider's neural autocorrelator. The original signal is autocorrelated
with the delayed signal, and the output is a nmning integral.

2.4.3 The Processing of Periodicity Information

This section is concerned with how the auditory system computes the period

of repetition of a periodic SQund. A previous section showed that information

about pitch and pitch dynamics is useful for separating sounds. This section

will review the mechanisms that the auditory system uses for comp.... ting pitch

information. and how it uses the information about periodicity for separating

sounds.

There are several major theories of how the auditory system perceives pitch.

This section will review the theories of Licklider and Goldstein in their models of

auditory pitch detection. It will review the experiments which show how Licklider's

model is consistent with the use of timing information by the auditory system; It

will also show now this author has extended Licklider's model so that this periodic

information can be used for the separation of sounds.

In Licklider's theory of pitch perception !Licklider 1951, 19591, the output of

each 'place' along the basilar membrane is passed through a neural autocorrelator

mechanism. The neural output of a single place is passed through a tapped delay

line, and at each tap computes one value of the autocorrelation function of the

delay-line output with tile current neural output of the same neuron. A diagram

of this computation is shown in figures 2.4 and 2.5.

The major difficulty with this theory is that it does not specify the details

of how the autocorrelation information in each place location is combined to de­

termine the pitch period. It suggests that a neural net interprets the incoming
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Figure 2.5: Overall autocorrelation mechanism. The autocorrelation of the
cochlear output is computed at each place location. The dimensions of this rep­
resentation are place vs. autocorrelation delay

information to determine the pitch period, but the theory does not specify the

algorithms used.

Goldstein's model of pitch perception (Goldstein 19731 estimates the fre­

quencies of the harmonics (obtained from the spectrum analysis) and computes a

maximum likelihood estimate of the fundamental. fre<;.uency from these harmonic

values. The constraints that this theory imposes are nicely summarized by De

Boer 119751 as follow"

• Only aurally relolved components contribute.

• The phtUe relations are irrelevant.

• Only the pre.tence of a component is reported - the amplitude is irrelevant

(within limits).

• The informat.~onabout component frequency is basically inaccurate; a non­

negligible variability is involved.

• It is assumed that the information received corresponds to stimuli in which

the components are successive harmonics.
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There have been several implementations of Goldstein's thecry of pitch per­

ception {Willems 1983, Duifhuis et al1982, Sc.hetrers 1983, Ali.ik et a! 19~'il. The

difficulty with all these implementations of the theory is that they compute the

frequ~ncies of the harmonic components from the spectrum using the amplitude

of the spectrum. along the place dimension. As we have seen from the section

on the neural representation of information, the auditory system does not encode

the amplitude of a vowel's harmonics in the average firing rate information at

moderate to high intensity levels.

Instead of obtaining the harmonic frequencies from the amplitude spectrum,

Goldstein 119171 has suggested that the harmorJc frequencies are obtained from

interspike interval histograms. The timing information at each place ·lo!:ation

would be used to compute the harmonic frequencies present. The use of timing

information in Goldstein's theory of pitch perception makes this theory similar to

Licklider's theory of pitch perception. One difference is how the information from

different basilar membrane place locations are combined to form an estimate of the

pitch period present. Goldstein's theory imposes constraints that the harmonics

must be resolvable and must be successive harmonics in order to compute the

pitch period.

There is a great deal of experimental evidence which supports the idea that

the timing information at each place location is used to compute the period of

repetition of the sound. Experiments on the perception of a pitch period for am­

plitude modulated noise IHoutsma et al 1980, Patterson et al 1977] support the

temporal processing of information for the computation of periodic information.

Other experiments [Moore 19771 show that the harmonics do not have to be resolv+

able (as req1.llrcd by Goldstein's theory) for the auditory system to c.ompute the

pitch cf a harmonic complex. These experiments a.lso show that the relative phase

between the unresolved harmonics changes the strength of the pitch percept (as

predicted by the temporal theory). The upper frequency limit to the perception of

'residue pitch' of roughly 2500 Hz IWightman 1973] is explained by the decrease

of synchronous firing in the auditory systeI!! at these frequencies.

In addition to these psychoacoustic experiments· which support the use of
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temporal information in the computation of pitch, there is also evidence for Lick·

Uder's neural autocorrelation mechanism. Experiments [Langner 1981, Rose &;

Capranica 198{1 show that many neurons are tuned to the perception of ampli­

tude modulated tones.

Liclllider's model can be extended to we the periodicity information for the

separation of sounds. The computation of an autocorrelation function at each place

location has the advantage that the periodic information is a local computation.

Therefore, every 'place' can provide information about the periodic information

that is present at that location. In Broadbent and Ladefoged's experiments [19571,

when two fotm<:.nt resonators are excited by pulse traim with different periods of

repetition, the place location thafphase locks onto the first formant has a different

autocornlation function from the place location that phase locks onto the second

formant. It is hypothesized that this difference in the autocorrelation functioDJl, is

used by the auditory system to determine that these formants are not generated

by the same sound source.

The autocorrelation model also allows for the separation of the higher har­

monics not ruolved by the auditory system. These place 10catioD!, (which phase

lock onto the AM waveform generated by the higher harmonics). compute an

autocorrelation function that shows a peak at the pitch period just like the au­

~"v.;elation of the lower harmonics. It is this peak at the ;itch period of each

place location that is used by the auditory system to separate the incoming sound

based on periodicity information.

ftesp.arch also focuses on the capabilities of the auditory system to separate

and recognize two simultaneous vowels with different fundamentals. Experiments

by Scheffen [1979. 19821, and Broh and Nooteboom [19821 chart recognition per­

formance as a function of the difference in pitch bet".....een the two vowels. The

r~ul\ of these e.xp"~ments [SchefFers 19821 indicates that separation and 5ubee­

quent recognition performance is significantly bettex for simultaneous vowels with

strongly different spectral envelopes than for vowels with ~elatively similar spec­

tralshapes. However, models of sound separation based on pitch mechanisms that

assume fine frequency resolution (Goldstein 19'13, Parsons 1916] cannot account
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for this effect. These methods rely on the resolution of the harmonic components

present in the frequency spectrum and the subsequent assignment of these compo­

nents to the different sOWld sources. Whenever it is possible to resolve a harmonic

component, changing the amplitudes of the harmonics of the other sound will have

little effect on the resolution of that harmonic component. Therefore, harmonic

selection (resolving the different components by performing a fine frequency anal­

ysis, and then computing the amplitude of each of the harmonic COmpui.lents of the

periodic sound) cannot account for the observed degredation in performance by

the human auditory system when the vowels have a similar spectral shape. This

result ;gpports the view that, for vowel recognition, the human auditory system

does not perform fine frequency resolution of the harmonic components present.

This section has argued that the auditory system wes the timing information

present at each place I;)cation to compute an autoconelation function. In this

autocorrelation function is the periodic information present at each place location.

·Licklider's model does not precisely specify how this information is combined in

the auditory system for the determination of pitch.

Each place location that has similar periodicity information can be inter­

preted by ·the auditory system as coming Crom the same sound source. Those

place locations that have incompatible autoconelation functions are interpreted

as coming from different sound sources. The next section will discuss hnw the au­

ditory system uses this periodicity information to combine &! the place locations

that belong together into the same 'group object'.

2.4.4 The Segmentation of Speech and Group Objects

A group object is a collection of events which, because of similar properties,

are perceived as a unit. It is an intermediate level in the repres~ntationof sounds

and conesponds to the natural segmentation of the incoming sound into frequency­

time regions that have similar propertiEs. Group objects assigned to the same

-sound stream are thought. to originate from the same sound source.

Researchers have recently begun to focus on the grouping of t.he visual per­

ceptual field. Pomerantz [19811 says that "The purpose of grouping is to divide
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the perceptual field into units, but what exadly is a unit? ... Any natural unit is

defined by its indivisibility. Seldom is this indivisibility absolute, as the unending

search for the absolute, fundamental particle in physics well attests. Nonetheless,

when a complex structure is broken dcwn into parh, some breakpoints are more

likely than others, and these serve to demarcate natwal units."

Research is currently exploring the possibilities that there is some innate

mechanism for dividing the acoustic flow into discrete segments [Chistovich et al.

19751. The segmentation of an acoustic input into discrete segments that can

be assigned to sound streams is the mechanism used by the auditory system to

separate sOWlds {Broadbent 1977J.

At the level of grouping events into group objects, there is',no notion of

how many sounds are present. Events with similar features are grouped together.

After these evEnts have been grouped together into a group object, these objects

are then assigned to sound streams based on which sound source is believed to

have created these events. Two reasons why events cannot be directly linked to a

sound stream will now be presented.

1. The decision CO:1cerning which sound stream a segment belongs to can change I

and this change reverses the decision on all the events in the group object. In

the 'three·seven' example discussed earlier, all the neural events that com­

pose the frication sound /s/ were assigned as a wtit to one sound stream,

and then later to a different sound'stream.

2. Events cannot be directly assigned to a sound stream because a sound stream

does not have a single ~eL of properties to which an event can be linked.

Speech is composed of short segments that have different properties, such

as plosion, frication, periodic regions, and silent intervals between speech

segments. Since the characteristics of a speaker's voice will change between

the different types of acoustic segments, the properties of the sound stream

that represents this speaker will change. It is hypothesized that the audi­

tory system first groups those events in frequency-time regions with similar

properties together, and then rnakes a decisio~ about which sound 30urce

this group object belongs to.
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Events are grouped into an intermediate representation called group objects,

which, in turn, are linit.~d to a sound stream. Acoustic information is used to assign

events to group ~bjects. hUormation about pitch, pitch. dynamics, onset, offset,

and amplitude modulation are used to assign events to the different group objects.

The specific details about how the auditory system creat~ and uses group objects

may not be known for many years. The ned three seetioIl9 will deal with· issues

and details that are important for the construction of a model of the auditory

separation system.

2.4.4.1 Creation of 8 Group Object

A group object that represents a speech segment extends across both fre­

quency and time. Many details about the creation and use of group objects are

not known at the current time. A group object is defined as la collection of events

with 3imilor properties that are perceived as a unit'. The key word in the above

definition is ·similar'. What constitutes events that are similar? How does one

differentiate between events that are similar and those that are different?

Darwin's experiments {1977J show that if pitch changes discontinuously, each

segment with a sufficiently different pitch is assigned to a different sOWld stream.

Therefore, if the events undergo a pitch discontinuity, a new group object is formed.

Experiments by Rasch 119781 show thot the auditory system will interpret two

onsets at different times as two differer!t group obj~ctn.

A new group object is created in the following circumstances:

• At the onset of a new segment.

• "'hen the incoming neural events have different properties from any existing

group object.

It is difficult to decide group object boundaries. The following difficulties

are described along with a proposed solution:

1. A tone is masked during the middle of its duration by a loud masking noise.

Does the auditory system represent the parts of the tone before the noise
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and after the noise by a single group object or by two group objects? It

is hypothesized that the auditory system uses two distinct group objects to

represent the segments of the tone. These group objects can then be assigned

to the same sound stream or to different sound streams.

2. A periodic se(l:ment undergoes a spectral discontinuity (such as a vowel-nasal

boundary) but the pitch contour re!I1aim continuous. Does the spectral dis­

continuity cause the input to be parsed into separate group objects? It is

hypothesized that the continuity in the pitch dimension is the important fac­

tor and will therefore not allow the different regions in time to be assigned to

different sound streams even though there is a spectral discontinuity. There

may be a phonetic boundary that is perceived at the spectral discontinuitY,

hut for the assignment of segments to sound sources, no boundary exists at

the spectral discontinuity.

3. There is a discontinuity in the slope of the pitch conour of a voiced segment.

Does a change in pitch dynamics cause the formation of a new K!0UP object?

It is hypothesized that if the pitch contour is continuous, no segmentation e.t

the sound separation level occurs. The change in the slope of the pitch of a

..owel might perceptually segment the two regions but the different periodic

regiom (with different pitch slopes) will not be assigned to different sound

The higher levels of auditory processing may influence the creation and

interpretation of the group objects. H a weak onset occurs during the presence of

one sound source, the auditul-Y system may not be sure whether this onset is a

random fluctuation from the sOWld already presUlt or whether it constitutes the

beginning of another sOWld source. The higher levels of processing. can influence

the decision of when to create a new group object, and can make a difficult situation

easier by using more than just the aeoustic information present.
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1.4.4.~ Simultaneous versus Sequential Grouping

Events across time at the same frequency that have similar properties are

assigned to the same group object. Events at. different frequencies at the same

time which have similar properties are assigned to the same group object. This

section is concerned with what happens when the decisions of different information

sources which group events at one frequency and time with a group object confiict.

Bregman's experiments 11978bj (described insedion 2.3.1.3) show that each

of three tones acts as a unit, and eam tone is assigned as a unit to one sOWld

stream or another. Experiments by Darwin 11984bj show that if a pure tone

(whose frequency is the same as the harmonic of a neighboring steady state vowel)

is followed by a steady state vowel, the vowel's harmonic will be perceptually

segregated from the vowel. Th~ vowel's harmonic wiJI be a multiple of the same

fundamental as all the other harmonics of the vowel. However the difference in

onset or offset between this harmonic and the other harmonics indicates to the

auditory system that this harmonic does not belong to the same sOWld stream.

Since the auditory system assigns this harmonic to a different sound stream, it

must not be assigned to the same group objects as the other harmonics.

These e..~eriments might lead one to believe that the auditory system first

as~igns events from the same frequency region together, and then assigns different

&equency locatioll9 that have the same onset, offset, amplitude modulation, and

pitch dynamics to the same group object. The difficulties with this approach are:

1. Events at the same frequency location cannot be linked by spectral cQntinuity

alone. Experiments by Darwin [19771 show that when the pitch changes

discontinuously, the periodic regions on either side of the pitch discontinuity

are assigned to different sound streams. Therefc:e, events at one &equency

that are linked th=cugh time must use other features, sum as pitch, to assign

them to the same group object.

2. Experiments mostly deal with the perception 9f simple sounds. It is very

difficult to know how the auditory system links events through time when the

spectrum is changing and the pitch is also changing. The auditory system
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follows both formant motion (transitions) and pitch change (intonation) at

the same time.

This problem of deciding what events at one time belong with to t~JOS~ at

the next instant in time is known as the correlpondence problem rUllman 1979j.

When a harmonic starts at a different time from the rest of the harmonics, if all

the events which phase lock ont.o that. harmonic are to' be assigned to the same

group object, the auditory system must maintain a correspondence through tim~

of the neural events which are responding to this harmonic. It is a very difficult

problem to maintain the correspondence from one time to the next of the neural

representation of each of two sounds.

In the computational model of auditory sound separation (described in chap­

ter 3), different frequency regions at the same time are assigned to the same group

object if their instantaneous properties are all consistent with each other. Different

frequency regions that have the same pitch period are assigned to the same group

object. A difference in onset or offset of differe;nt harmonics will not affect the

assignment of the harmonics during the middle of the vowel to the group object.

As long as the pitch is continuous through time, the different frequency regions

will be assigned to the same group object.

2.4.4.3 Filling in the Gaps

When the auditory system hears a :jequence, such as a tone, a noise burst

and then the same tone a!ain, it perceives the tone to continue through the noise.

"'ihen a collection of events (such as the noise burst) is assigned to a different sound

stream, it leaves a gap in the other group object present. IT the auditory system

hean the tone continuing through ~he noise, it must perceptually ·synthesize the

tone at some level. Does the auditory system perform this synthesis at the acoustic

level of sound separation or at the higher levels of separation?

A series of experiments by Warren !1971, 1972, 19741 discussed the synthesis

and perception of the missing phonemes which has been called lphonemic restora·

tions'. The auditory system cannot predict at an acoustic level what the missing

phoneme is. The perceptual synthesis must therefore occur at the higher levels of
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a sound's interpretation. The higher levels must have access to the representation

of both sounds in order to know that the segment is masked rather than missing.

2.4.5 Sound Streams

Work on 6elective attention has dealt primarily with how a penon focuses

on one sound in the presence of other saWlds. Some theories of attention are

characterized by the learly filtering' models (filtering here refers to the separation

of one sound from other sOWlds) of Broadbent 11958} and of Treisman [19601. The

sounds are filtered or separated by focusing on different functional channels (e.g.,

an internal channel which represents the loeation of the desired sound source, piteh

channel, etc.). In other ~heories of attention, such as the model of Deutsch and

Deutsch [19631, the separation of sounds does not occur until late in the processing

(at least the semantic level) of the sounds. All of these models are quite general,

ar.d lack specific details on how any of the different operation9 are performed.

The concept that two speakers could be separated from each other by fa·

cusing attention on the output of a functional channel cannot account for how

two different speakers can be separated monaurally. Since speech is composed of

periodic segments, nonperiodic segments, bursts, and periods of silence, one can·

not focus one's attention on a single functional channel, since the sound from a

single speaker will change from one channel to another. Phonetic and ling~tic

knowledge must aid the selection process to determine which segments belong to

the same speech stream.

This section will study how the auditory system creates and uses sound

streams to represent the different sources that it listens t". It will focus on the

number: oi sounds the auditory system can process at a single time. It will also

deal with how group objects are assigned to different sound streams.

1.4.5.1 Is There 8 Maximum Number of -Auditory Sound Streams'!

How many sound streams does the auditol'Y system use in sound separation?

Does the auditory system have one sound stream for each of the sound sources

that are present, or is there one special ,ound stream which is the figure, while
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all the other sounds ue lumped into the hCJekgf'ound stream? How many sound

streams are there when many sound9 are present?

If there is one sound present, then only one sound stnam is needed to

represent this sound. If there are two sounds pregent, ~hen thee .....ilI be one sound

stream to represent each of the sound sources present. However if there are more

than two sOWlds present, does the number of sound streams increase beyond two?

In the figure·ground approach, one sound 9trea.m. represents the 'desir~d signal'

(which is bein~ focused on) and the other sound stream represents all the othe

.sound! that are present. All acoustic events not assigned to the desired sound

stream are put into the 'interfering' 90und 9tream. The two 90und stream model

is attractive because one sOWld stream. is labeled the desired signal, or figure, and

the other sound stream represents the interfering sound, or the background.

Another option is that the auditory system can maintain more than two

sound streams a~ a single time. The maximum number of sound streams would be

limited by the processing resources of the auditory system. In this case, if three

or more sOWlds are present and the auditory system has enough processing power

(depending on the complexity of the sounds), then the a.coustic events can be

assigned to the appropriate sound streams that correspond to the sound sources

that they have originated from.

At some level in the processing hierarchy, there may only be one sound

source that is focused on. This view is held by Moray 119701 in his book on the

selective nature of attention in speech and vision:

"At any moment a listener is sampling only one message. All others

are totally rejected." [Moray p. 190J

The fact. that one message is being focused on (receiVing special processing re­

sources) does not imply that the number of sound streams present. is limited to

two.

IT one is able to determine that the auditory system is capable of modeling

many sounds at the same time, then this would imply that there are more than two

sound stnams present. The fact that many sounds could be modeled would not

necessarily contradict the hypothesis that a single .iOund receives special processing
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resources. This is because the special processing that this 'focused' signal receives

can occur after the incoming sound is partitioned into the different sound streams.

Although most subjects who J)arti~ipate in shadowing experiments (where

subjects are instructed to listen to one message and ignore the other messages

present) are typically not able to report much about the unattended message.

experimental results indicate that the unattended message is processed at a se­

mantic level even when the subject cannot report the contents of the message.

In the experiments by Von Wright et al. [1975j, subjects were conditioned by

pairing electrical shocks with certain words. The experimenters then recorde:l

the galvanic skin response (GSR) of the subject during a shadowing experiment

where no electric shocks were given. They found that the subjects showed a re­

sponse to the conditioned word, as well as smaller responses to synonyms of that

word and acoustically similar words. These results support the idea that even the

unattended message is processed at a semantic level, even when a subject cannot

report what he has heard. Results from an experienced subject in a shadowing

task [Underwood 19741 indicate that a person is able to monitor and respond to

two messages at the same time.

Olle can view Wright's experimental resulh as showin~ that each sound

strer n is processed until at least the semantic level which is similar to the view

held by the Deutsch and Deutsch model of attention [19631. the Neisser model

[19671, and the Shiffrin and Schneider's model [1977J. Each sound is represented

in its own sound stream and i3 processed to some level by an automated parallel

algorithm. This viewpoint does not mean that one of the messages will not receive

special processing, but that each message receives separate processing to some

level.

Other experimental evidence indicates that separation p.erformance improves

with knowledge about the interfering signal. Experiments by Hawki.n.s and Presson

!19151 showed that when a masker tone (a strong sine wave which makes it d.ifficult

to hear the other sound) was of a known frequency in auditory recognition masking

experiments, the performance of a subject improved over experiments where the

masker frequency was unknown. They concluded from 'their experimental results
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that:

<lA selectivity ~rocess functions in the auditory system to diminish

the effects of Wlwanted input prior to· that point in the system at which

categorization occurs. II

The fact that subjec'iis improved in their performance when certain facts were

known a1:out the masking stimulus indicates that subjects used a model of the noise

to increase their level of performance in separating the signal from the masking

stimulus.

Experiments by Triesman [1964] also indicate that subjects can model more

than one sound and can use this knowledge to improve their performance in the

separation of the desired message. In one experiment, subjects had to shadow one

message in the presence of two interfering messages. The message to be shadowed

appeared in one ear, while one interfering message was presented in the other

ear, and the second interfering message was presented in both ears. The content

of the interfering messages was varied, and the effect on the shadowing perfor~

Mance was measured. Subjects showed slight improvements when both interfering

messages were sequences of ascending digits, over the case when both interfering

messages were prose. This result supports the view that both. interfering sounds

were modeled to some depth, and that the information from these models was

used to improve the separation performance.

Evidence has been presented that at least two simultaneous sounds can be

modeled by the auditory system. Experimental results have also been presented

to show that models of the interfering sounds can be used to increase separation

performance. At some higher level of a sound's processing, one sOWld stream

might receive special attention at the expense of the other sounds present. At the

lowest level of processing, the auditory system can model more than one sound

source. It would be difficult for one to claim that one sound stream has a Sgecial

advantage over the other sound streams. Although the figure~groWld paradigm

may be appropriate for the higher levels of sOWld understanding, it is not clear

that the figure·ground analogy applies at the lowest levels of acoustic separation.
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When a person is allowed to listen repeatedly to the same sound segment over

and over again, he is capable of modeling many sound sources at the same time.

This improvement in processing ability is facilitated both by additional processing

resources (on each pass of the recording) and by having '" model of some of the

other sounds in the recording when listening· to one of the other sounds present.

The auditory system is able to hear three 90und 90urce9 at a time if the sounds

are simple enough and do not require much linguistic processing (such as a person

speaking, air conditioning noise, and the ringing of the telephone). The ability to

hear many sounds (either in repeated listening, or if the sOWlds are simple and

repetitivE in nature) led this writer to believe that the auditory system car. create

more than two sound streares at a time.

2.4.6.2 The Croeation of Sound Streams

When does the auditory system decide that there is more than one sound

present? There are two situations when the auditory system can decide jf two

sounds are present. If two simultaneous group objects are present (such as two

simu1t~eous periodic sounds), the auditory system will assign each group object

to a different sound stream. If two group objects are sequential in time (one follows

another), and the auditory system cannot account for both group objects with a

single sOWld model (a single sound source could not have generated these sounds),

the auditory system will assign ~ach group object to a different sound stream.

An example of this would be a person speaking followed by the sound of a door

closing. This determination that the two group objects could not have come fr-crm

the same sound source uses linguistic or other contextual information about what

sounds could be generated from what types of sound sources.

2.4t.5.:J The Allignment of Group Objects to Sound Streams

After the events have been assigned to different group object!, the group

objects are assigned to sOWld streams. The assigmnent of group obje::ts to sound

streams uses the information sources discussed in the beginning of this chapter.

The ways that group objects are assigned to sound streams ase summarized below:
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1. H there are two group objects that overlap in time, they must be assigned

to different !ound sources. If a determination can be made that one of the

group objects belo.ngs to one sOWld stream, then the other group object can

be assigned to' the other sound stream.

2. If there are two periodic group objects present, the auditory system must

decide which group object belongs to which sound stream based on the pitch

information. Information about the average pitch of each speaker and the

intonation pattern of the speech already heard can be used to assign periodic

group objects to sound streams.

3. If two group objects are sequential in time (with one group object starting

after the other group object has ended), the continuity in the spectrum

be&ween the end of one group object and the start of the next group object

can link them together as coming from the same sound source. Therefore

if one group object has been assigned to a sOWld stream, the other is also

likely to be assigned to that sOWld stream.

4. Yisual information about when a penon starts and stops speaking, can be

used t" assign group object~ with similar onset and offset times to the ap­

propriate sound stream.

5. Linguistic information about what a person is expected to say can be used

to assign a group object to the appropriate sound stream. The group object

must first be transformed into a phonetic representation, and then linguistic

information can assign the group object to a sound stream by using what

phonemes and words would fit in with the 'train of thought' from the desired

speaker.

The assignment of group objects to sound streams is similar to the attenua­

tion of unwanted input in selective attention. Group objects are assigned to sound

streams based on the strength of the cliffe-ent information sources. IT the infor­

mation sOw'ces ca.t'l.!lot aete::"mine whim sound source a group object belongs to,

the group object may not be strongly assigned to either sound stream (or strongly
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adenu~ted from either sound stream). Even if the auditory system does assign a

group object to the 'other' sound stream, it still uses the information about this .

group object to h.elp it recognize sounds from the ldesired' sound stream.

2.4.6 Improvement oC Sound Separation by Learning

How does a person improve his separation performance as he becomes more

familiar with a sound? It is assumed that people are able to improve their sepa­

ration performance as they become more familiar with a sound. However, there

is no quantitative evidence that this actually does occur. Another commonly held

view is that foreigners have a harder time understanding a conversation in noise

than native lister~ers of that language. Thia .:om.:::::.crJy held view also remains

unverified. H these statements are true, it is important to have a mechanism that

can account for this effect.

It is this writer's belief that the learning that occurs as one improves at

separating sounds occurs at a high level of processing. The lowest level of sound

separation doe!! not change as a person becomes more familiar with a s.Jund. The

linguistic models that a person has of the incoming soand improve a!! he gains

more experience with that class of sounds. It is the use of these models for the

separation and interpretation of an incoming sound that allows people to improve

their performance as they become more familiar with a sound.

If we accept that people do improve their performance as they become more

familiar with a sound (or a class of sounds), then other questions arise. What do

people learn when they improve their ability to separate one signal from another?

When does a per!!on reach his upper limit in his separation performance? Before

proposing a solution to the above questions, it is informative to study the following

experimental reslllts.

1. The more constraints the auditory system has on what words it can hear,

the better it can Wlderstand what was said. Words drawn from a set of 2

alternatives require a SiN ratio 24 db less than the same words selected from

a set of 1000 alternatives to achieve the same level of intelligibility (percent
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Figure 2.6: Relationship between the intelligibility of a word and the predictability
of a word as a function of the signal to noise ratio.

of Itarget words' correctly identified by a subject) IMiller, Heise, and Lichten

19511.

2. The context of a sentence can greatly improve the intelligibility of a word. A

word presented in isolation requires a SiN ratio 6 db greater than the same

word presented within the context of a sentence [Miller, Heise, and Lichten

19511·

3. The intelligibility of a word is directly related to the predictability of a word

(the probability that this word .....ill be the fLTSt word a subject th.i.nXs of,

when listening to the initial part of the sentence context). This relationship

:: '''own in figw-e 2.6 [Rubenstein and Pollack 19631.

Figure 2.6 shows that the .relationship between the predictability of a word

and the intelligibility of that word also depends on the signal to noise ratio.

This relationship C&.n be described by the following formula:

66



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Log(Intelligibility) = b x Log(PTedictol>ility)

This formula says that other things being equal, the more predictable a

word is. the more intelligible it will be. The constant b (the slope relating

the predictability to the intelligibility of a word) is a function of the signal

to noise ratio (expressp.d in dB) by the following forTTl.uia:

Log(b) = '" X Signol/Noi.. + Log(b,)

As the signal to noise ratio decreases, the slope b will decrease. This means

that for a given level of predictability, as the sign31 to noise ratio decreases,

the intelligibility oi the word will also decrease.

4. The frequency of occurrence of a word in natural language is a significant

factor in its intelligibility. Words that occur frequently are more intelligible

than words that are used less frequently. For each tenfold increase in word

freq~.e..~t:':. the S IN ratio may be reduced 4. db to achieve a given ~evel of

intelligibility [How.. 19511. Thi. re.u1t i. explained by Broadbent (19611

as the 'Response Bias' theory where "the; effect is due to a prior bias in

favor of common words, which combines with sensory evidence favoring the

objectively correct word. n

If we assume that foreigners are not able to ~parate sounds as well as

native listener:! uf a. language, how can we account for this facti? Foreigners are

presumably good at separating their native language from interfering sounds, but

their limited knowledge about another language limits them from separating a

foreign languag.e from interfering sounds. There are several possible mechanisms

that can explain this effect. Foreigners may not be able to make the same fine

phonetic (allophonic) distinctions that native listeners can. This would result

in a loss of information about what the listener was hearing. Another possible

mechanism is that foreigners are not able to predict phoneme and word sequences
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as well as native listeners can. A decrease in the ability to predict a word would

result in a decrease in the intelligibility of that word [Rubenstein and Pollack

19631·

The way a pe.,:,son improves his performance as he becomes more familiar

with a sound involves a fundamental question: At what level does a. person learn

whether two pieces of information belong together as coming from the same sound

source? The proposed answer is that the lowest level of sound separation is fairly

rigid in its learning ability. Any learning that does occur is hypothesized as oc­

curring at a high level of sound modelir..g. The higher levels contain models that

allow the auditory system to predict what it migh\' hear. These expectations al­

low the system to improve its performance with an increased ability to predict

the incoming sound. These predictions occur at different levels and include both

words and acoustic features. The prediction of acoustic features is a knowledge

source that improves the performance of assignment of that feature to the appro­

priate sOWld stream. The improved prediction of word sequences also increases

ttl:; ir..~elligi~ility of an incoming sound.

It is hypothesized that the :lound separation performance is limited by the

listener's ability to predict a sound. This implies that there is an upper lim:t to

sound separation performance which is achieved when the true probabilities (of

phonemes, phonetic transitions, and word transitions) are known at the acoustic

and linguistic levels. A person may not always achieve this upper limit due to

limitations in his ability to predict a sound.

2.5 Summary

This chapter has presented a theory of how the auditory system separates

sounds, and how one sound is recognized in the presence of other sounds. The goal

of early audition 'i3 defined as determining what part" of the incoming "o"nd belong

together. When the auditory sy3tem encounten sound patterns that are not likely

to have arisen from a single 30und source, the auditory system interprets them as

coming from d:ff'erent sound sources. It uses the regularity and continuity that

natural sounds contain in order to determine how many sounds are present and
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what each souna. cor...,iiJt9 of. It focuses on finding those common properties in the

representation that indicate a cal·..:lal relationship between the different objects.

The psychoacoustic experiments reviewed previously showed that the au­

ditory system uses many different types of information for the separation of the·

sounds that it hears. These sources of information are: pitch, pitch dynamics, the

omet and offset of sounds, local amplitude modulation, visual information (e,g.,

lip-reading cues), and linguistic information (phonetic transitional probabilities,

word transition probabilities, phrasal and message content).

Experimental results were presented which demonstrate that the 'recogni­

tion' mechanism does much more than classify the inco::cir,; sound patterns into

categories. When sounds carmot be separated on the basis of their acoustic cues,

it is still possible for the auditory system to identify the different simultaneous

sounds that are present. Other experiment! demonstrate that enn when the sep­

aration mechanism does use acowtic information to separate an incoming signal,

the recognition mechanism may put the separated output back together for the

classification of the sound (as if the sOWld had not been separated). The recog­

nition system must have access to both channels of the separated output, so that

it may take advantage of speeial auditory facts (e.g., that part of one sound is

missing because it was masked by another sound). Sound recognition consists not

only of the classification of what sounds are present, but of determining ~hen

some part of the acoustic input is missing, or which acoustic segment is present

that does not belong.

Although people may believe that they can separate sounds from interfering

sounds with apparent ease, experimental results indicate that acoustic separation

of sounds does not always correspond to the sOWld's perception by the auditory

system. It demonstrates that people create a model to help them determine which

sound3 are present, and suggests that they do not perceive a separated output

on the basis of acoustic information alone. It also makes it difficult for us to

understand how much can be accomplished by the separation of sounds wing only

acoustic bottom-up processing.

Three different levels of the auditory system's representation of sounds at
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different points in the separation processing were presented. These levels are called

'Neural Event" IGroup Object', and ISound Stream', Events are not directly as­

signed to a sound streaIJ?. Events with similar properties are joined together into

an intermediate representation called a group object. It is these group objects

which are assigned to one sound stream or another. The reason for the intermedi­

ate representation ill that neural events do not act independently but act as.parts

of a cohesive unit.

By de!::ribing a sound as consisting of many different local events, a system

can analyze the incoming: sound by finding relationships between the difr~rent

parh. It is this similarity in the features of the different events that implies

a causal relatior.:.'Jhip between them. It is this relationship that binds the events

together that allows them to be interpreted as coming from the same sound source.

Experimental results on the neural encoding of sounds indicate that the

average discharge rate in different fibers ig not used to represent the spectrum at

moderate to loud intensity levels. The sound's spectral information is encoded

in the time pattern of the neural firings. The temporal-place representation of a

vowel retains the information about the vowel's spectrum even in the presence of

background noise.

The auditory system uses the timing information present at each ~place7

location to compute an autoconelation function. In. this autocorrelation function is

the information about periodicity at each place location. Each place location that

has similar periodicity information can be i..'1terpreted by the auditory system as

coming from the same sound source. Those place locations that have incompatible

autocorrelation fWlctions (that are not compatible with the hypothesis that they

came from the same sound source) are assigned as coming from different sound

sources.

In the grouping of events into group objects, there is no notion of how many

sounds are present. Events with similar features are grouped together. After

these events have been grouped together into a group object, these objects are

then assigned to sound streams based on which sound source is believed to have

created these events.
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Acoustic information is used to assign events to group objects. Information

about pitch, pitch dynamics, onset, offset, and amplitude modulation is used to

assign events with the different group objects. Group objects are assigned to

sound streams using: the overlapping of group objects in time, spectral transitions

between sequential group objects, visual cues, and linguistic information.

The learning that occurs as one improves his ability to separate sounds

occurs at a high level of processing. The lowest level of sOWld separation does not

change as a person becomes more familiar with a sound. The linguistic models that

a person has of the incoming sound improve as he gains more experience with that

class of sounds. It is the use of these models for the separation and interpretation

of an incoming sound that allows people to improve their performance- as they

become more familiar with a sound.

Now that an approach to sound separation has been presented, the next

chapter will describe a computer model which attempts to separate sounds in a

way similar to the separation of sOWlds by the auditory system. Imtead of using

all the information sources that the auditory system uses to separate sOWlds, the

computer model focuses on using acoustic information to separate sounas. It does

not use visual or linguistic information to aid in the assigmnent of group objects

to sound streams. The computer model focuses on the creation of group objects

and the assignment of events to group objects.
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Chapter 3

A Computational Model of Sound
Separation

The construction of a computational model of audit-:.ry pruC€.isi.ng would be

fairly trivial if we knew what operations were performed by the auditory system.

The computer algorithms described in this chapter are only estimates of the actual

algorithms used, since we do not know the precise details of how the auditory

system operates. In the absence of exact knowledge, it is extremely difficult to

determine from all of the possible mechanisms that could account for the auditory

system's behavior, which one the auditory system actually uses.

This chapter will describe the computer model that was developed to sep­

arate two simultaneous talkers. The model is based on the theory of auditory

separation described in chapter two. The construction of this detailed model has

raised many questions and issues, and has helped to evolve both an understand·

ing of what the auditory system is trying to accomplish, and how the system

3ccomplishes its processing.

3.1 Cochlear Filtering, Compression, Detection

The input to the sound separation algoritluns is a computer model of

cochlear processing developed by Lyon (1982). In the cochlear model, an incoming

sound signal (that is sampled at 16 khz) is filtered by an 85 channel filterbank.

The filterbank, originally a series of second order canonic sections organized in a
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Figure 3.1: ~chematic diagram of the cascade-parallel filterbank

cascade-parallel form, is shown in figure 3.1.

By rearranging th~ poles, the filterbank has recently been reorganized as a

cascade only form [Lyon 19841. The use of a cascade·form 6.lterhank allows for

extremely rapid high frequency rolloff (greater than 200 db/octave) with a minimal

amount of computation. The transfer function of each filterbank output resembles

the shape of an auditory neuron's tun.ing curves [Sachs &c Abbas 1974]. The

bandwidth of a frequency channel" output was chosen to match the measurements

of critical bands in the auditory system IZwicker 19621. The spacing between the

center' frequencies of each pair of filter sections is a parameter of the model, and

can be set depending on how many channels are desired (the current spacing is

one quarter of the frequency channel's bandwidth, or approximately one twelfth

of an octave at high frequencies). Each 6.lterbank output is maintained at the full

sampling rate (16 khz).

The amplitude of an incoming sound signal can vary over many orders of

magnitude. To compress this tremendous dynamic range of the input, the output

of each 6.lterbank is then processed through a coupled automatic gain control

(AGC) mechani:un ILyon 1982, 19841. The adaptive mechani.sms of the peripheral

auditory system are functionally modeled by several stages of AGC with different

time co~tant9 at each stage. The four stages of AGC in the computer model

have time comtants of 640 msec, 160 msec, 40 msec, and 10 msec. The outermost

AGe mechanisms have the longest time constant to adjust the overall sound level,

while the innermost AGe loops have the shortest time constants for compressing

fluctuations on a smaller time scale.
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Figure 3.2: Top: A segment of a periodic speech waveform. Bottom: The output
of the cochlear model. The waveform is time aligned with the cochlear output.

Since auditory neurons respond only when the basilar membrane moves to·

wards the scala-media, the compressed filterbank output is passed through a half

wave rectifier before the neural encoding stage.

An example of the output of the cochlear model are shown in figure 3.2.

In this picture, the amplitude of the po~itive output of each frequency channel is

represented by the degree of blackness.

The output of the cochlear model then, is 85 frequency channels, with each

filterbank output remaining at the original so.mple rate of 16 k...hz. The output is

kept at a high sampling rate to preserve the information present in the fine time

structure of the output. This fine tL'"ne stl"Ucture will be used by the separation

algorithms. By contrast, most other filterbank designs are concerned only with

the envelope, or short-term average level of each frequency channel's output.
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3.2 Event Representation

The goal ~f the neural encoding of a sound is to preserve the timing and

intensity information in the output of the cochlear model. Rather than model

the neuxal encoding by a stochastic process that uses many neurons to probabilis.

tically encode the amplitude and timing information of a signal, a deterministic

neuron model is used. The output of each frequency channel of the cochlear model

(which is the compressed and half wave rectified .tiJterbank output) consists of a

series of positive w,o,veform peaks. Each waveform. peak looks approximately like

the positive half of a s~e wave. since each frequency channel's output (before rec·

tifica.tion) is a fairly narrow-band signal. The positive waveform in each frequency

channel (between zero crossings) is encoded as a single event. The location of

the event corresponds to the local peak in the channel's output. The amplitude of

the waveform at the peak location and the area under the waveform between zero

crossin~ are stored along with the peak time as properties of the neural event.

Since the computer model's event encoding is not a probabilistic model of

the neural firings in the auditory system, it does encode the timing and intensity

information present in the cochlear model's output into an evenr. rc,resentation.

There are two important differences between th.i! event encoding and a proba­

bilistic neural model. One difference is that the event encoding output resembles

the behavior of an array of nenral fibers. A neUJ'a.! model requires many different

nerve fibers to adequately encode the intensity of an incoming signal while the

event encoding used in this computer model explicitly represents the area and

amplitude of the cochlear output. The second difference is that this event en­

coding does not have a 'refractory period' (minimum time between neural firings)

and will encode all the peaks in each frequency channel, while a neural model

only fires at a rate below some maximum rate and decreases the synchrony of its

firings with frequencies above 1 khz. The event encoding used in this model has

the advantage of representing the timing and intensity infolDlation present in each

frequency channel with little computational effort.

An example of the event encoding of the simulated cochlear output is shown

in figure 3.3. The amplitude .and area feat~es that are associated with each
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Figure 3.3: Top: The cochlear model's output for a single frequency channel.
Bottom: The event representation of that frequency channel. The properties of
each eyent (amplitude and area of the corresponding waveform peak) are not
shown.

event are not shown in this figure. Figure 3.4 shows the transformation of the

cochIeagram into an event cochleagram.

3.3 The Computation of Periodicity and the Co­
incidence Representation

Periodicity is an important information cue that is used by tht: auditory

system for separating sOWlds. Those neural events that have similar periodicity

features can be viewed as coming from the same sound source. The computa·

tion of a local periodicity Ceature in this model is based on Licklider's theory

[19511 of pitch processing in the auditory system. According to his theory, a

neural structure computes an ongoing short-time autocorrelation function of each

frequency channel's output. The neural structure delays each channel's output

through a tapped delay line, and at each tap detects the coincidence of a pulse

at the delay· line output with an undelayed pulse. A lowpas9 filter on each coin-
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Figure 3.4: An event cochleagram. representation

cidence detKtor output generates an equivalent time window for the short-time

autocorrelation function. At a single time instant, the autocorrelation function is

a two·dimensional array, parameterized by cochlear place (frequency), and by the

delay parameter (repetition period). In Licklider's theory, this entire array repre­

sentation is then interpreted through an unspecified neural network to determine

the pitch period. His theory was developed to explain how the auditory system

computes the pitch of an incoming sound, and 'was not originally intended as a

mechaniSM for sOWld separation.

This approach is consistent with the evidence on the neural encoding of

sOWlds presented in chapter two. Other theories of auditory pitch perception

(Gold!tein 1973, Wightman 19731 are mathematical in nature, and are not pre­

sented in a (orm that can easily use the neural encoding of sounds to c<.lmput.e

pit.ch information.

In Licklider's theory iLicklider 1951, 19591, the output of each 'place' along

the basilar membrane is passed through a neural autocorrelator mechanism. The

details of how this neural autocorrelator works are not given. Another difficulty

in implementing the theory is that there are no details for how the periodicity

evidence in different place locations is combined to detprmine the pitch of the
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incoming sound. Due to our lack of knowledge about how the auditory system

computes the coincidence of neural events (for the purpose of r-eriodicity compu·

tation), the way that the events are manipulated remains an open question.

.An autc:orrela.t,i"n type offunction, called the coincidence function (which

computes the coinciding of neural events with previous neural events in a delay

line) is computed for the event representations of each frequency channel as a mea·

sure of the periodicity of the "events in that frequen;;:y channel. The coinciden':~of

each newal event with previous neural events reprel!ents the periodicity informa·

tion about this event. When an incoming event is detected, the coincidence (see

Table 3.1 for a definition of coincidence) of this event with all other neural events

from this frequency channel within the last 24 msec is computed, and this peri·

odicity information becora~s a propertiy of this event. Eve..-y 10 msec, a weighted

average of the coincidence function of all recent events is computed. Each event's

coincidence ftmction is weighted by an exponential factor (time constant;;;: 15

msec) which depends on the time of the event and the time of the current aver­

age coincidence function. The channel's coincidence function therefore represents

an average of ·the coincidence information of all recent events i.'1 that frequency

channel's output.

How are the properties of two events combined to compute the coincidence

of two events? During the course of this research, several different formulas for

combining the properties of two events were used. Of the four formulas that were

used, the last formula in table 3.1 is the version cWTently used. The reasons ior

developing each coincidence formula are discussed below.

The value of an autocorreIaLion function at zero delay is equal to the total

energy of the signal being autocorrelated. The first coincidence formula was chosen

so that the coincidence function of an event with itself is proportional to the energy

of the event (by a'factor of i when the positive peak: of the cochlear model's output

is approximated by a sinusoid). The value of the average coincidence function for

each frequency channel at zero delay could therefore be used as an estimate of the

energy in this frequency region.

The frequency spectrum that was provided by this mechanism seemed some-
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Version C(eventit et1entj) C(eventi,event;) C(event;, ~event,,)

Jareai x amp.. X Jareaj X ampj area; X amp; ~areai X ampi

"jiireQix voreaj area.. j,area"

avg(areai,areaj) x (:~:~:~:::::~::~D area.. larea..

avg(areai,areaj) x (~:~:::::;:::~D 1 area.. !eareai

C(event;,event j ) is how the properties of event i and et1ent j are combined for the
computatbn cf the event;'s coincidence nmction.

Table 3.1: Different ways that the properties of two evenh can be combined

what 8at, and formant peaks were not as sharp as one would like. The reason why

this first coincidence formula Batted the formant shape is that the sharp onset

at the beginning of a pitch period (which is larger than the cochleagram of the

rest of the pitch period), dominated the value of the coincidence functio~ at zero

delay. When looking at a picture of a cochleagram, the location of the formant

becomes clear during the latter part of the pitch period (after the onset has had

a chance to resonate and decay at the formant locations). Th~ second fonnula

for computing the coincidence of events was developed so that the value of the

coincidence f!mction at zero delay would he proportional to the average value of

the channel's output. The peaks in the frequency representation using this second

version were sharper than those obtained using the fiI'st version.

In the second version of the coincidence formula the area of an event was

used (as opposed to using the amplitude of an event). If the amplitude of an

event were used, then two dilferent frequency channels with the same amplitude

but different event rates would have different values of the average coin(iden~e

function at zero delay. The frequency channel with a higher event rate would have

a larger value of the coincidence function at zero delay. By using the area of an

event when 'coinciding' two events, frequency channels with different event rates

but eimilar output levels will have similar values in the coL'lcidence function at

zero delay.
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It was difficult to locate the pitch period in a frequency channel using the

fir9t and second formulas. A periodic sound has a peak in the coincidence function

at the location of the pitch period. Although this peak was present using versions

one and two, many other peaks in the coincidenc~ function wer.e nearly as large.

After a careful study of the problem, it was determined that the output of a

cochlear filter, which was amplitude modulated, would not form a sharp peak

in the coincidence function at the pitch period. Neither of these two versions

preserved the modulation depth present in the original cochlear output. ThU5, a

small amount of amplitude modulation present in the cochlear output would not

be preserved in the shape of the coincidence function. A reql:'irement that the

modulation present in the cochleagram be preserved in the coincidence function

(along with the requirement that the value of the coincidence function at zero be

proportional to the amplitude of the cochlear output) led to the development of

the thi-d coincidence formula. The first term in this formula lets stronger events

inftuence the coincidence function more than weaker events, and the second term

emphasizes the differences in the amplitudes of the two events.

After :3ome use with version three, it seemed there was no reason the ampli~

tude modulation depth needed to be faithfully preserved in the coincidence func­

tion. In other words, the modulation depth present at the output of the cochlear

filterbank could be increased so that the average coincidence function contained a

greater modulation depth than t·he original cochlear waveform. Version four (the

current formula used) enhances the modulation present in the cochlear output to

form a sharper peak in the coincidence function.

When deciding how much modulation depth to use in the coincidence func­

tion relative to the modulation depth of the original frequency channel output;'a

tradeoff occurs between (1) emphasizing the amplitude variations in the events,

and (2) maintaining the ability to compute the pitch period of a periodic signal. If

amplitude changes are emphasized too much, then slight variations in the periodic

signal over successive pitch periods will yield very low values for the channel's

coincidence function except at zero delay. If amplitude changes are not empha­

sized enough, the system will not be a1?le to differentiate between the peak in the
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coincidence function at the pitch period and the peak at some other location. No

quantitative testing was perfo!'Illed to determine how much enhancement of differ­

ences in the o.rea of events is optimal to the performance of the pitch computation.

While there is some qualitative evidence on the relationship between a sig­

nal's modulation depth and the perceived modulation depth [Mathes and Miller

1947], there is no quantitative evidence on this relationship. More detailed in·

formation is needed to determine how the auditory system uses the amplitude

modulation output of each frequency channel to compute periodicity information.

There are two advantages for using coincidence formula 4 over using an au­

tocorrelation function to compute periodicity information of a frequency chaIU1el's

output. These advantages are:

The importance of this requirement can be seen in segments where the am­

plitude of a steady-state periodic segment is decreasing, (Le., where each

repetition of a periodic waveform is successively lower in amplitude). The

autocorrelation function of this signal when the overall amplitude is very

SV-.1all will show larger pew at multiples of the pitch period than at the

pitch period, while the value of the average coincidence fWlction at the pitch

period will always be larger than the value at multiples of the pitch period.

(See appendix one for details.)

2. The coincidence function enhances the modulation depth, the autocorrela­

tion function decreases it. Thus, if an incoming waveform has a certain

modulation depth, the autocorrelation function of this signal will have a

lower modulation depth to its shape, but the coincidence function will have

a greater modulation depth. (See appendix one for d~tails.) By increasing

modulation depth in the coincidence· function, it is possible to determine

the pitch period in each frequency channel from the amplitude modulated

cochlear output.

The foregoing discussion makes it apparent that the amplitude modulation
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present in the cochlear model's output is very useful for d~termining the pitch

period of the incoming sound signal. This amplitude modulation is a result of the

finite bandwidth of each filterbank channel, since the output of each frequency

chaJUlel is influenced by the adjacent lower-frequency harmonics that are not to­

tally suppressed in the filtering. Thus the sharp high frequency cutoff' and the

slower low frequency rolloff' in the cochlear transfer function result in an ampli­

tude modulated output waveform, and this ampl.itude modulat;ion in each fre­

quency channel is encoded by the computer model and used for the determination

of the pitch of a periodic sound.

Another tradeoff' present is the choice of the time t:cmtant used in the de­

cay of the recent event's cOL"1cidence function (current value is 15 msec). A small

time constant allows the average coincidence function of all events to follow rapid

changes in a periodic signal, but results in pitch-synchronous activity in the av­

eraged output: sampling the output every 10 msec (100 Hz frame rate) will alias

the pitch synchronous information, causing 'beating', if the time constant is too

short. A longer time constant will result in smoother transitions between succes·

sive coincidence functions (every 10 msec), but will make it more d.iffi~ult to follow

rapid changes in the pitch of a periodic signal.

3.4 Examples of the Coincidence Function

At this point, it should be helpful to present several examples of the coinci­

dence representation of different types of sounds.· Figure 3.5 shows the coincidence

function when the input is a synthetic periodic sound (all the harmonics of a 100

Hz fundamental). The first vertical stripe (away from the x origin) is the location

of the pitt:h period. Since the output of each frequency region of the cochlear

model will have the same pitch period, each frequency region in the coincidence

function has a peak at the same location.

Figure 3.6 shows the coincidence function of anotn.er periodic sound. This

sound is very similar to the sound in figure 3.5, except that the first seven harmon­

ics are missing. The cochlear output of the low frequency channels is very weak
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PITCH PERIOD 1

COINCIDENCE DELAY -

Figure 3.5: The coincidence function of a synthetic periodic sound. All the har­
monics of 100 Hz fundamental are present with an amplitude that rolls off as
l/F.

and as" a result, the coincidence picture in these frequency regions looks blank. All

the frequency channels with center frequencies above the location of the eight har­

monic have a peak at the pitch period. The pitch period can be ~asily determined

from this representation as the location of the fust vertical stripe (away from the

x origin).

The coincidence function of white noise is shown in figure 3.7. Since the out­

put of each frequency channel will be bandlimited noise, the coincidence function

dies away as the coincidence delay increases (since the correlation between the

channel's output will decrease as the time between the two points increases). No­

tice the lack of any structure, or vertical stripes (like the periodic :sound sources).

The coincidence function of periodic speech is shown in figure 3.8. Each

horizontal stripe in this picture represents a concentration of spectral energy. Some

harmonics do not show ~p in the picture (such as the second harmonic) since the

amplitude of this harmonic is low. Each frequency region with strong enough

energy shows a peak in the coincidence delay at multiples of the pitch period.
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Figure 3.0: The coincidence function of harmonics 8 through 79 of the same peri­
odic sound iil figure 3.5

COINCIDENCE DELAY -

Figure 3.7: The coincidence function of white noise

The last example of the coincidence function is shown in figure 3.9. The

input :iignal is the sum of two sine waves of 100 and 110 Hz. The 110 H) sine
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PITCH PERIOD T

COINCIDENCE DELAY-

Figure 3.8: The coincidence function of the vowel/II in the digit /s~1

wave has twice the amplitude of the 100 Hz sine wave. The waveform can be

viewed as the sum of a 110 Hz sine wave with an amplitude modulated (10 Hz)

sine wave of 105 Hz. When the 105 Hz amplitude modulated sine wave reaches

it', amplitude envelope minimum, the 110 Hz ,ine wave can be clearly seen. The

middle and bottom pictures are the coincidence fWldion of a singie frequency

channel shown over time. As the ,incoming signal's frequency varies between 110

Hz and some intermediate value (between 105 and 110 Hz), the peak in the this

frequency channel's coincidence function will also vary.

This example shows the reason for the development of the smoothing algo­

rithms used (described in sedion 3.6.1 and 3.6.3). The peak in the coincidence

function for two steady state periodic sounds will lie between the pitch periods of

the two individual periodic sounds. Each row of the coL'lcidence fwlction is then

convolved with a smoothing waveform. If the peak is exactly between the two

individual pitch periods, then smoothing the coincidence function will result in

an equal amplitude at each of the individual pitch periods. The incoming energy

can then be split evenly between the two sound sources. If the coincidence peak

is closer to one pitch period than to the other, then the value after the smoothing
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operation can be used to assign more of the energy t<> this sound source than to

the other sound source. The smoothing function used in the separation system

(described in section 3.6.1, also see figure 3.12) varies with the frequency chan­

nel being smoothed; the total width of the ·smoothing function is rougly equal to

the period of a sine wave with a frequency equal to the center frequency of this

channel.

3.5 The First Separation System

The algorithms for separating sounds presented in this thesis have been

modified many times. The previoW! section discussed several different versions ~f

t·he coincidence function which were developed and modified fer different reasons.

The computer model for separating sounds has ako undergone many different

c.hanges over time. Two different implementatiolUl of the theory of sound sepa­

ration (presented in chapter two) have been developed. This section will briefly

review the first computational model for separating sounds. This model is no

longer in use and has been replaced by f.. newer version of sound separation algo­

rithms. It is described briefly ill this section to explain the difficulties that were

encountered in implemeni.lng the auditory theory. After the limitations and prob­

lems with this initial system have been reviewed, the cu..-rent computational model

of auditory sOWld separation will be presented.

The goal of the first model was to separate two periodic sO-'n:ls in a way

similar to the human auditory system. The acoustic cues used to separate the two

periodic sounds are pitch, pitch dynamics, and onset information. These infor­

mation cues were computed from the average coincidence representation frames

(computed every 10 msec).

Since the computation of the average coincidence function for periodic in·

formation is local in both time and frequency, two possible outcomes arise: (1) if

at some time sound number one was much stronger than sound number two in one

frequency region, then the coincidence function would reflect the properties of the

stronger periodic sOWld; (2) if sOWld two was much stronger than sound one in a.

different frequency region, then that frequency region would ·reflect the features
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TIME~

TiME~

Figure 3.9: Top: Sum of two ,ine waves (F=100, 11~ Hz) of unequal amp1itud~

(the 110 Hz sine wave is twice as large as the 100 Hz sine wave).
Bottom: The coincidence function of a single frequency channel over time. Each
column of this picture is the coincidence function of that frequency channel at a
different time. This channel's coincidence function is time aligned with the original .
waveform (above).

of the second sound source. Even though two sounds may have the same overall

energy, the two sounds can have the energy concentrated in different frequency

locatiorul. The coincidence function in each frequency channel would respond to

the sum of the two signals, but if one sound was .much stronger than the other

sound in that frequency region, the propertie9 of the coincidence representation

would refteet only the information from the stronger sound source.
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A key approximation in this first system was that 'each channel of the coinci­

dence function wiJ! reBect the information of either one sOWld source or the other'.

Since the computations are local in both frequency and time, two sounds that had

the same energy could be" easily separated if they had different distributions in the

frequency-time plane, such that locally one sOWId was stronger than the other.

Using this approximation, the system then focused on determining which sound

source the periodic information in a given frequency ch~el represented. When

it determined that there were two periodic sounds present', Itdecided whether the

periodic information p:'csent in this frequency channel was consistent with the first

pitch period or the second pitch period.

The neural events in each frequency channel at each point in time were

assigned to the different group objects present, based on the consistency of the

frequency channel's features (pitch, pitch dynamics and onset) and those of the

group object. There were two t)--pes of group objects in this first system. There

were periodic group objects and burst group objects. The periodic group objects

represented steady state periodic sound segments and the burst group objects

represented the events at the onset of a periodic segment. The burst groups were

necessary because the events at the onset of a periodic sound ha~e nothing in the

past to autocorrelate with (and have a very low periodicity value). There were

plans to add a nonperiodic group object to the system (to represent the nonperiodic

speech segments), but this was never implemented.

The system first computed the coincidence representation of the incoming

sound. Next, it c'JIDputed the different information cues (local to each frequency­

time region) so that the events could be assigned to thE: different group objects.

The average coincidence function of all recent events in each frequency channel

were computfld every 10 rosec. Since the value of the average coincidence [WIC­

tion at the pitch period was sometimes split between two neighboring bins, the

amplitude of the coincidence function did not accurately reBect the true degree of

periodicity at the pitch location. Therefore, before computing the different local

features for sound separation, the coincidence function in each frequency channel

was smoothed by convolving it with a gaussian envelope. A gaussian curve for a
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smoothing function is just one of the ~any possible shapes; the standard deviation

was equal to 2 samples at a sampling rate of 16 khz. This smootmrlg operation

was added to remove the effect of bin splitting, and to have the amplitude of the

coincidence function at the pitch period 'reflect the periodicity of the signal at that

location. The resulting representation was called the "moothed coincidence func·

tion. The height of the resulting smoothed coincidence function was then used to

locate the pitch period.

For each frequency channel, independent features were computed from this

smoothed coincidence function (!ruth as the pitch period of the sound in that

frequency region). Since it was not possible to determine the pitch period in

each frequency channel with 100% accuracy, a list of the possible pitch periods

in each frequency channel was computed. A pitch strength was computed for

each possible pitdl period in each frequen;:y channel. Possible pitch periods were

chosen usin~ the following algorithm: all local peaks in the smoothed coincidence

function, having an amplitude greater than .7 (an arbitrary number that worked

well) multiplied by the maximum value of the coincidence function in the allowable

pitch interval, were chosen as possible pitch periods. Using this formula, it was rare

for the actual pitch period not to be included among the possible pitch periods,

although a channel sometimes contained many fa!/{e possible pitch periods.

In addition to computing the pitch period of each frequency channel every 10

msec, the pitch dynamics and the,percent amplitude change were also computed.

The percent amplitude change was computed to determine if an onset of a sound

had occurred; the pitch dynamics were computed to aid in the separation of the

two periodic sounds.

The next stage in the separation processing was the assignment of events

to different group objects. A summary of how the events were assigned to the

different group objects is listed below:

1. For each of the group objects that alreauy existed, the system d1!:termined

how well this group object accoWlted for the information present in the

coincidence representation. When different features of a frequency channel

were close to the features of the group object (Le., when the weighted distance
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between the feature vectors was less than a threshold), the group object

was so.id to be compatible with the information present in that frequency

channel. A group object could be compatible with some frequency channels

by random chance, even though the" SOWld that the group object represented

might have already stopped. Therefore, a minimum. number of frequency

channels had to be explained by any pre-existing group object before any

of the channels couH. be assigned to that group object. The determination

whether there were enough frequency channels in the current time frame

which were consistent with each 'ycup object was made by checking that the

number of frequency channels (which were compatible with a group object)

was greater than a seL threshold. If the system determined that there were

enough frequency channels, the individual frequency channel objects (all the

events in the past 10 InSec window in that frequency channel) were assigned

to the group object with a 'link' of a certain strength (based on how dose

the features of the frequency channel and the group object were).

2. After the events in some frequency channels were linked to the existing group

objects, the system determined whether there were any frequency channels

that were 'Wlexplained' by any of the current gr:oup objects (frequency chan­

nels with no links to any group 'lbjed or very weak links). If there were a

large number of frequency channels that remained unexplained I the system

tried to create a new group object that explained the remaining frequency

channels. All frequency channels not well explained by any existing group

object (links to current group objects less than some threshold) were col­

lected. If there were enough. frequency channels that were unexplained by

any exi~ting group object, and if there is a new group object which can ex­

plain this data to a certain level (explain more than 70% of the remaining

frequency charmels), then a new group object was created and the appropri·

ate frequency channels were linked to this new group object.

There were several problems with this first separation system. The main

difficulties that were encountered with this model are summarized below:
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1. The system required that the information features of the group object at the

previous tim(; frame (pitch period, pitch dynamics, increase in amplitude) be

dose to the features of the different frequency channels in the current time

frame (10 msec later) for the frequency channel to be assigned to the group

object. Sometimes, the pitch of a tal.k:er would change from one time frame

to the next by an amount greater than the pitch continuity threshold used.

This would result in none of the frequency channels being assigned to the

appropriate group object, and a new group object would then be created.

These two group objects would have similar pitch period features and would

then compete with each other to explain the different frequency channels

even though both group objects belonged to the same sound source.

2. Sometimes there were channels not explained by any group object, but the

channels were not numerous enough to justify creating a new group object.

Therefore weak sounds sometimes went undetected because of the lack of

sufficient information. By lowering the threshold used to create a new group

object, one could decrease the number of times that frequency channels went

unexplained. This lowered threshold would result in the creation of false

group objects, which did not correspond to any sound source present. The

threshold in this system was set at a high level so that false group objects

would never be created. This disadvantage was somewhat offset by the

backtracking algorithm used. That is, if a new group object was created at

some time, a search was undertaken for frequency channels in previous time

frames that could be assigned to this new group object.

An example of the separated output from this system is shown in figure 3.10

and 3.11. There are two synthetic vowels present with differ~nt pitch periods, dif~

ferent onset and offset times, and formants in different frequency regions. Shortly

after one vowel has begun, a second synt.hetic: vowel is started. The system de­

termines both how many sounds are present and which frequency channels were

created by which sound SOUIces.

By looking at the cochlear model's output of the higher frequency channels,
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Figure 3.10: Top: The original cochlear representation of the two synthetic vowels.
Each vowel has its three formants in different frequency regions. Bottom: The
coincidence representation when both synthetic vowels are simultaneously present.

one can see that each pitch pulse from the different SOWld spurces was separately

resolved in time. The output of the separation program assigned all the events

in each frequency channel in a 10 msec interval either to one group object or to
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Figure 3.11: Top: The same coincidence fWlction shown in figure 3.10. Middle:
Those frequency channels with one pitch period were assigned to the first group
object. Bottom: Those frequency channels with the second pitch period were
assigned to the second group object.

the other group object. Based on these results, the method used to assign events

to group o.bjects in the first system was then modified. Ins~ead of assigning all

the events in a frequency channel in a 10 msec time interval to 'one group aeject

or anothef, independent link strengths between each event (in each frequency

channel) and the different gl'OUP objects were computed.

There are several difficulties with the algorithms used by this first compu­

tational model of sound separation. The separation program contained many dif·

ferent thresholds for making the decisions that were necessary to separate sounds.
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All decisions made by the system used local.information, and independent deci­

sions were made every 10 msec. The system assumed that the features computed

in each frequency channel (pitch, pitc:h dynamics, increase in amplitude) reflected

the features of either one sound source or the other sound source (they were not

some interme".ia.te feature vector). The decision when to start and stop group

objects was based on satisfying arbitrary criteria, as was necessarily the case with

many of the d~cisions made by this first computational model.

In an attempt to solve these problems, a second computer model of the

auditory sound separation process was developed. The next section describes this

model.

3.6 Current System Overview

Since many decisions must be made by a separe.eion system, a decision

framework for separating sounds was needed. The second, and current computer

model attempts to solve the difficulties encountered with the first separation sys­

tem. The difficulties with this second computational model of sound separation

are described in chapter four where the performance of this system in separating

two simultaneous talkers is reviewed.

The goal of the current computer model is to separate the simultaneous

speech of a male and female talker. The author selected two male and two female

talkers from a database of speakers used for a speaker·independent continuous·

digit recognition system being developed in the same laboratory [Kopec and Bush

1985J. For these four talkers, the author constructed a database of handmarked

speech digit strings. This database was used to train and test the separation

performance of the computer model. The output of this separation system was

then used as input to the Kopec-Bush speech recognition system.

The database consists of 39 single-speaker digit strings (of seven continuow

digits) spoken by two males and two females. It also consists of 38 examples of

dual-speaker digit strings (obtained by adding the single-speaker waveforms of a

male and a female speaking different digit strings). The database was limited

to tlLis size for computational reasons (eg, limits on disk storage, comEuter time
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necessary to process the data).

The current separation system, then, consists of the following four stages:

1. An ~~erative dynamic programming pitch tracking algorithm determines the·

pitch period for each of two sound s.ources. If one or both sound:;: 2.l'e not

periodic, the corresponding pitch period has no meaning.

2. A Markov model represents the number of sounds present (Le., one or two)

and the type of each sotmd source (i.e., periodic or nonperiodic). By finding

the probabilities of the states of the 1'.1arkov model given the input, the

Viterbi algorithm is used to determine when group objects start and stop,

how many group objects are present, and which groc.p obje-:ts belong to

which sound streams.

3. An algorithm estimates the amplitude (in each frequency channel) of each

sound source present, given information on the number of sounds and the

type of each sound source. Both periodic information and spectral continuity

constraints are used in an iterative algorithm to compute an estimate of each

sound source. One constraint, however has been dropped: the approximation

that the features in a frequency channel reflect one sou.'"ld 30urce or the other.

4. An algorithm resynthesizes a waveform from the separated output. In order

to interface with the recognition system (at the current time), a waveform

of the separated output is computed. This waveform also allows people to

listen to the separated results.

The next sections will describe in detail how each of the different algorithms

works.

3.6.1 Fundamental Frequency Computation for Two Speak­
ers

When a person is speaking, some of the speech segments can be classified

as being 'periodic'; others segments can be classified as 'nonperiodic' (although.
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Figure 3.12: A picture of an AS smoothing waveform, used Lo smoot.h one row of
t.he coincidence function

for real speech data, the 'OO\U1dary between periodic and nonperiodic speech is

difficult to determine). The goal of the fundamental frequency computation is to

develop a continuous pitch track for each of t.wo speakers, whether the penon's

speech is periodk or not. H the person's speech is periodic, the pitch track will

coincide with the period of repetition of the speeeh siplal. During a person's

nonperiodic speech segments, the value!! of the pitch track are not importan~. A

decision about whether the person's !!peech is periodic or nonperiodic is made in

the next !!ection of the model.

Instead of using the ve:rsion of the smoothed coincidence function described

in section 3.3, a different waveform smoothing function, the autocorrelator smoother

function (AS), i5 used to smooth the rows of the coincidence function. This AS

function is used for consistency with the smoothing function wed in the spectral

estimation algorithms described later in this chapter. The AS smoothing wave·

forms used are computed as follows: white noise i9 passed through the cochlear

model, and the positive output of each frequency channel (before event encoding)

is autocorrelated. The autocorrelation function is then trimmed at. the first min·

imum. along the autocorrelation delay parameter. While the previous smoothing

function (gaussian smoother, standard deviation ='2 samples) was (omtant across

all frequency channels, the AS smoother varies in width in each frequency channel.

A sample AS function used is shown in figure 3.12.

After each frequency channel's average coincidence (Wlction is convolved
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with this smoothing waveform, ell.ch frequency channel is normalized in ampli­

tude (so that the value is 1.0 at zero delay). Next, the $moothed and nOf'maIized

coincidence function of white noise is subtracted from this representation. [The

smoothed and normalized coincidence fWlction of white noise is computed as fol­

lows: The long term coincidence function of white noise is computed in each

frequency channel. Each frequency channel of the noise's coincidence function is

smoothed with the AS waveform described above, and then each frequency chan­

nel is normalized in amplitude.I The coincidence function of a speech signal before

and after this subtraction operation is shown in figure 3.13.

The effect of this subtraction operation is to 'subtract out the average co­

incidence function of a signal with no structure'. Large positive values of the

resulting coincidence representation indicate that there is real structUJ'e in the

incoming sOWld.

The different rows of the resulting coincidence representation are then av­

eraged together. If there is a periodic sound present, the signal should contain a

large peak at the pitch period. Other peaks will be present at multiples of the

pitch period. A picture of the average across different frequency channels is shown

in figure 3.14.

The properties of this representation are discussed below.

• No limitation on the allowable pitch range is imposed. The requirement of a

minimum allowable pitch period can be removed because the AS smoothed

coincidence function of white noise is subtracted from the original coinci­

dence function. The maximum pitch period is limited only by the length of

the delay line (which is 24 msec in this implementation).

• Each place location contributes equally to the detoermination of the pitch

period. Since the rows of the smoothed coincidence function are normalized,

each frequency channel that responds to a weak harmonic contribute::> just

as much information as a frequency channel :hat responds to a stronger

harmonic. The information contained in all frequency channels is used in

the computation of the pitch period (unlike other algorithms which use a
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Figure 3.13: Top Left: The same coincidlmce function of a vowel shown in figure
3.8.
Bottom Left: Each fr",quency .:hanniCl of the above coincidence function has been
smoothed with the AS smoothing waveforms. Top Right: Each frequency of the
bottom left picture is normalized in amplitude. Bottom Right: The smoothed and
normalized coincidence function of white noise has been subtracted from the top
right picture.

particular frequency range) .

• There is no frequency estimation of each harmonic', locatio? The algo.

rithm! wed in implementing Goldstein's pitch theory [Duifhuis"et al 1982,

Scheffer, 19831 employ an auditory model of the 9pedral amplitude to esti­

mate the location of the lowest several harmonics. The algorithm used in the

current system makes no use of the amplitude variations at diH'er~nt place

locations; this information is not reliabl~at moderate to high stimulw l~v~ls.

Averaging the coincidenc~ representation of th~ different frequency channels
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PITCH PERIOD 1 COINCIDENCE DELAY _

Figure 3.14: Bottom: The row average of the smoothed, normali,zed, mi·
nus-random coincidence function (see bottom right picture in figure 3.13 for de·
tail,).
Top: Each column contains the row average of the processed coincidence function.
The row average coincidence function is shown for a seven digit string. The bottom
picture is the slice at the cursor location. The lowest horizontal stripe in this
picture is the movement of the pitch period.

would be somewhat analogous to using the harmonic sieve on the raw audi­

tory spectrum.. The width of the AS smoothing function would correspond

to the width of the sieve.

For a single sound source, this representation could be used to determine the

pitch period of the periodic sOWld present. When two sounds are present, if the

two pitch periods form a simple ratio (2:1, 4:3, ,.. ) the largest peak in this average

coincidence representation would be at some multiple of each of the individual

pitch periods. If the ratio is 4:3, then the peak in the c.oincidence function at a

delay = 4*Periodt = 3.Period2 would have the largest value. All of the harmonics
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from both sounds would be multiples of the resulting fundamental frequency.

To compensate for these false peaks in the average coincidence fWlction (at

a multiple of both pitch periods), a scaling factor is epplied to emphasize peaks

in this representation with a smalier value of the pitch period. ~his scaling factor

is a linear weighting which varies from a value of 1.0 at zero delay to a value of

.1 at the end of the coincidence delay line. The peaks at the actual pitch periods

are emphasized over peaks at multiples of the pitch periods.

A dynamic programming algorithm computes a pitch track instead of making

independent decisions for the pitch values every 10 msec. Two options exist for

computing 3 dynamic programming pitch track for two periodic sounds. These

two options are compared be}nw.

• A dynamic programming algorithm traces the pair of pitch periods (Pl,P2)

through time. Since each pitch period could vary over a range of 384 samples

(the length of the delay line), there are 147456 different values for the two

pitch periods (Pl,P2). A dynamic programming score for each of the 147456

pitch period pairs would have to be computed every 10 msec. Since such

extensive computation is not feasible, a beam search would be necessary to

reduce the computation load, but such a search might result in the deletion

of the actual pitch period pair .

• An iterative dynamic programming algorithm first traces the dominant

pitch period (the pitch period with a stronger peak in the average coincidence

function) through time, an.d then traces the weaker pitch period through

time. This algorithm is computationally more feasible, since at each of the

two iterations, only 384 ponible pitch values need to be considered. The

disadvantage of this approach is that if it makes an eno!' while computing

the first pitch period, this error might also cause an error in the location of

the second pitch period.

Due to the computational considerations mentioned, the iterative dynamic

programming algorithm was chosen as. the algorithm for computing the pitch pe-
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riod. Different dynamic progra.mming algorithms are used to compute the domi­

nant pitch track and the weaker pitch track.

A dynamic programming algorithm computes a pitch score for every possible

dominant pitch period (p ::: 0 to 383 samples) every 10 msec. It is desired that the

location of th": maximum in the domina..·tt pitch score is equal to the pitch period

of one of the two sound sources. The dominant pitch score

PitchScOO'.I(P,T)+
DynProgScOO'.I(P, T) "£ ". { DynProgScOO'.I(p, T - I)+} (3.1)

maxp=o TransScorel(P _ p,T)

is equal to the sum. of the score from the periodicity information at the current time

frame, and the score from transitional information (which is based on the dominant

pitch score at the previous time). The pitch score is computed as follows:

PitchScorel(P, T) ~f ModAvgCoin(P, T) (3.2)

{

AC(P, T).
ModAvgCoin(P, T) "£ 0 LinWt(P)

AC(P, T) > AC(P - 1, T)
if and

AC(P, T) > AC(P + I, T)
otherwiJe

(3.3)

The average coincidence function I AC(P,TJ is shown in the bottom picture

of figure 3.14 I is equal to the average of all the rows of the smoothed, normalized,

minus-random coincidence representation in figure 3.13 (bottom right picture).

The modified average coincidence function [ ModAvgCoin(P,T) I is zero every­

where except at the local maximums of the average coincid~nce function. This

restriction forces the dominant pitch track to pass through a local maximum in

the average coincidence representation. The average coincidence function is scaled

by the linear weighting function previowly described (varies from 1.0 at P:::O to

.1 at P:::383)' to prevent multiples of the pitch period from being chosen as the

actual pitch period.
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The transition score is a fu..."ction of the pitch change (from the previous

tin:.-e f!ame to the current time frame), and is largest when the pitch transition is

smallest.

Tran!Scorel(deltaP, T) ~(expl-.l...h{ddl..PII. ~afModAtlgCoin(p,T) (3.4)

The first term in equation 3.4 varies from 1.0 (when the change in the pitch period

is equal to 0) to 0.0 (when the pitch period change is very large). The second term.

scales the transition score by the maximum of the modified average coincidence

function (equation 3.3). Since the .pitch score varies depending on the height of the

average coincidence function, the transition score is scaled to balance the relative

importance of the pitch score and the transition score. This transition score favors

the pitch period over multiple:l of the pitch period. When the pitch of a periodic

sound changes by n samples, twice the pitch period will change by 2n samples,

and will therefore have a lower transition score than the actual pitch period.

The value of the pitch period P which maximizes the dynamic programming

score at a time T is computed. The algorithm then backtracks 2S frames (250

msec). tracirlg the previous pitch period p which gave rise to this maximum in the

dynamic programming back in time. The resulting pitch periQd (250 msec before

the current time) is the dominant pitch period at that previous time frame.

Once a decision has been made about the value of the dominant pitch period

at every point in time, these pitch periods are then assigned to the sound stream

which is believed to have generated them. Each of two sound streams contain

the average pitch value of the speakers that are being separated. The dominant

pitch value is assigned to the sOWld stream with the closer average pitch period

(provided that the dominant pitch value is within 60% of the average pitch value

of that 90Wld stream). The dominant pitch period will oscillate between the two

sOWld streams, depending on which periodic e.=:gnlent is louder at the time.

Since the system attempts to separate a male and a female speaker (whose

average pitch value5 are different), the system can assign the pitch to the sound

stream based upon which speaker has the closest average pitch period. This algo-
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rithm would not be feasible when attempting to separate two speakers with the

same avenge pitch.

A second dynamic programming algorithm (equation 3.5) is then used to fill

in the missing pitch periods in each sound stream. The b~st pitch track between

the known pitch endpoints (when the dominant pitch period switches from this

sound stream to the other sound stream. and then back again) is then computed.

The dynamic programming score for the weaker pitch period

PitchScorc2(P, T)+
DynProgScorc2(P, T) "£ ,n { DynProgScorc2(p, T - 1)+} (3.5)

maxp.o Tran.Scorc2(P - p, T)

is also equal to the sum of a pitch score and a transition score. The pitch score

for the weaker pitch period is computed as follows:

Pi'chScorc2(P, T) "£ E""...,. mulO, MCain(f, P, T) - MCain(f, DomPi'l(T), T)}
NumFreqChannel.s

(3.6)
MCCL"l'is the coincidence representation after it has been smoothed, normalized,

and had the coincidence function of white noise subtracted from it (bottom right

picture in figure 3.13). If the average spectrum of the weaker periocUc sound is

larger tha."l the ayerage spectrum of the dominant periodic sound in some frequency

regions, one would expect the value of the modified coincidence representation (in

these frequency regions) at the location of the weaker pitch period to be larger than

the value at the dominant pitch period. In each frequency channel, the difference

in the value of the modified coincidence fWlction at possible pitch period P with

the vaiue of the modified coincidence function at the dominant pitch period is used

to indicate that P is a possible location of the weaker pitch period.

The. transition score for the weaker pitch period

dd ab.s(deltaP) 2
Tran.Scorc2(dcltaP,T) = -.1. (--1-0--) (3.7)

has a heavy penalty for large pitch variations. The transition score is not scaled in

amplitude (like the transition score in equation 3.4L so that when the pitch score
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is very small (due to the weaker periodic ~mund being maskedL the transition score

will increase in importance (to increase contextual information).

The weaker pitch· trade. is constrained to start and stop at known pitch

en.dpoirits (obtained when the dominant pitch period is assigned to this sound

stream). This second dynamic programming algorithm fills in the values of the

pitch track of each sound source when the dominant pitch value was not assigned

to this sOWld stream.

The result of this iterative dynamic programming algorithm is a pitch period

value at every time frame (every 10 rosec) for each of two ·sound streams. The

dominant pitch period is computed first, and is then assigned to the .sound stream

with the closest a.verage pitch period. A second dynamic programming algorithm

is used to fill in the missing pitch values of each sound stream, (i.e., when the

dominant pitch period is not assigned to this sound stream).

The value of a pitch period in each time C"'me does not mean that there a:re

two steady-state periodic sounds present. The~e pitch values will be used in the

next stage to determine whether there is one sound present or two sounds present.

These values are also USE-d to determine whether each sound sourc:: is periodic or

nonperiodic.

3.6.2 Hypothesis Determination

The speech database of 40 single-speaker digit strings (of seven continuous

digits) was handJabeled based on a finite state model. Every 10 msec, a label was

assigned to that segment of the speech database. The finite state model currently

cornists of seven states: silence, periodic, nonperiodie, onset, offset, increasing­

periodicity, deereasing-periodicity. Three of the states are 'steady states" while

the other four states are ltransitional states'. A speech 50und can remain in a

steady-state sound from one time frame to the next, but it can only remain in a

transitional-5tate for 10 msee, after which it must transition to one of the steady

states. A state transition diagram along with the tramitional probabilities between

states (computed from the database) is shown in figure 3.15.

The model for two sound sourees consists of a separated state transition
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State Transition NetWork for 1 Sound

.'tI

Figure 3.15: State transition network for a model of one sound source.

network for eadl sound stream. The only constraint imposed on the two-sound

model is that only one sound can make a transition to or from a transitional state

(onset, offset, increasing-periodicity, decreasing-periodicity) at a time. One sound

source model must remain in the same state while the other sound source model

transitions between the different steady states. The resulting model consists of 33

states and 69 state transitions.

Instead of making independent decisions at each point in time, the state

transitions constraints of the Markov model are used to maintain decision conti·

nuity across time. The Viterbi algorithm is used to decide both how many sound

sources are present, and what the characteristics of each sound source are (peri­

odic, nonperiodic, ... ). The system couId decide that only one sound source was
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present by labeling one of the sound streams as silence.

At every time frame, the hypothesis cost of every possible state

HypCo.t(Stat.;, T) '1;' min { HypCo$t(Stat.;. T - 1)+ }
1I110U111bl£ frlln.i!i"!m' TransCo"t(Statej -+ Statei)

(3.8)

is computed. The hypothesis cost of each of the 33 states is computed from the

hypothesis cost of the previous state at· the previous time and the cost of the

transition (from the previous state to the current state). The transition cost

Tran"Cost(State' _ State,.) ~r TransDataC~8t(Statej"'" State;)+ (3.9)
1 TransAPnor1Cost(Sf.atej -. State,.)

consists of two components: a cost which depends on the data and a cost which

depends on the a priori state transition probabilities. The a priori state transition

cost

1"ransAPrioriCost(Statej ..... Statei) ~r
(3.10)

-log Probability(Statej -+ State,. 1Statej)

is computed from the state transition probabilities computed from the handmarked

database. The data transition cost

Tran"DataCo~t(Statej -+ State,.) ~r

{

PeriodicityCost(f, Statej -+ State;}+
Avg,r(~ AmplitudeCo.st(f, State; -+ Statei)+

AmpChngCo.st(f.Statej"'" Stated

(3.11)

is the average data cost across all the different frequency channels. The data

cost in each frequency channel for a state transition consists of three components:

a periodicity cost, an amplitude cost, and an amplitude change cost. The local

periodicity cost
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PeriodicityCo&t(J, Statej _ State;) ~
(3.12)

- log Probability(f, Periodicity Data I State; _ State,.)

is computed from the probability of observing the periodicity information for each

of the state transitions. Different periodicity information is used depending on the

state tr~ition we are considering.

Probability(f, Periodicity_ Data I Statej - Statei) ~

1

Prob(MCoin(t, of> = Pitch,))

Prob(MCoin(t, of> = Pitch,))

Prob(max(MCoin(t, Pd, MCoin(t, P,)))

if one sound present

if sound one is periodic, sec­
ond sound is nonperiodic

if both sounds are periodic
(3.13)

Each of the probabilities in equation 3.13 is obtained by histogramming the

periodicity information for each state transition. When the state being comid·

ered is only one person speaking (the other speaker's model remains in the silent

state), the probability of observing this value of the modified coincidt:-"'lce func­

tion at that person's pitch period is computed. When the state being considered

is two simultaneous periodic sounds, the probability of observing thoa maximum

of the modified coincidence function is computed. The probability histograms of

these values were computed for each state transition. The pitch periods used in

computing these probability histogra.ms were the pitch tracks that were computed

on each of the isolated sounds. The probability of the amplitude and amplitude

change data

Probability(J, Amplitude Data I Statej _ S'tate,-) d£
(3.14)

Probability(Cmn(t, of> = 0) I Statcj - Statc;)
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Probability(f, Amplitude Change Data I State; -+ Statei) ~r
(3.15)

are computed from probability histograms for each of the different possible state

transitions.

At the end of the incoming sound signal, the best path is determined by .

backtracking from the state with the minimum cost at the last timE frame. The

resulting state path determines when periodic and nonperiodic group objects start

and stop, and which sound stream they belong to.

If two simultaneous sounds are present at one time, the Markov model im­

plicitly assigns each of the different group objects to different sound streams. The

only way that a nonperiodir; segment could always be correctly assigned to a sound

stream is if this segment overlapped in time with a periodic segment from the other

speaker.

3.6.3 Spectral Amplitude Estimation

The previous two sections have described the way the system determines

both the number of sounds present and the charactuistics of each sOWld source.

The next step is the estimation of each ~ound source's spectral amplitude, given

that we know the types of sounds present.

When the system has determined that there are no sounds present (both

speakers are silent), the spectral amplitude estimate of each sound source is O.

When it has determined that there is only one sound present (one sound source

is silent, while the other sound is in one of the other six possible states), then

the spectral amplitude estimate for this sound source is equal to th'e observed

spectrum (the other spectral amplitude is set to 0). When there are two sounds

present, the system uses the algorithms described later in this section to compute

an estimate of the spectral amplitude of each of the two sounds present.

The difficulties in estimating the spectrum of each sound source (when there

are two sound sources present) are listed below:
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• When there are two periodic s~unds and &ome harmonic components are

approximately integer multiples of both fundamental frequencies, it is im·

possible to. determine an amplitude estimate at these frequencies for each

sound source only using information at the cunent. time. When the pitch

periods vary over time, estimates at neighboring time slices can help to re­

solve the uncertainty in the estimates of these harmonic crmponents.

• Since the periodic signal typically undergoes changes from one pitch period

to the next pitch period, it can be viewed as consisting of two components: a

part that repeats exactly from one pitch period to the next, and a part that

has changed from the previous pitch period. When one sound is periodic

and the other sound is nonperiodic, there is a difficulty in estimating the

spectral amplitude, since it is impossible to determine what part of the sum

signal's observed nonperioidicty is due to the nonperiodic sound source, and

what is due to the periodic sound source.

• Since the frequency responses of neighboring frequency channels overlap,

independent estimates of the spectral amplitude in each frequency channel

may pi'cdnce a spectral estimate which is not physically realizable. There

are constraints on both what spectral amplitudes are possible to synthesize

and what spectral amplitudes are likely to be produced by tlle human voice.

One would ideally like to generate the maximum likelihood spectral estimate

for each sound source givp.n the periodicity information present and the spectral

continuity requirements of speech sounds. However, a joint estimation of the

spectral amplitude of each sound source over a frequency time region is not feasible,

since it would require the joint estimation of thousands of variables. The spectral

estimation algorithms that are described in this section use a two step approach

listed bdcw.

1. Compute an initial spectral estimate of each sound source using only local

periodicity information.
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2. Heratively co~~~te a spectral estimate for each sound source which locally

minirillzcs a cost function (maximizing the probability of each local spectral

estimate). At each iteration, the cost of a local spectral estimate is com·

puted based on both the observed periodic~ty informatio~ and the current

spectral estimates of the neighbcring fcequency.time regiom. The spectral

estimate with the lowest cost is used as the current spectral estimate for this

frequency·time region at this iteration level.

The spectral amplitude estimation algorithm first computes the ratio of the

spectral amplitude of the two sound sources, and then the estimate of each sound

source is computed from this estimate of the spectr'!.! amplitude ratio. Since the

initial stage of the cochlear filterbank is a linear process (before compression and

half wave rectification), the filterbank output of the sum of the two sOWlds is

- equivalent to the sum of the 6lterbank outputs of the isolated sounds. The sum

of the two filterbank outputs might produce an output which is smaller than the

origi.,al 6lterba.nk output depending on the phase relations between the filterbank

output of the two sound sources. The expected value of the average filterbank

output

AS ~ -{; J::;" / AI' + A2' - 2. AI. A2 • cos(8) d8

(3.16)

can be approximated by the expected value of the sum of two narrowband filtt:r

filters with a random phase between them. This formula is then used to estimate

the actual spectral amplitudes of each sound source, given: 1. an estimate of the

ratio of spectral amplitudes between the two sound sources, and 2. the observed

spectral amplitude of the sum. of the two sounds. These equatiom are listed below.

A2 - AS [1-! (--i!.-) , - !! (....L). - ...J
- ~ '!+Rl U !+Rl
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The initial computation of the amplitude ratio k is obtained using the pe­

riodicity information in the current frequency-time region. The way that this

estimate of the amplitude ratio is computed for two periodic sounds is described

below.

1. Those time frames in the d3tabase of 38 dual-speaker digit strings when

both speakers voices have been labeled as periodic are collected into a new

database consisting of two simUltaneous periodic sounds. Pitch tracks for

each of the two speakers were computed on the single-spedker digit strings.

2. In each frequency channel, a histogram was computed of the values of the AS

smoothed and normalized coincidence (ASNC) function (see the top right

picture in figure 3.13) at the pitch periods. Based on this histogram, the

values of the ASNC at the pitch reriod was divided into five equally probable

regions. The value of the ASNC at the pitch period was then transformed

into a bin value between I and 5.

3. In each frequency channei, the CilllpHtude ratio of the two periodic sound

sources was computed. The actual amplitude ratio was obtained by com­

puting the ratio of the amplitude values of the isolated p~odic soWlds.

4. A histogram of the amplitude ratio of the two periodic sounds was then

computed. There were 125 (= 5 ... 5 ... 5) different histograms; a different

histogram was computed for each possible bin combination (BPI)3P2,BPu).

BPI is the bin value of the ASNC at the first pitch period (see step 2), BP2

is the bin value of the ASNC at the second pitch period, BPD is the bin

value of the ASNC at the difference in pitcn periods (abs(PI-P2)). These

125 histograms contained the distribution of the amplitude ratio based on

the coincidence information at these th,ree locations. These histograms were

computed with the data from all the different frequency channels.

5. The width of the amplitude ratio histograms reflects the uncertainty in the

amplitude estimate based on the coincidence representation at these three
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points. For each amplitude ratio histogram, an initial estimate of the am­

plitude ratio of the two SlJ\L"lcE is compuied.

6. The initial amplitude ratio estimate for separating two periodic sounds is

computed by determining into which of the 125 bins the current frequency­

time region's periodicity information falls.

A picture of several of the amplitude ratio histograms is shown in figure

3.16.

The way that the amplitude ratio estimate is computed for a periodic and a

nonperiodic sound is very similar to the above procedure. Instead of having 125

different bins which averaged the information across all the different frequency

regions,S histograms were computed in each of the 85 different frequency channels.

The value of the ASNC at the pitch period of the periodic sound was used to

divide the amplitude :ratio information int.o 5 different categories in each frequency

channel.

Once the initial amplitude ratio estimates haVp. been computed, an initial

spectral estimate for each sound SOUIce is computed (see equation 3.11). The

initial spectral estimate of each sound source can fiuctuate greatly acro:;s both

frequency and time. Each frequency channel's amplitude estimate is based only

on the local periodicity information in tl.J.at frequency-time region.

After the initial spectral estimate is computed, an iterative algorithm for

using local spectral continuity constraints is used. At each iteration, in each

frequency channel, at every time frame, the amplitude ratio is varied in 100 steps

between 0 and 00. The new estimate of the amplitude ratio for this frequency-time

region is then chosen as the amplitude ratio which is the best match between: (1)

maintaining spectral continuity with neighboring frequency-time regions and (2) a

highly probable amplitude ratio based on the periodicity information (computed

from the amplitude ratio histograms).

The local spectral continuity information is obtained through probability

distributions of amplitude change for a single sound source. For both periodic and

nonperiodic segments of speech, histograms were computed for the following two
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Figure 3.16: Top: Amplitude ratio histogram when the coincidence function is
large at the first pitch period1 small at the second pitch period and small at the
pitch difference (PI-P2). Most of the time, sound one is larger in amplitude than
sOWld two.
Bottom: Amplitude ratio histogram when the coincidence function is large at the
the pitch difference (PI-P2), and small at the fint and second pitch period. It is
likely that the events came from sound one or sound two, but it is not dear which
sound i! !~ger.

amplitude change quantities (equations 3.18 and 3.19) in each frequency channel.

The distributions of the change in amplitude obtained for periodic speech segments

is shown ul figure 3.11.

Coin(freq,4> =0, T) - Coi,,(Jreq, 4> =0, T - 1)

Coin(freq, 4> - 0, T) + Coin(Jreq, 4> =0, T - 1)
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Coin(freq, ¢ = 0, T) - Coin(freq - " ¢ = 0, T)
Coin(freq, ¢ - 0, T) + Coin(freq - " ¢ - 0, T)

(3.19)

These histograms (figures 3.16 and 3.17) contain the important information

which is then used to compute an iterative estimate of each sound source. The

details of the spectral estimation procedure are now described.

If the Markov model has determined that. there is OIJiy one sound present,

the spectral estimate of that sound source is equal to the observed spectrum. This

spectral estimate remains fixed and does not change over the iterative spectral

estimation procedure. If the Markov modeJ has determined that there are ~wo

sounds present, the spectral estimate of each sound source is computed using a

diff~rent estimation procedure depending on the types of sounds present. An initial

estimate of the amplitude ratio

R(F,T) '£ A1(F,T)
...2(F,T)

(3.20)

is estimated using only local information. The spectral amplitude estimates are

obtained from the amplitude ratio wing equation 3.17. When there are two peri­

odic sounds present, the initial estimate of the amplitude ratio is determined from

the amplitude ratio histograms (which histogram is used will depend on the value

of the coincidence representation at PI" P2, and Pd). When there is a periodic

and a nonperiodic sOlmd present, the initial estimate of the amplitude ratio is

determined from a different set of amplitude ratio histograms (which histogram to

we is based on the value of the coincidence representation at the pitch period of

the periodic sound source). When one of the sound sources is in an onset state, the

initial estimate is determined from amplitude ratio histograms (which histogram

to use is based on the value of the amplitude percent change, computed using equa­

tion 3.18). When there are two nonperiodic SOWlW present, the spectrum is split

evenly between the two sound se."Jrces. For all of the other possible combinations

of two sound sources (when one sound source is in the offset, increasing-periodicity,

or decreasing-periodicity transitional states) the amplitude ratio estima~e at that

time frame is a linear interpolation between the amplitude ratio at neighboring
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Figure 3.17: Top: The probability distribution of the amplitude change from
equation 3.19 is shown for a single frequency channel. Bottom: The probability
distribution of the amplitude change from equation. 3.18 is shown for a single
frequency channel.

time frames.

After the computation of an initial spec:tral estimate for each sound source,

the system computes an iterative spectral estimate for each sound source. The

amplitude ratio

R(F, T, Iter) = arg R,iW.oIPerCo,t(R(F, T)) + SpecContCo,t(R(F, T), It.rll

(3.21)

is computed when there are two periodic soun~ sources present, or when there is a
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periodic and a nonperiodic sound sourC,J present. At each iteration, the amplitude

ratio R(F,T) is varied between aand CXl in 100 increments for each value ofF (all

frequency channels) and T (every time fram~), and the amplitude ratio estimate

is equal to the value of the amplitude ratio which minimizes equation 3.21. The

cost at each frequency· time location is the sum of a periodicity cost and a spectral

. cor.;;inuity cost. The periodicity cost

PerCo.t(R(F, T)) '11,' -log Probability[R(F, T) I SmoothNo<mCoin(F, T, P1, P2)1

(3.22)

is based on the probability that one would observe this amplitude ratio given

the value of the smoothed and normalized coincidence representation at the pitch

values. The spectral continuity cost

SpecContCo"t(F, T,Iter,R) ~r

ArnpChngCos:lp::l::,,·ll(F, T) I Al(F - 1, T. Iter - 1)1+
AmpChngCo.t[po••A1(F, T) I A1(F + l,T, It" - 1)1+

AmpChngCo.t!p,mA1(F,T) I A1(F,T -l,Iter -l)J+
AmpChngCo.t[po..A1(F, T) I A1(F, T + 1, iter - 1)1+

AmpChngCo.tlpo..A2(F, T) I A2(F - 1, T, Iter - 1)1+
AmpChngCo.t[po••A2(F, T) I A2(F + 1, T, Iter - 1)J+

AmpChngCo.t[po..A2(F,T) I A2(F,T - 1,Iter - 1)J+
AmpChngCo.t[po..A2(F, T) I A2(F, T + l,Iter -1)1

(3.23)

consists of eight terms. There are four amplitude change costs for each sound

source since each frequency-time channel has fOUI neighbors (the same frequency

channel at the previous and next time frames, and the two neighboring frequency

channels at the same ti'e frame). Each amplitude change cost

t.

Amp·ChngCo.t[po..I11(F, T) I A1(F;. 1, T, Iter - 1)1 '1;'
~ (3.24)

-logPr°fability [P:::~~l~:~l~~~:~-~:~:~::~:~l]
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is based. '::In ~be probability that one would observe this amplitude change. When

the amplitude ratio is varied between 0 and 00, the spectral amplitude estimate

that would result from using this estimate is computed from the sum-splitting

formula discussed earlier in this section (equation 3.1T).

po••A2; .,ft:R' [I-HI:R,)'~C:R')'- ...J (3.25)

....,uAI ; pouA2 • R (3.26)

This iterative algorithm computes an estimate of the spectral amplitude

of each sound source using local spectral continuity constraints. It attempts to

compute the maximum likelihood spectral estimate for each sound source given

the periodicity information present and the spectral continuity requirements of

speech sounds. The iterative algorithm presented is not guaranteed to converge to

the absolute minimum in the total cost function (became of bimodal probability

distributions, see figure 3.16), and may reach only a local minimum. The spectral

estimate obtained after 25 iterations is used as the final spectral estimate for each

of the two sound sources.

3.6.4 Resynthesis

The output of the separation system is an estimate of the cochlear spectrum

of each of the two sound sources present. Since the Kopec.Bush recognition system

uses LPC spectral estimates, it was simpler to interface to the recognition system

by resynthesizing a separated waveform than to convert the cochlear spectrum to

LPC codebook entries. One advantage of resynthesizing the separated output i!\

that one can listen to the separated outp\.l.L.

The cochlear model's filterbank output of the sum of the two speech sounds

(before compression and half w~ve rectification) is used as the basis of the resyn·

thesis process. Each frequency· time region is multiplied by the percent of the

sound (~) that belongs to this sound !ource, and a frequency gain (to compen,.

sate for the spectral tilt from the cochlear model). This separated cochlear output

is then time reversed, and passed through a backwards original cascade filterbank
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(revene the arrows in figure 3.1). When the output of the backwards 6lterbank

is time reversed again, the resulting waveform is the resynthesized output. The

reason for time reversin'g the different waveforms is to compensate for the time

delay imposed by the cochlear mod~l in the low frequency regions.

The resynthesis of the separated output using this method has one important

disadvantage. An example which exhibits this difficulty is. the case of a sine wave of

100 Hz added to a sine wave of 110 Hz. The resulting signal is a sine wave of 105 Hz

amplitude modulated at 10 Hz. H the separation system worked perfectly, it would

correctly estimate that the amplitude of the 100 Hz sine wave was equal to the

amplitude of the 110 Hz sine wave. However when the original sum is multiplied

by the constant amplitude fraction (~), the resynthesized output sounds like a

softer version of the original sum. waveform, and not like the original 100 Hz sine

waveform.

3.7 Summary of Computational Model

This chapter has described a computational model which was developed to

separate two simultaneous talkers. The computer model is based on the theory of

sound separation developed in chapter two. The construction of this model has

helped clarify what decisions need to be made by the audit-ory system when it

separates sounds.

The computer model of sound separation consists of several stages of pro­

cessing. The input to the separation algorithms is the computational model of the

cochlea developed by Lyon. The timing information contained in each frequency

channel is then converted into an event representation, which is used to compute

local periodicity information called the coincidence function.

Two different separation systems were developed. The current separation

system uses a h'andlabeled database of connected digit strings to compute the

probability distributions used for both the Markov model and the iterative spectral

estimation algorithms.

The current separation system consists of four sequential steps: (1) an itera­

tive dynamic programming pitch tracking algorithm to determine the pitch period
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of each sound source, (2) a Markov ~odel to determine the number of sounds

present (i.e., one or two) and the type of each sound source (i.e., periodic or non·

periodic), (3) an.iterative algorithm to estimate the amplitude (in each frequency

channel) of each sound source present, using both periodic information and spec­

tral continuity con~traints, and (4) an algorithm to resynthesize a waveform of the

separated output.
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Chapter 4

Evaluation

Whereas chapter two presented a theory of how the auditory system sep-

arates sounds, the precise details of how the auditory system separates sounds

_are not known. Chapter three described a computer model that separates two

simultaneous speakers based on this theory of auditory sound separation. The

computational model used only some of the acoustic information that the audi­

tory system is known to use (periodicity, onseh, spectral continuity), and did not

use any higher leve! knowledge to aid in the separation of the two speakers.

The computational model is a 'functional model' since it hypothesizes both

the output of the auditory system and a mechanism to compute these quantities.

It is not daimed that these compnter alg?rithms are the same ones used by the au­

ditory system to separate sounds. What is claimed is (1) that the auditory system

performs similar operations and tries to compute similar quantities (the funda­

mental frequency of each speaker over time, when each person starts and stops

talking, and a spectral estimate of each talker) and (2) that the a.uditory system

uses similar representations (such as t.he coincidence function) when separating

sounds.

The aim of the computational model of sound separation is to improve the

ability of computers to recognize sounds in a noisy environment. Different algo~

rithms in the computer model which have specific subgoals (e.g. to track the pitch

period of each of two simultaneous speakers) are evaluated on how well they per­

form the tasks t.hey were deiligned to a~hieve. The pe~ormanceevaluation reflects
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how well these algorithms are able to achieve the different til5k~, and does not

directly reflect the ability of the theory to explain auditory sOWld separation.

This sectio.n discusses the results of the following algorithms: (1) pitch

tracker for two simultaneous speakers, (2) Markov model for determining how

many people are speaking and the characteristics of each speaker, and (3) itera­

tive spectral estimation algorithms for computing a spectral estimate of each sOWld

source. The ability of a recognition system IKopec and Bu.!Ih 19851 to determine

what each of the two speakers has said is also presented.

No performance evaJuation of the cochlear model or the coincidenct! repre­

sentation is presented. These algorithms are evaluated indirectly based on the per­

formance of the different systems that use this information. To evaluate tpe effect

of changing parameters of these algorithms (such as changing the time constant

fllr computing periodicity information in the coincidence representation) would

require training and testing the complete system for each value of the parameter

that i3 being varied. The computational requirements for this type of evaluation

are not feasible at this time.

4.1 Experimental Results of Computer Model

The Markov model and the spectral estimation algorithms both rely on

probability distributions for computing how many sOWlds are present and the

spectral estimate of each sound source. In order to compute these probability

distributions, a database of simultaneous speech sounds was constructed. The

database consists of 39 single-speaker digit strings (of seven continuous digits)

spoken by two males and two females. It also consists of 38 examples of dual­

speaker digit strings (obtained by adding the single-speaker waveforms of a male

and a female speaking different digit strings). The system w~ trained and tested

on the same database of spef;ch sounds, and was limited in size for computational

reasons (eg, limits on disk storage, computer time necessary to process the data).

-Since the system was trained and tested on the same database, the model's per~

formance might decrease when tested on a new database of simultaneous sOWlds.

The advantage of using single-speaker recordings over using recordings of two
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simultaneous speaken is that the accuracy of the spectral estimation algorithms

can be computed. By win:.; the sum. of two single-speaker recordings as the input

to the separation system, the original spectrum of each speaker is known. The

spectral estimate of each of the two speakers (produced by the computer model)

can then be compared with the spectrum of the original waveforms to evaluate

the spectral estimation procedures.

R~ordings of speakers made during the presence of other interfering sounds

show that people increase their speech level as the background noise level increases

in amplitude [Pearsons et. aI. 19761_ Their comparison of speech levels to back­

ground noise levels show that w... people maintain about a 5 - 8 dB speech to

noise ratio when conver~ing outside their homes and a 9 ~ 14 dB speech to noise

ratio when talking imide their homes. " If the speakers had been recorded in the

presence of other talkers, each of the speakers might have changed how they spoke

to compensate for the interfering SOWld! (by changing their speech. level, and the

clarity of pronunciation).

The speech database of isolated sOWlds was handmarked according to the

Markov model presented in section 3.6.2. Every 10 msec was assigned 'me of

the seven possible labels (silence, periodic, nonperiodic, onset, offset, increasing

transitional periodicity, or decreasing transitional periodicity). This labeling was

wed for both training and evaluation of the separation system.

4.1.1 Pitch Tracker Accuracy

The pitch algorithm is evaluated by comparing the pitch tracks computed

on two simultaneous sounds with those computed on the isolated pitch tracks (it

was not compared with a handmarked pitch track). The pitch period used for

the isolated pitch track is equal to the location of the maximum of the average

coincidence representation (see bottom picture in figure 3.14) of the isolated sOWld.

The pitch tracks for each of the two !imultaneou! 90Wlds were computed using

the iterative dynamic programming algorithm (described in: section 3.6.1).

The results presented below are categorized by the type! of sotlllds present.

The two important cases are (1) when one sotllld is periodic and the other sound
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----_._---------

II # Frames
Pitch Errors I

in SNR (% of frames with error magnitude = x samples) I
SNR (in dB) Interval o 1 21345 >5 !
~Jvr, -, 'I 28 1 '.9 14.3 .1 3.6 3.6 3.6 50.0
5<SNR<0! 107 I 36.4 24.3 6.5 4.7 1.9 3.7 22.4 ,

0<SNR<5 487 I 51.3 22.6 6.4 I 3.5 2.3 .4 13.6 i
5<SNR<10 I 872 66.3 20.1 2.4 I 1.7 .2 .5 8.8 I
10<SNR<15' 971 70.3 17.8 2.7 t 1.3 .4 .2 7.2 !
15 < SNR < 20 I 769 71.1 18.1 1.8 1.7 .9 .5 5.9
20<SNR<251 545 I 77.6 14.5 1.8 I .4 .4 .7 4.6 i
25< SNR <30: 385 I 74.0 16.6 i 1.6 I .8 i .5 .3 6.2 ;, 30 < SNR 408 II 83.1 7.1 .7 I .5 1 .0 .5 8.1 i

Average 4572 i 68.9 117.5 I 2.6 ! 1.6 I .7 I .5 I 8.3

Table 4.1: Distribution of pitch errors of the periodic sound when one sOWld source
is periodic and the other sound source is nonperiodic las a function of the periodic
to nonperiodic: 8NR (signal to naise ratio)J.

is nonperiodic, and (2) when both sOWlds are periodiC'. When neither sound was

iabeled as periodic. the pitch trad::s !!:.'!e :lC' meaning.

Table 4.1 shows how the accuracy of the pitch tracking algorithm vanes as a

function of the signal to noise ratio (of the periodic sound source to the nonperiodic

sO\U1d source). The frames in the database of two simultaneous digit strings were

c::l~egorized both by the types of sounds present and the local signal to noise ratio

between the two sounds. The signal to noise ratio

E,
SNR = 10 JoglO Eo (4.27)

is computed from the iocal energy ratio between the two soU?d sources. The

energy of each sOWld source (in equation 4.1) was computed by smoothing the

local energy (energy in a 10 msec window) wing an exponential window with a

15 msec time constant. The pitch error was computed by .,:omparing the iterative

dynamic programming algorithm pitch track with the pitch period computed on

the isolated sOWld 30urces (computed from the jocation of the maximum of the
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averag<: coincidence function: see bottom pict.ure in figure 3.14).

The table shews that as the energy of the periodic sound increases relative

to the nonperiodic sound, the accuracy of the pitch period increases. The accuracy

of the periodic pitch period decreases rapidly as the signal to noise ratio decreases

below 5 dB. The accuracy of the pitch tracking algorithm (in table 4.1) is different

from computing the pitch track of a single sound source in the presence of a

steady state nonperiodic noise (computing the best single pitch track, rather than

determining the pitch of each of two sound sources).

When one sound source was periodic and the other s~und source was non­

periodic, the pitch period of the periodic sound was not determined from the

dominant pitch track {but from the pitch track ( ~ the weaker perio'dic sound) in

8.8% of the frames. This can be attributed to one of r.,·,-o factors: (I) the periodic

sound had just started and the peak in the coincidence function was not yet large

enough to be considered as the actual pitch period, or (2) the nonperiodic sound

had just switched from being periodic to being nonperiodic, and the dominant

pitch track which followed thi.;J sound source's pitch period had not yet switcheq.

over to the other periodic sound.

Of the frames when the pitch error of the periodic sound was greater than

5 samples (at a sample rate of Iii KHz), (1) 38.1% of the time the pitch period of

the periodic sound was not obtained from the dominant pitch track. and (2) 27%

of the time the pitch period of the periodic sOWld was approximately half of the

isolated pitch track; these 'errors' can be attributed to the pitch period doubling

of the isolated pitch track and are not really errors.

Table 4.2 shows the accuracy of the dominant pitch track, while table 4.3

shows the accuracy of the weaker pitch track. These tables shows that as the

energy of the dominant periodic sound increases relative to the weaker periodic

!oWld, the accuracy of the dominant pitch period increases while the accuracy of

the weaker periodic sound decreases. The accuracy of the dominant pitch period

decreases when the signal to noise ratio drops below -5 dB. The accuracy of the

weaker periodic sound is much lower than the accuracy of the dominant periodic

sOWld.
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II # Frame' Pitch Errors
, in SNR (% of frames with error magnitude = x samples)

SNR (in dB) ·!i Intenal 0 1 2 3 4 5 >5

79 57.0 13.9. 8.9 1.3 2.5 .0 16.5

-5<SNR<0 893 62.5 12.2 1.3 1.3 1.3 1.0 20.3

0<SNR<5 2121 68.9 14.9 2.3 .8 .6 .5 12.0
5 < SNR < 10 756 79.6 13.2 1.1 .8 .8 .4 4.1

10 < SNR 139 77.7 14.4 .7 .7 .7 .7 5.0

Average 3988 169.6 13.9 1.9 1.0 .9 .6 12.2

Table 4.2: Distribution of pitch errors of the dominant periodic sound when
both sound sources are periodic (as a function of the dommant·periodie to
weaker-periodic SNR (signal to noise ratio)].

III #in~';;'
i SNR (in dB) !I Interval

~--=!__'I __ ~9__
:-5<SNR<Oi' 893

o < 5N R < 5 2121
5 < SNR ~ 10 156

10<SNR 139

Average

Pitch Errors
(% of frames with error magnitude = x samples)
o I 1 I 2 i 3 4 5 >5

43.0 I 34.2 10.1 I 1.3 .0.0 11.4
34.""S1Z8.3 9.7' 5.5 2.6 1.8 17.2
33.1 21.8 9.2 5.1 4.3 2.8 23.7
19.8 I 16.3 9.3 6.7 i 5.2 4.9 37.8
10.8 11.5 7.2 10.8, 5.0 2.2 52.5

0.4 22.1 9.3 5.6' 4.0 i 2.9 25.7

Table 4.3: Distribution of pitch errors of the weaker periodic sound when
both sound sources are periodic [as a function of the dominant-periodic to
weaker.periodic SNR (signal to noise ratio)J.

When two periodic sounds are present, the errors can be divided into three

main categories: (1) 3.2% of the time the dominant pitch period was correctly de­

termined but was assigned to the wrong sound stream (the assignment of the dom­

inant pitch period is ba...ed on which sound stream's average pitch period is closer).

(2) 2.6% of the time the dominant pitch track is not assigned to either sound stream

(this occurs when the difference between the dominant pitch period and the aver­

age pitch period for either soun~ stream is greater than 60% of the average pitch
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period of that sound stream), and (3) 7.0% of the time there was a large error in

the dominant pitch p~=iQdwhich could be attributed to a pitch doubling error [de­

fined as ABS(DominantPP - ActuaIPP.) > MAX(5,ABS[.S(DominantPP­

ActualPPj)J) I. These pitch doubling errors account for 51.8% of the times when

the pitch error of the dominant pitch track is greater than 5 samples.

The average pitch period of each talker (computed from the isolated pitch

tracks) was used by the pitch tracking system to assign the dominant pitch period

to the sO\Uld stream with the dosest average pitch period. The system was tested

wing the digit strings from a male and female talker. In a..ssigning the dominant

pitch period to one of the two talkers, the average pitch difference between the

male and female talkers is very helpful to the system. If two male talkers with the

same average pitch period were speaking at the same time, the pitch algorithm

would probably have made many errors in assigning the dominant pitch period to

the wrong sOWld stream. A more sophisticated method of assigning pitch periods

to sound streams is needed.

The lit€ratlli'c c:;;;ntam.3 cnly one algorithm fo!' determi.ning t.he pitch period

of each of t-.:,C $imultaneous talkers IParsoIl3 1976J; but as far as the author knows,

this section represents the first quantitative evaluation of a dual-speaker pitch

tracking algoritlun. Future research on the dual-speaker pikh tracker may deal

with optimizing pitch period accuracy by varying some of the many parameters in

the iterative dynamic programming pitch tracking algorithm (such as changing the

pitch transition cost in the dynamic programming algorithm, the time constant

used in computing the coincidence function, the addition of a dominant frequency

weighting so that some frequency regions are more important for the determination

of the pitch period, etc.).

4.1.2 Hypothesis Determination Accuracy

The Markov model was used to determine bot"h how many sounds are present

and the characteristics of each sound. The system determined the best path

through the state transition network for labeling each of the two sound sources.

The state transition network is used by the Markov model to maintain continu-
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ity in assigning the characteristics of each sOWld. The model was evaluated by

comparing the labels assigned to each of the two simultaneous sounds with the

manually-labeled. database.

One constraint imposed on the two sOWld model was that only one sound

source could be in a transitional state in any time frame. In the two sound

database, only .3% (If the frames were handmarked with both sOlIDd sources being

simultaneously in a transitional state.

. The probability distributions used by the Markov model were derived from

both the one sOWld and two sOWld database, using the pitch periods computed

from the isolated pitch tracks. Because the Markov model was constructed before

the iterative dynamic programming pitch track was developed, the system was

tested using both the isolated pitch tracks and the pitch. tracks obtained from

the iterative dynamic programming algorithm. The computational model was

developed in this way (first the spectral estimation procedure was developed, then

the Markov model and finally the pitch tracker) to use the assumptions about the

types of sounds present for the spectral estimation procedure. After the spectral

estimation algorithm had been developed, the Markov model and pitch tracker

were developed to compute the desired quantities.

Table 4.4 shows the overall accuracy of the two sound source Markov model.

The firllt case uses the pitch tracks which were. computed on the isolated digit

strings (before they were added together). The second case uses the it-erative

dynamic programming pitch tracks (described in section 3.6.1).

The Markov model correctly identified 73% of the fr~mes (the labels on

both the male and female speakers were correct) when the system was testeo.

on the same database of simultaneous sounds that it was trained on. When the

Markov model used the iterative dynamic programming pitch tracks, the accuracy

dropped to 26% of the frames when both sOWlds were correctly identified. The

Markov model performed quite well (98.3%) in correctly labeling at least one of

the two sound sources.

When the Markov model used t,he iterative aynamic programming (IDP)

pitch tracks, 14% of the time it did not meet the requirement of labeling both
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I Isolated Pitc
IDP Pitch Track

Percent of States Correctly Identified I
Female! Male I Male and Female ! Male or Female

73.3% 98.3%
46.9% i 50.4% 26.0% 71.3%

Table 4.~: Overall accuracy of the Markov model when two simultaneous sounds
are present. .
The results are shown for the case when the isolated pitch tracks are used, and
when the iterative dynamic prr:ogramming pitch tracks are used. The results show
th~ accuracy of the female talkers, the male talkers, when both male and female
were identified correctly, and when either of the two were identified correctly.

sounds correctly. There are two main categories of errors in the labeling process:

(1) 18.3% are due to the system reversing the labels of the two speaker's (the

female speaker was assigned the correct label of the male speaker, and the male

was ~signed the female speaker's label), and (2) 54.4% are due to the system

labeling one of the speakers as silent when that speaker was not silent.

The percentages in table 4.4 reflect the accuracy of the Markov model's

labels on the 10101 frames in the two sound database (a total of 101 seconds of

two simultaneous talk~rs, at a frame rate of 100 per second). The accuracy of the

Markov model is computed for each of the different types of sOWlds present. Tables

4.5 through 4.9 show the accuracy of the Markov model for each of the major

cGtegories of simultaneous sounds (two simultaneous periodic sounds, periodic

and nonperiodic sound, two nonperiodic sounds, one periodic sound, and one

nonperiodic sound).

Table 4.5 shows the accuracy of the Markov rnodellabeling when both simul­

taneous sounds were handlabeled as periodic. The Markov model correctly labeled

the two sound, as periodic 93.6% of the time when the isolated pitch tracks were

used. When the iterative dynamic programming pitch track, were used, the 51S·

tern correctly labeled only 32.2% of the fra.:nes. M03t of the errors are due to the

system deciding that there was only one periodic sound present. This performance

can be attributed to the fact that the Markov model was trained using the isolated
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'-"Label Assigned to Isolated Pitch Track IDP Pitch Track
Two Periodic Sounds

93.6'70 32.2'70
Periodic, Silence 1.2% 46.4%

Periodic, Nonperiodic II 3.0% 18.6%
Other , 2.2% 3.0%

Table 4.5: Accuracy of the Markov model labeling when two periodic sounds are
present.

pitch tracks; when the system was tested using the iterativ:e dynamic program·

ming pitch tracks, the system frequently failed to recognize the pitch period of the

weaker periodic sound.

Table 4.6 shows the accuracy of the Markov model labeling when one sound

was periodic and the other sound source was nonperiodic. The system correctly

labeled 55.4% of the frames when the isol..ted pitch tracks were used, but only

11.2% of the frames when the IDP pitch tracks were used. When the IDP pitch

tracks were used, the system reversed the labeling of the two sound sources 26.2%

of the time, and 52% of the time decided that there '....as only one periodic sound

present. The Markov model did not make these errors when it used the isolated

pitch tracks since the pitch track of the nonperiodic sound would be at s9me

random location with respect to the periodic sound.

Table 4.7 shows the accuracy of the Markov model labeling when both sounds

were nonperiodic, The Markov model correctly labeled both sounds as nonperiodic

88.9% of the time when the isolated pitch tracks were used. When the Markov

model used the IDP pitch tracks, 42.4% of the time the system labeled the sounds

as one nonperiodic sound, and 34.3% as one nonperiodic and one periodic sound.

The reason for this performance difference is that the system. performed better

when it was tested with the same pitch values as the training data than when it

was tested using the IDP pitch periods.

Table 4.8 shows the accuracy of the Markov model labeling when one sound

source was periodic and the other sound source was silent. When the Markov
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Label A"igned to II Isolated Pitch Track IDP Pitch Track

Peri~und
55.4'1\ 11.2'1\

Nonperio 'odic .2~ 26.2%
Periodic, Silence 6.1% 25.2%
Silence, Periodic .0% 26.8%

Silence, Nonperiodic 1.0% .8%
Periodic, Periodic 27.8% 1.0%

Other 8.9% 2.6'1\

Table 4.6: Accuracy of the Markov model labeling when one periodic sound and
one nonperiodic sound is present.

'1' Label Assigned to II Isolated Pitch Track ~ IDP Pitch Track
. Two Nonperiodic Sounds !
i Nonperiodic, Nonperiodic -! 88.9% 5.6%

Nonperiodic, Sile..·lce 6.3% 42.4%
Nonperiodic, ~eriodic .0% 34.3% --J

Other 4.1% 17.6% I

Table 4.7: Accuracy of the Markov model labeling when two nonperiodic sounds
are present.

model was tested using the IDP pitch tracks, 76.8% of the time it would correctly

: Label A"igned to , Isolated Pitch Track IDP Pitch Track i
l Periodic and Silent Sound ,I I

62.4%
Silent, Periodic I

i Nonperiodic, Nonperiodic :
: Other II

.0%
24.6%
13.0%

40.3%
3.3%
19.9%

Table 4.8: Accuracy of the Markov model labeling when one periodic sound is
present.
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I Label Assigned to I Isolated Pitch Trw IDP Pit'" Track
Nonperiodic and Silent Sound

Nonperiodic, Silence 49.7% 25.0%
Silence, Nonperiodic 8.5% 35.1%

Nonperiodic, Nonperiodic 31.3% 2.5%
Nonperiodic, Periodic .3% 11.4%

Other 10.1% I 25.9%

Table 4.9: Accuracy of the Markov model labeling when one nonperiodic sound is
present.

determine that there was only one soune present, but it made a large number of

errors in deciding which of the two sound streaLl3 was periodic.

Table 4.9 shows the accuracy of the Markov model labeling whm one ~ound

source was nonpe:iodic and the other sound source was silent. Using the IDP

pitch tracks, 60.1% of the time the Markov model correctly determined that there

was only one nonperiodic sound present, but it made CITOr9 in .determining which

of the two sounds was nonperiodic.

This algorithm represents the first system that can determine both how

many sounds are present and recognize the characteristics of each sOWld source.

The limited performance of the Markov model is due to both the difficulty of

determining the correct label for each of two simultaneous sounds and to the

simplicity of the algorithm used. Future research on determining how many sounds

are present and the characteristics of each sOWld can focus .on: (1) training the

system using iterative dynamic programming pitch tracks, (2) conditioning the

probability of a particular type of sound on 'more data points than just the value

of the smoothed coincidence function at the pitch period, and (3) implementing

some of the information sources for assigning group objects to sOWld streams

presented in chapter two.
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---- ... -------------

4.1.3 Spectral Estimation Accuracy

Most speech recognition systems rely cn spectral estimate!! of the speech

utterance to classify what words a talker has spoken. In order for a recognition

system to correctly classify the speech of a talker, it is essential that the system use

an accurate estimate of the spectrum of that talker. Tl:ii: vutput of the spectral

estimation procedure is an estimate of the average cochlear spectrum for each

of the two sounds present. This spectral estimate can be compared with the

spectrum of each o( the original sOWlds to evaluate how accurately the algorithm

has estimated the spectrum of each sound source.

The cochlear spectrum cOJ:?Sists of the average output of each of the 85

frequency channE:ls of the cochlear model. Each cochlear spectrum is normalized

in amplitude by the following equation:

(4.28)

%Spectral Di"tance::;: EuclidDi3t[Ncwm(OrigSpeci},Norm(SepSpeci)J X 100%
EuclidDi.tlNorm(OrigSp«,). Norm{SumSp«)]

(4.29)

The accuracy of the spectral estimation algorithm is computed by compar·

ing the euclidean distance between the original and separated cocltlear spectrum

with the euclidean distance between the original and the cochlear spectrum of

the simultaneous sounds. I[ the separated cochlear spectrum is very dose to the

original cochlear spectrum, this fraction will be small. H the percent spectral dis·

tance (equation 4.3) is less than 100%, this means that the separation program

has improved the spectral estimate (over the case of no separation). If the per­

cent spectral distance (equation 4.3) is greater than 100%, this means that the

spectrum of the sum of the two simultaneous sounds is a better estimate of the

original spectrum than the estimate obtained from the separation program..

Table 4.10 shows how the spectral estimation procedure improves the spec·

tral estimate of the weaker sound (from a cumulative spectral distance of 856

down to 669) but does not improve the spectral estimate of the stronger sound
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- ._-- -----------

Ii :ltronger Sound f Weaker SOWld I
, Bo,h Sow,,!, Correctly Labeled - 108,8% I = 78.2%

Table 4.10: Percent spectral distance of the spectral estimation procedure when
both sounds are correctly labeled.

i Correctly Labeled Sound Incorrectly Labeled SOWld

One of Two Sounds II 1018 9S:.1 121: - 144.3%
I Correctly Labeled I

Table 4.11: Percent spectral distance of the spectral estimation procedure when
one of the two sounds are correctly labeled.

source. Table 4.11 and 4.12 show that when the system has incorrectly labeled the

sounds, the spectral estimation procedure results in a deterioration of the spectral

estimate of each sound source.

Table 4.13 show! how the spectral estimation procedure improves the spec­

tral estimate when two periodic sounds are present and the correct control in­

formation is used. Bot.h the initial spectral and t.he iterative spectral estimation

procedure provide spectral Estimates better than the original WlSeparated spec·

tral estimate. The last line in table 4.13 is the accuracy of the separated estimate

if the actual spedral ratio (equation 3.20) is known. Table 4.14 shows similar

improvements for a periodic and nonperiodic sound source with known control

information. The first line in table 4.14 is the spectral improvement that would

result if a Wiener filter had been used to separate the periodic and nonperiodic

sOWld sources (a Wiener filter can be used since the average spectrum of a periodic

sotUld is different from a nonperiodic sOlmd).

Figure 4.1 shows the spectral distance improvement as a function of the

number of iterations of the spectral estimation algorithm. Initially, the esti.::nation

procedure improves the spectral estimate of each sound source with each itera­

tion. However I the spectral distance reaches a minimum after approximately 10

iterations and begins a gradual increase in the spectral distance. The iterative
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r' - Stronger Sound I Weaker Sound j

l Neither Sound Correctly Labeled _ 324.9% I ua - 118.0% I

Table 4.12: Percent spectral distance of the spectral estimation procedure when
neither sounds is correctly labeled

Initial Separation Estimate
I Percent Spectral Distance
I 78.5%

69.5%Separation Estimate after 10 Iterations
Separation using actual ratio between sounds I 38.8%

Tablt. 4.13: Percent spectral distance for two periodic sounds using isolated pitch
tracks and correct state labels.

algorithm is not guaranteed to converge to the global minimum in the spectral

distance contour. The bimodal shape of some of the probability distributirms (see

figure 3.16) is one reason why the algorithm is not guaranteed to converge.

This system is the first algorithm to compute a spe<;tral estimate of each

sound source using spectral continuity constraints. It has the ability to compute

a 3pectral estimate when two periodic sOUDas are present, or a periodic and a

nonperiodic sound is present. The spectral estimation procedure does not work

well when errors are made in either the determination of the how many ::lOunds

are present or in the types of sounds present.

28.2% 17.7%

65.4% 50.5% I
55.5% 41.5%,

, 72.3% , 59.6% I

I Percent Spectral Distance i
i Periodic Sound; Nonperiodic Sound!

Initial Separation Estimate
Wiener Filter

; Separation using actual ratio between sounds !
! Separation Estimate after 10 Iterations

Table 4.14: Percent spectral distance for a simultaneous periodic and nonperiodic
sound using isolated pitch track and correct state labeb.
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Figure •.1: Spectral distance improvement as a. function of the number of itera­
tions.
Left Side: Spectral distance improvement when both sounds are periodic (top is
louder periodic-sound and bottom is weaker periodic sound). Right Side: Spectral
distance improvement when one sound is periodic and one is nonperiodic (top is
periodic sound and bottom is nonperiodic :lound).

4.1.4 Recognition Accuracy

One goal of the sOWld separation system is to improve the ability of com­

puters to recognize speech in the presence of interfering 30Wlds. The Kopec-Bush

[851 recognizer which was used to test the separated output, uses a network based

approach to speaker-independent continuous digit recognition. The recognition

system is designed for isolated s.ounds. and computes t.he best pat.h through the
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~ Correct I Substitutions I Insertions IDeletions iI

Isolated Sounds I 87,0% 10,5% 2,5% 1.4%
I Resynthesized Isolated Sounds il 86.1% I 10,6% 3,3% ,0% I

I

I Two Simultaneous Sounds
! I

Male ! 44.4% i 36,4% 19,2% 3,8% !
Female i 34.2% 39.6% 26,2% 3.5% i

Separated Simultaneom Sounds i I
I

Male I 57,0% 39,6% 17,8% 18,7%I IFemale I 31.7% 52,6% 15,7% 20,9%

Table 4.15: Accuracy of the recognition system.

network using the gain-optimized Itakura-Saito distance measure between vector

quantized LPC spectral templates and the LPC spectrum of the incoming sound.

The accuracy of the recognized output was computed by comparing the

string of digits that each person actually said with the output digit string of the

recognition 3ystem. Every possible way of matching the recognition string of digits

with the ddual digit string is computed to find the match that yields the highest

percentage of correct digits. The errors made by the recognizer are categorized

as substitutiom (recognizer output is one digit while the person sai4 a different

digit), insertions (recognizer has an extra digit), and deletioru (recognizer missed

one of the original digits). The percent.a~e of correct digits (equation 4.4) reflects

the accuracy of the recognition system.

% Correct DigitJ = ~Digit3 Correctly Recognized x 100% (4.30)
#Dt.gittJ HypothetJized by Recognizer

Table 4.15 shows the results of the recognition system evaluati~n. The recog­

nizer was tested on the original database of isolated sounds and the resynthesized

version of each of the isolated digit string!. The resUlts show that the analysis and

resynthesis of a digit waveform did not noticeably decrease the performance of the

recognition system. The system was also tested on the two simultaneous talkers

without the aid of any separation system. The output of the'recognition system
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was compared with each of the actual digit strings of both the male and female

talkers. The recognition system was also tested on the individual resynthesized

waveforms of both the male and the female h:.lkers.·

The separation system improved the recognizer's ability to recognize the

male voice from 44.4% to 57.0%. It did not improve the recognition performance

of the female voice. The increase in deletions by the recognition system when tested

on the separated output (from 3% to 20%) reflects the fact that the separation

system often missed the detection of the weaker sound source (40% of the frames

were labeled as one sound being present by the separation system when there

were two sounds presentj since the system decided that there was only one sound

present, one of the sound streams was silent during these intervals).

These results represent the first quantitative evaluation of a computer recog­

nition system attempting to recognize each of two simultaneous talken.

4.2 Overview

This c..':1apter presented an evaluation of a system which attempts to separate

two simultaneous talken. The evaluation consisted of (1) the iterative dynamic

programming pitch trauer's ability to correctly determine the pitch period of each

sound source, (2) the determination by the Markov m.odel of how many sounds

are present and what the charact~risticsof each sound source is, (3) the accuracy

of the spectral estimate of each of the two sounds present, and (4) the results of

the recognition system which attempted to recognize each of the two simultaneous

talkers. The re3ults obtained suggest that"there is a need for i-mprovement in each

of these algorithms in order to achieve a high level of sepa:-at.ion performance.

There are many different algorithmic modifications which can be tested to

try to improve the system's performance. The next chapter will outline some of

the major changes which this author viewes as important improvements in the

computational model of auditory sound separation.
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Chapter 5

Future Directions

The computational model presented in this thesis represenh an important

step in allowing compute" to determine hath how many sounds are present and

what each speaker is saying. The separation algorithms are based on the theory of

auditory sound separation (presented in chapter two). CUI'Tently, the algorithms

use only some of the available monaural acoustic information sources, and do not

use any of the higher level processes described in the theory of auditory sOWld

separation.

Not only can one use additional information to improve the current separa­

tion system, but one can also modify the separation alsorithm3 that are currently

used. This chapter will describe changes that are possible in the current separa­

tion algorithms and some of the different information cues that can be added to

help separate two simultaneous sounds.

5.1 Modifications in the model

5.1.1 Improved Two Talker Pitch Tracking

There are many possible modifications that one can make to the pitch

tracking algorithms described in section 3.6.1. While the pitch tracker was able to

follow the pitch period of the dominant periodic sound fairly well, the pitch error on

the weaker periodic sound was fairly large. By modifying some of the parameters

of the pitch tracking algorithm (and subsequently testing each modification with
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respect. t.o performance of the pitch tradr:er), a better two t.alker pitch tracker can

be comtructed. These parameters include: the method of assigning the aomhlant

pitch period to one of the two sound streams, the transition cost used in computing

both the dominant and secondary pitch period, the function used to compute

the score of the weaker pitch period, the signal used to smooth each row of the

coincidence r~presentation, and the different parameters used in computing the

coincidence representation.

Even if one could precisely determine both pitch periods, one still has to

determine which sound stream these pitch periods belong to. When both talkers

have the same average pitch period, determining which pitch period belongs to

which talker is a difficult problem which has no straightforward solution.

5.1.2 Improved Spectral Estimation

The spectral estimation algorithms described in section 3.6.3 used an iter­

ative algorithm to combine both periodicity information and spectral co~tinuity

constraints.

The periodidty information consisted of probability distributions of the am­

plitude ratio (:*) conditioned on the value of th..: coincidence function at different

locations. If the two sounds consisted of one speaker's voice being periodic while

the other speaker's voice was nOl).periodic, the amplitude ratio was conditiohed

on the value of the smoothed and normalized coincidence function (see top right

picture in figuxe 3.13) at the pitch period of the periodic speaker. The pitch pe­

riod was obtained from the iterative dynamic programming pitch tracker, and the

decision whether the sOWld was periodic or nonperiodic was obtained from the

output of the Markov model. If both sound sources were periodic, the ampli­

tude ratio was conditioned on the value of the coincidence function at P ll PI' and

Pdi// = Ab,(P, - p,j.

Although the values of the coincidence function at every location were used

in the determination of the pitch period for each of the two speakers, only the

values of the coincidence fWlction at a few select points (related to the pitch pe·

riod) were used when computing the amplitude ratio of the two sOWlds based on
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periodicity L-uormation. The width of the amplitude ratio histograms reflects the

Wlcertainty in the amplitude ratio information based on the value of the coin­

cidence function at the pitch period. The distributions might have narrowed in

width (and th~refore uncertamty) if the amplitude ratio were conditioned on the

value of the coincidence function at additional delay locations. However, in order

to condition the amplitude ratio on more information, more probability distrib~­

tions are needed. A larger datab~!e would be required to accurately compute all

of these new probability distributions.

The spectral estimation algorithms used depend on accurate pitch informa­

tion. Information about the accuracy of the pitch traas could be incorporated

into the spectral estimation algorithms in several different ways. By increasing the

width of the AC smoothing :ilters (see figure 3.12), the value of the smoothed coin­

cidence function around the pitch period will not vary as much, and will therefore

be l~ss sensitive to small pitch errors. An increase in the smoothing function's

width may broaden the probability clistributions (which are conditioned on the

pc:dodicity information) and therefore incre03Se the uncertainty of the amplitude

ratio. Therefore, one would like tl) use as na.'-Iow a smoothing filter as is possible.

One possible solution would be to first predict the accuracy of the pitch track, and

to use a smoothing algorithm whose width depended on the predicted accuracy

of each pitch track. When the pitch periods obtained from the iterative dynamic

programming pitch tracker cannot be determined very accurately, spectral esti­

mation algorithms would use a wider smoothing function than when the pitch

periods could be determined with more precision. (Note: in tp.e case of speech

enhancement, this would correspond to varying the width of the comb filter based

on the accuracy of the pitch pexiod)

5.1.3 Assignment of Group Objects to Sound Streams

The current separation system assigned group objects to sOWld streams

using a very simple mechanism. IT the Markov model determined th:}t there was

a periodic group object present that overlapped in time with a nonperiodic group

object, the nonperiodic group object was assigned to the other sOWld stream from
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the periodic group object. The periodic group object was assigned to a sound

stream based on which. sound stream had a doser average pitch period to the

pitch period of the group object.

If the nonperiodic group object did not overlap in time with any other group

object, the separation system would not know which sound stream to assign this

nonperiodic group object to. The system did make errors in assigning group objects

to the wrong sound stream.

The theory of auditory sound separation described many different sources

of information that could be used by the auditory system in determining which

group object belonged to which sound stream (see section 2.4.5.3). The current

computational model implemen~ed only one of these information cues. The addi·

~ion of these other information sources could be used to improve the assignment

of group objects to sOWld streams.

The use of spectral continuity between group objects is one of the acoustic

information sources that can possibly improve the assignment of group objects to

sound streams. A change by the vocal cords may alter the characteristics of speech

from periodic to nonperiodic, but the spectral transition between the periodic and

nonperiodic speech segments will reflect the continuity in the articulatory domain.

This spectral continuity between the spectrum at the onset of one group object

with the spectrum at the offset of a previous group object can be used by a

separation system in the assignment of group objects to sOWld streams.

5.1.4 Addition of a 'MASKED' Hypothesis

One of the major sources of error in the current separation system was the

determination of how many sounds are present. In order to determine how many

sounds are present, the system must determine how many hy'potheses are needed

to explain the data at the current time.

All mistakes in the determination of how many group objects are present

and when group objects start and stop lead to errors which are compounded by

the spectral estimation procedure. When the system misses the detection ,Jf a

second group object, all the energy is mistakenly assigned to the only group object
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present. When the system detects a. group object which is not present, energy will

be assigned to this group object e't"en though there i! no sound source present. Even

when a group object is correctly determined to be present, mistakes about when

this group object starts and stops lead to similar types of errors. For example, if the

system starts a group later than the group object actually starts, then additional

energy will be a3signed to ~hc othex sound source and will not be assigned to the

sound SOUIce which is actually present.

As the second sou.."1d source gets weaker and weaker in amplitude (with

resped to the first sound source), it becom:~smore aria. more difficult to determine

when group objects from this sound source are present, and when these group

objects start and stop. At some amplitude level, it may be impossible to determine

what is happening to the weaker sound source. Only during silent intervals of

the stronger sound source can the systf':m gather accurate information about the

second sound source.

Since it can be very hard to determine the properties of the weaker sound

source, the addition of an extra maaked state in the state transition diagram (see

figure 3.15) might be appropriate. When the system believes that a second sound

source is present, but it can not determine what the characteristics of that se~ond

sound source are, the masked hypothesis would be the appropriate label for the

state of this sOWld source. The addition of a masked state would not allow for

this sound to be separated from the stronger interfering'sound, but it would allew

a recognizer to know that the separation system believed that the weaker second

sound sC'~rce is present, even though the system can not determine what it is. In

order for this masked state to serve a useful function, the recognitiort system must

have some way of dealing with a sound when it is in the masked state as we have

reason to believe the auditory system does.
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5.2 Additional Information Sources for Sound
Separation

5.2.1 Binaural Information Pro.cessing

This thesis has focused on how monaural information is used to separate

two simultaneous sounds, even though we know, that the auditory system uses

b~l;h i:tonaural and binaural information to separate sounds. Binaural information

such as the timing and intensity differences between the cochlear output of the two

ears are used 1.'y the auditory system to help it focus on th~ sound coming from a

particular direction Isee Lyon 1983 and Lindemann 1983 for computer models of

this process]. In addition to these binaUl'al information cues, the auditory system

can also combine the results of monaural SOWld separation processing (performed

on the cochlear output of each ear) to help it separate the incoming sounw.

The experimental results of Cutting {1976J indicate that the results of each

ear's monaural processing are combined at several different levels (sound localiza­

tion, fusion of local acoustic features, fusion of linguistic features) to form a new

representation at that level. The interaction between the monaural and binaural

system only serves to make a difficult problem (understanding how the auditory

system separates so~ds) even harder. We do not yet know the detail::! of how the

monaural and binaural processes interact to separate sounds. Even though we do

not know how the auditory system combines monaural and binaural information

for sound separation, one can construct a separation system that uses binaural

information to help separate sounds.

5.2.2 Higher Level Proces.ing

The phenomenon of 'auditory induction' and 'phonemic restoration' [War.

ren 1911,"1972, 19741 demonstrates that the auditory system uses its knowledge

about sounds to help it separate them from noise. The contextual information con­

tained in a model of the sound that we are listening to can also help a computer

separate one sound from another.

If the background noise is a repetitive sound such as a typewriter or the
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ringing of a telephone, a computer model of the incoming sound can be used by

a separatio~ system to help assign incoming neural events with the appropriate

model. Even though it is not dear how these sound models can help in the detec­

tion of different sOWld sources (the lowering of the SNR of this sound's detection

threshold), they can be used by the spectral estimation algorithms to compute an

estimate of each of the two simultaneous sOWld sources.

The addition of higher level processing can also help in the assignment of

group objects to sound stream..s. In the Ithreel . /seven/ example discussed in

section 2.3.1.6, after each of the group objects has a. phonetic label, linguistic

information (about the likelihood of different phoneme sequences) can be used to

assign the lsI of the digit Iseven/ to the female sound stream. The addition of

these higher level processes can help to correct the errors when the group objects

were correctly identified but assigned to the wrong sound stream.

5.2.3 Interface with a Recognition System

The output of the current separation system was evaluated using a recog­

nition system designed for a single speaker. It is possible that the recognition

performance would have increased if the system had been evaluated using a recog­

nition system specifically designed to deal with more than one simultaneous sound.

The simplest modification to a recognition system would be the use of a dif­

ferent distance metric, one which was developed for dealing with two simultaneous

sounds {Bridle et. al. 19841. This spectral matching technique uses not only the

reference spectrum and the spectral estimate of the desired sound, but also the

spectral estimate of the noise spectrum.

Another possible modification would be to use information about the accu­

racy of the spectral estimate of each sound source in the spectral distance metric.

The output of the separation system is not only a spectral estimate of each sound

source, but also includes an estimate of the accuracy of the spectral estimate. The

spectral accuracy information is easily determined from the width of the different

amplitude ratio probability distributions [see figure 3.161. By knowing both the

spectral estimate and the accuracy of the spectral estimate for each sound source,
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one can more accurately compute the probability that this spectrum denotes a

specific phc.>netie category.

More complicated recognition systems which could interpret the 'masked'

state described in section 5.1.4 are also p'.lssible. When ,the weaker sOWld is too

weak to be detected accurately, instead of deciding that this sound source was

silent, the separation system would decide that the sound source was 'masked' by

the other sound. The recognizer would interpret the masked state differently from

a silent state [see figures 2.2 and 2.3 for an illustration of the difference between

the silence and masked stateJ. The addition of a masked state in a recosnition

system would help to reduce the number of words that are missed by the current

recognition system (causp.d when the weaker sound source was not detected).

5.3 Future Psychoacoustic Experiments

There are many details of human auditory processing which remain un­

known. Our understanding of the computations performed by the auditory system

is limited primarily to the peripheral auditory system. Details of the computations

performed at le'\'eb beyond the cochlea are sparse. Most of the information that

is known (psychoacoustic experiments) about the auditory system deals with the

perception of different sounds by a human listener.

The field of pitch perceptio:n illustrates our lack of a detailed understand­

ing of how the human auditory system computes periodicity information. The

psychophysical literature contains hundreds of different experiments on the per­

ception of pitch by the auditory system. There are currently four main theories

on how the auditory system computes pitch. These are the theories of Goldstein,

Wightman, Terharrlt, and Licklider. The first three of these theories (Goldstein,

Wightman, Terhardt) are mathematical model!!, which attempt to compute the

same pitch value that is computed by the auditory system. Since the auditory

system could have computed that pitch yalue in a different way from the above

theories, they do not necessarily reBect the computations that are performed by

the auditory syetem. The theory whic~, comes the closest to being a model of the

computations performed in audi.tory pitch per~eption is Licklider's theory. How-
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e.er, Liclc:lider's theory describes only part of the computations that might be

performed by the auditory system (the rest are left for a neuraJ network). Over

thirty years of experimental research on pitch perception has !Itin not determined

the precise operations that are actually performed by the auditory system during

the computation of periodicity information.

It is extremely difficult to determine how the auditory 5fstem computes

what it does. It will probably be many years before the detailed computations

performed by the auditory system will be well understood. In the meantime, we

can refine the theory of auditory sound separation, hypothesize different com·

putalional mechanisms, compute the results obtained from these algorithms and

compare them to the results obtained from the auditory system. The refinement of

a computational model and subsequent comparison with the results from auditory

psychoacoustic experiments can help to determine what algorithms the auditory

system might use to interpret the information that it hears.

5.4 Summary

The field of 90Wld separation is a new and exciting area of auditory research.

It represents an opportWlity for researchers to apply their knowledge about the

auditory system to denlop computational models of auditory sound separation.

It is also an opportunity to test our models of auditory processing against the

auditory system in order to modify and improve them.

The development of computer models of auditory processing requires a great

deal of computational resources. The computation time required to run these

algorithms is currently the limiting factor in the time taken to develop and test new

separation algorithms. Since many of the algorit.hms are simple and repetitive (the

same operation takes place in each frequency channel every 10 msec), new SIMO

computer architectures [Lyon 19841 represent a pr~mising approach to providing

the computation power needed at a reasonable cost. The availability of sufficient

computer power will allow researchers to develop and test computer simulations

of auditory procell3wg.

The addition of top-down informa.tion from a higher level processing system,
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aId the interface with a recognition system desiped to handle multiple simulta­

neous sounds, are impvl"tant steps which are needed to form a complete model of

auditory sound separation.

It is the author's view that an analogy can be made between the future of

sound separation and the field of speech recognition. Initially, there is a great

deal of room for increasing the performance of sO'lIld separation systems. After a

certain period of time, all the simple improvements will have been made, and to

attain performance levels which are close to the auditory system will require long

years oC hard effort and scientific study.
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Appendix 1

In section 3.3, two advantages of using coincidence formula number four were

discussed. The first advantage is that the coincidence of two different events must

always be less than the coincidence of one of those events with itself. The second

advantage is that this formula enhances the modulation depth of the resulting

coincidence representation. This appendix will prove these two results.

Result # ;. Show that,

CO'incidence{eventa, eventa) ~ Coincidence(eventa1 event6) Veventa, eventb

(1.1)

The coincidence function is defined as follows:

When event", is equal to eventb ,

Coincidence(event", eventa) =areaa

(1.2)

(1.3)

Substituting the right hand side of equations 1.2 and 1.3 into equation 1.1,

we must show that:

(
min(Orea.... area~) \ z

aredlJ ~ lJvg(area", area,,) X ( ))
mo:r area,,, areab

This can be rewritten as:

Varea""areab (1.4)

a +b (min(a,b))'
.?: -2 x m.%(o,b) 'Va,b (1.5)

For a fixed value of a, b must be greater than a, equal to a, or less than a.

Each of these three cases is examined below.
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I. b> a
Eq':1&tion 1.5 can be rewritten as:

a b (")a> (- + -) -
- 2 2 b'

Which can be rewritten as:

a> a (~ + ~)
- 2

V'a,b (1.6)

(1.7)

Since b > a I both fractions on the right hand side ~e less than 1.0, and

their sum is less than 2.0 Therefore, the inequality holds in this case.

2. b =a

This case reduces to a ~ a. which is true.

3. b < a

Equation 1.5 can be rewritten as:

a+b (b')a2: -2- ;;;

Which can be rewritten as:

'rIo,b (1.8)

a>a(~)-~(~) Va,b
- 0 2 2 0 2

(1.9)

Since b < 0, the first term on the right hand side is less than a. The second

term on the right hand side is a positive quantity, and therefore further

reduces the right hand side. Therefore, the inequality holds in this case.

Since equation 1.1 hoids for all three cases, it is true for all a. and b.

Result # 2. Show that coincidence formula version four enhances the coin­

cidence representation for an amplitude modulated signal, while the other three

versions do not.
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. Figure 1.1: Top: Output of a single frequency channel of the cochlear model over
time. Bottom: The event representation and the parameters of each event. Note
the slight amplitude modulation at the pitch period Po.

For simplicity, let WI consider the output of a single cochlear filter whose

frequency location is close to the second harmonic of a periodic signal. The output

of this frequer.~y channel of the cochlear model is slightly amplitude modulated,

since this channel does not completely filter out the other harmonic components.

An example of this cha."lIlel's output is shown in figure one.

The value of the coincidence representation at a delay equal to the pitch

period (column two in table one) is equal to C(eventl> events) +C(event%l event.).

The value of the coincidence representation at a delay equal to half the pitch period

(column three in table one) is equal to C(event11 event:) +C(eventll events). The

amplitude modulation of the original cochlear output is equal to T = 1 - t.

The modulation depth of the original cochelar output is equal to 1 - ~ = t.

The amplitude modulation of the coincidence representation is equal to the value

at half the pitch period (column three) divided by the value at the pitch period

(column two). The modulation depth of the coincidence representation is equal to

one minus the fraction of column three divided by column two.
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Version IValue of Coincidence I Value of Coincidence
Rep:-e9entation at Representation at

delay = Pitch Period l delay = half Pitch Period
1+(1 ,j
1 + (1- ,)

1+(1-')
1+(1-,)

Modulation Depth I
of Coincidence
Representation

able 1.1: How the Coincidence Representation of figure one varies as a function
of which formula is used to compute the coincidence of two events.

Since f is small, the output of the cochlear model is slightly amplitude mod·

ulated. When the coincidence representation is computed on this amplitude mod­

ulated signal, can we determine what the pitch period is from the coincidence

repregentation? If we used the tint or second version of the coincidence formula,

the value of the coincidence function at half the pitch period would be virtually

identical to the value at the pitch period (since f: is very small). Therefore, we

would have great difficulty distinguishing between Po and ~Po as the correct pitch

period. The amplitude modulation present in the cochlear model', output is pre·

served'in the coincidence representation using formula three. and is enhanced when

formula four is used. This enhanced modulation makes the determination of Po

as the correct pitch period easier.
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