
An Industrial-Strength Audio Search Algorithm

Avery Li-Chun Wang
avery@shazamteam.com
Shazam Entertainment, Ltd.
USA:
2925 Ross Road
Palo Alto, CA 94303

United Kingdom:
375 Kensington High Street
4th Floor Block F
London W14 8Q

We have developed and commercially deployed a flexible audio search engine. The algorithm is noise and distortion resistant,
computationally efficient, and massively scalable, capable of quickly identifying a short segment of music captured through a
cellphone microphone in the presence of foreground voices and other dominant noise, and through voice codec compression, out
of a database of over a million tracks. The algorithm uses a combinatorially hashed time-frequency constellation analysis of the
audio, yielding unusual properties such as transparency, in which multiple tracks mixed together may each be identified.
Furthermore, for applications such as radio monitoring, search times on the order of a few milliseconds per query are attained,
even on a massive music database.

1 Introduction
Shazam Entertainment, Ltd. was started in 2000 with the
idea of providing a service that could connect people to
music by recognizing music in the environment by using
their mobile phones to recognize the music directly. The
algorithm had to be able to recognize a short audio sample
of music that had been broadcast, mixed with heavy
ambient noise, subject to reverb and other processing,
captured by a little cellphone microphone, subjected to
voice codec compression, and network dropouts, all before
arriving at our servers. The algorithm also had to perform
the recognition quickly over a large database of music with
nearly 2M tracks, and furthermore have a low number of
false positives while having a high recognition rate.

This was a hard problem, and at the time there were no
algorithms known to us that could satisfy all these
constraints. We eventually developed our own technique
that met all the operational constraints [1].

We have deployed the algorithm to scale in our commercial
music recognition service, with over 1.8M tracks in the
database. The service is currently live in Germany,
Finland, and the UK, with over a half million users, and
will soon be available in additional countries in Europe,
Asia, and the USA. The user experience is as follows: A
user hears music playing in the environment. She calls up
our service using her mobile phone and samples up to 15
seconds of audio. An identification is performed on the
sample at our server, then the track title and artist are sent
back to the user via SMS text messaging. The information
is also made available on a web site, where the user may
register and log in with her mobile phone number and
password. At the web site, or on a smart phone, the user
may view her tagged track list and buy the CD. The user
may also download the ringtone corresponding to the
tagged track, if it is available. The user may also send a

30-second clip of the song to a friend. Other services, such
as purchasing an MP3 download may become available
soon.

A variety of similar consumer services has sprung up
recently. Musiwave has deployed a similar mobile-phone
music identification service on the Spanish mobile carrier
Amena using Philips’ robust hashing algorithm [2-4].
Using the algorithm from Relatable, Neuros has included a
sampling feature on their MP3 player which allows a user
to collect a 30-second sample from the built-in radio, then
later plug into an online server to identify the music [5,6].
Audible Magic uses the Muscle Fish algorithm to offer the
Clango service for identifying audio streaming from an
internet radio station [7-9].

The Shazam algorithm can be used in many applications
besides just music recognition over a mobile phone. Due to
the ability to dig deep into noise we can identify music
hidden behind a loud voiceover, such as in a radio advert.
On the other hand, the algorithm is also very fast and can
be used for copyright monitoring at a search speed of over
1000 times realtime, thus enabling a modest server to
monitor significantly many media streams. The algorithm
is also suitable for content-based cueing and indexing for
library and archival uses.

2 Basic principle of operation
Each audio file is “fingerprinted,” a process in which
reproducible hash tokens are extracted. Both “database”
and “sample” audio files are subjected to the same analysis.
The fingerprints from the unknown sample are matched
against a large set of fingerprints derived from the music
database. The candidate matches are subsequently
evaluated for correctness of match. Some guiding
principles for the attributes to use as fingerprints are that
they should be temporally localized, translation-invariant,
robust, and sufficiently entropic. The temporal locality

guideline suggests that each fingerprint hash is calculated
using audio samples near a corresponding point in time, so
that distant events do not affect the hash. The translation-
invariant aspect means that fingerprint hashes derived from
corresponding matching content are reproducible
independent of position within an audio file, as long as the
temporal locality containing the data from which the hash
is computed is contained within the file. This makes sense,
as an unknown sample could come from any portion of the
original audio track. Robustness means that hashes
generated from the original clean database track should be
reproducible from a degraded copy of the audio.
Furthermore, the fingerprint tokens should have sufficiently
high entropy in order to minimize the probability of false
token matches at non-corresponding locations between the
unknown sample and tracks within the database.
Insufficient entropy leads to excessive and spurious
matches at non-corresponding locations, requiring more
processing power to cull the results, and too much entropy
usually leads to fragility and non-reproducibility of
fingerprint tokens in the presence of noise and distortion.

There are 3 main components, presented in the next
sections.

2.1 Robust Constellations
In order to address the problem of robust identification in
the presence of highly significant noise and distortion, we
experimented with a variety of candidate features that could
survive GSM encoding in the presence of noise. We settled
on spectrogram peaks, due to their robustness in the
presence of noise and approximate linear superposability
[1]. A time-frequency point is a candidate peak if it has a
higher energy content than all its neighbors in a region
centered around the point. Candidate peaks are chosen
according to a density criterion in order to assure that the
time-frequency strip for the audio file has reasonably
uniform coverage. The peaks in each time-frequency
locality are also chosen according amplitude, with the
justification that the highest amplitude peaks are most
likely to survive the distortions listed above.

Thus, a complicated spectrogram, as illustrated in Figure
1A may be reduced to a sparse set of coordinates, as
illustrated in Figure 1B. Notice that at this point the
amplitude component has been eliminated. This reduction
has the advantage of being fairly insensitive to EQ, as

generally a peak in the spectrum is still a peak with the
same coordinates in a filtered spectrum (assuming that the
derivative of the filter transfer function is reasonably
small—peaks in the vicinity of a sharp transition in the
transfer function are slightly frequency-shifted). We term
the sparse coordinate lists “constellation maps” since the
coordinate scatter plots often resemble a star field.

The pattern of dots should be the same for matching
segments of audio. If you put the constellation map of a
database song on a strip chart, and the constellation map of
a short matching audio sample of a few seconds length on a
transparent piece of plastic, then slide the latter over the
former, at some point a significant number of points will
coincide when the proper time offset is located and the two
constellation maps are aligned in register.

The number of matching points will be significant in the
presence of spurious peaks injected due to noise, as peak
positions are relatively independent; further, the number of
matches can also be significant even if many of the correct
points have been deleted. Registration of constellation
maps is thus a powerful way of matching in the presence of
noise and/or deletion of features. This procedure reduces
the search problem to a kind of “astronavigation,” in which
a small patch of time-frequency constellation points must
be quickly located within a large universe of points in a
strip-chart universe with dimensions of bandlimited
frequency versus nearly a billion seconds in the database.

Yang also considered the use of spectrogram peaks, but
employed them in a different way [10].

2.2 Fast Combinatorial Hashing
Finding the correct registration offset directly from
constellation maps can be rather slow, due to raw
constellation points having low entropy. For example, a
1024-bin frequency axis yields only at most 10 bits of
frequency data per peak. We have developed a fast way of
indexing constellation maps.

Fingerprint hashes are formed from the constellation map,
in which pairs of time-frequency points are combinatorially
associated. Anchor points are chosen, each anchor point
having a target zone associated with it. Each anchor point
is sequentially paired with points within its target zone,
each pair yielding two frequency components plus the time
difference between the points (Figure 1C and 1D). These
hashes are quite reproducible, even in the presence of noise
and voice codec compression. Furthermore, each hash can
be packed into a 32-bit unsigned integer. Each hash is also
associated with the time offset from the beginning of the
respective file to its anchor point, though the absolute time
is not a part of the hash itself.

To create a database index, the above operation is carried
out on each track in a database to generate a corresponding
list of hashes and their associated offset times. Track IDs
may also be appended to the small data structs, yielding an

aggregate 64-bit struct, 32 bits for the hash and 32 bits for
the time offset and track ID. To facilitate fast processing,
the 64-bit structs are sorted according to hash token value.

The number of hashes per second of audio recording being
processed is approximately equal to the density of
constellation points per second times the fan-out factor into
the target zone. For example, if each constellation point is
taken to be an anchor point, and if the target zone has a fan-
out of size F=10, then the number of hashes is
approximately equal to F=10 times the number of
constellation points extracted from the file. By limiting the
number of points chosen in each target zone, we seek to
limit the combinatorial explosion of pairs. The fan-out
factor leads directly to a cost factor in terms of storage
space.

By forming pairs instead of searching for matches against
individual constellation points we gain a tremendous
acceleration in the search process. For example, if each
frequency component is 10 bits, and the ∆t component is
also 10 bits, then matching a pair of points yields 30 bits of
information, versus only 10 for a single point. Then the
specificity of the hash would be about a million times
greater, due to the 20 extra bits, and thus the search speed
for a single hash token is similarly accelerated. On the
other hand, due to the combinatorial generation of hashes,
assuming symmetric density and fan-out for both database
and sample hash generation, there are F times as many
token combinations in the unknown sample to search for,
and F times as many tokens in the database, thus the total

speedup is a factor of about 1000000/F2, or about 10000,
over token searches based on single constellation points.

Note that the combinatorial hashing squares the probability
of point survival, i.e. if p is the probability of a spectrogram
peak surviving the journey from the original source
material to the captured sample recording, then the
probability of a hash from a pair of points surviving is
approximately p2. This reduction in hash survivability is a
tradeoff against the tremendous amount of speedup
provided. The reduced probability of individual hash
survival is mitigated by the combinatorial generation of a
greater number of hashes than original constellation points.
For example, if F=10, then the probability of at least one
hash surviving for a given anchor point would be the joint
probability of the anchor point and at least one target point
in its target zone surviving. If we simplistically assume IID
probability p of survival for all points involved, then the
probability of at least one hash surviving per anchor point
is p*[1-(1-p)F]. For reasonably large values of F, e.g.
F>10, and reasonable values of p, e.g. p>0.1, we have
approximately

p ≈ p*[1-(1-p)F]
so we are actually not much worse off than before.

We see that by using combinatorial hashing, we have
traded off approximately 10 times the storage space for
approximately 10000 times improvement in speed, and a
small loss in probability of signal detection.

Different fan-out and density factors may be chosen for
different signal conditions. For relatively clean audio, e.g.
for radio monitoring applications, F may be chosen to be
modestly small and the density can also be chosen to be
low, versus for the somewhat more challenging mobile
phone consumer application. The difference in processing
requirements can thus span many orders of magnitude.

2.3 Searching and Scoring
To perform a search, the above fingerprinting step is
performed on a captured sample sound file to generate a set
of hash:time offset records. Each hash from the sample is
used to search in the database for matching hashes. For
each matching hash found in the database, the
corresponding offset times from the beginning of the
sample and database files are associated into time pairs.
The time pairs are distributed into bins according to the
track ID associated with the matching database hash.

After all sample hashes have been used to search in the
database to form matching time pairs, the bins are scanned
for matches. Within each bin the set of time pairs
represents a scatterplot of association between the sample
and database sound files. If the files match, matching
features should occur at similar relative offsets from the
beginning of the file, i.e. a sequence of hashes in one file
should also occur in the matching file with the same
relative time sequence. The problem of deciding whether a
match has been found reduces to detecting a significant
cluster of points forming a diagonal line within the
scatterplot. Various techniques could be used to perform
the detection, for example a Hough transform or other

robust regression technique. Such techniques are overly
general, computationally expensive, and susceptible to
outliers.

Due to the rigid constraints of the problem, the following
technique solves the problem in approximately N*log(N)
time, where N is the number of points appearing on the
scatterplot. For the purposes of this discussion, we may
assume that the slope of the diagonal line is 1.0. Then
corresponding times of matching features between
matching files have the relationship

tk’=tk+offset,
where tk’ is the time coordinate of the feature in the
matching (clean) database soundfile and tk is the time
coordinate of the corresponding feature in the sample
soundfile to be identified. For each (tk’,tk) coordinate in the
scatterplot, we calculate

δtk=tk’-tk.
Then we calculate a histogram of these δtk values and scan
for a peak. This may be done by sorting the set of δtk values
and quickly scanning for a cluster of values. The
scatterplots are usually very sparse, due to the specificity of
the hashes owing to the combinatorial method of generation
as discussed above. Since the number of time pairs in each
bin is small, the scanning process takes on the order of
microseconds per bin, or less. The score of the match is the
number of matching points in the histogram peak. The
presence of a statistically significant cluster indicates a
match. Figure 2A illustrates a scatterplot of database time
versus sample time for a track that does not match the
sample. There are a few chance associations, but no linear
correspondence appears. Figure 3A shows a case where a

Figure 4: Recognition rate -- Additive Noise

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

-15 -12 -9 -6 -3 0 3 6 9 12 15

Signal/Noise Ratio (dB)

15 sec linear 10 sec linear 5 sec linear

significant number of matching time pairs appear on a
diagonal line. Figures 2B and 3B show the histograms of
the δtk values corresponding to Figures 2A and 3B.

This bin scanning process is repeated for each track in the
database until a significant match is found.

Note that the matching and scanning phases do not make
any special assumption about the format of the hashes. In
fact, the hashes only need to have the properties of having
sufficient entropy to avoid too many spurious matches to
occur, as well as being reproducible. In the scanning phase
the main thing that matters is for the matching hashes to be
temporally aligned.

2.3.1 Significance
As described above, the score is simply the number of
matching and time-aligned hash tokens. The distribution of
scores of incorrectly-matching tracks is of interest in
determining the rate of false positives as well as the rate of
correct recognitions. To summarize briefly, a histogram of
the scores of incorrectly-matching tracks is collected. The
number of tracks in the database is taken into account and a
probability density function of the score of the highest-
scoring incorrectly-matching track is generated. Then an
acceptable false positive rate is chosen (for example 0.1%
false positive rate or 0.01%, depending on the application),
then a threshold score is chosen that meets or exceeds the
false-positive criterion.

3 Performance

3.1 Noise resistance
The algorithm performs well with significant levels of
noise and even non-linear distortion. It can correctly
identify music in the presence of voices, traffic noise,
dropout, and even other music. To give an idea of the
power of this technique, from a heavily corrupted 15
second sample, a statistically significant match can be
determined with only about 1-2% of the generated hash
tokens actually surviving and contributing to the offset
cluster. A property of the scatterplot histogramming
technique is that discontinuities are irrelevant, allowing
immunity to dropouts and masking due to interference.
One somewhat surprising result is that even with a large
database, we can correctly identify each of several tracks
mixed together, including multiple versions of the same
piece, a property we call “transparency”.

Figure 4 shows the result of performing 250 sample
recognitions of varying length and noise levels against a
test database of 10000 tracks consisting of popular music.
A noise sample was recorded in a noisy pub to simulate
“real-life” conditions. Audio excerpts of 15, 10, and 5
seconds in length were taken from the middle of each test
track, each of which was taken from the test database. For
each test excerpt, the relative power of the noise was
normalized to the desired signal-to-noise ratio, then linearly
added to the sample. We see that the recognition rate drops

Figure 5: Recognition rate -- Additive noise + GSM compression

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

-15 -12 -9 -6 -3 0 3 6 9 12 15

Signal/Noise Ratio (dB)

15 sec GSM 10 sec GSM 5 sec GSM

to 50% for 15, 10, and 5 second samples at approximately
-9, -6, and -3 dB SNR, respectively Figure 5 shows the
same analysis, except that the resulting music+noise
mixture was further subjected to GSM 6.10 compression,
then reconverted to PCM audio. In this case, the 50%
recognition rate level for 15, 10, and 5 second samples
occurs at approximately -3, 0, and +4 dB SNR. Audio
sampling and processing was carried out using 8KHz,
mono, 16-bit samples.

3.2 Speed
For a database of about 20 thousand tracks implemented on
a PC, the search time is on the order of 5-500 milliseconds,
depending on parameters settings and application. The
service can find a matching track for a heavily corrupted
audio sample within a few hundred milliseconds of core
search time. With “radio quality” audio, we can find a
match in less than 10 milliseconds, with a likely
optimization goal reaching down to 1 millisecond per
query.

3.3 Specificity and False Positives
The algorithm was designed specifically to target
recognition of sound files that are already present in the
database. It is not expected to generalize to live recordings.
That said, we have anecdotally discovered several artists in
concert who apparently either have extremely accurate and
reproducible timing (with millisecond precision), or are
more plausibly lip synching.
The algorithm is conversely very sensitive to which
particular version of a track has been sampled. Given a
multitude of different performances of the same song by an
artist, the algorithm can pick the correct one even if they
are virtually indistinguishable by the human ear.
We occasionally get reports of false positives. Often times
we find that the algorithm was not actually wrong since it
had picked up an example of “sampling,” or plagiarism. As
mentioned above, there is a tradeoff between true hits and
false positives, and thus the maximum allowable
percentage of false positives is a design parameter that is
chosen to suit the application.

4 Acknowledgements
Special thanks to Julius O. Smith, III and Daniel P. W. Ellis
for providing guidance. Thanks also to Chris, Philip,
Dhiraj, Claus, Ajay, Jerry, Matt, Mike, Rahul, Beth and all
the other wonderful folks at Shazam, and to my Katja.

5 References
[1] Avery Li-Chun Wang and Julius O. Smith, III., WIPO

publication WO 02/11123A2, 7 February 2002,
(Priority 31 July 2000).

[2] http://www.musiwave.com
[3] Jaap Haitsma, Antonius Kalker, Constant Baggen, and

Job Oostveen., WIPO publication WO 02/065782A1,
22 August 2002, (Priority 12 February, 2001).

[4] Jaap Haitsma, Antonius Kalker, “A Highly Robust
Audio Fingerprinting System”, International
Symposium on Music Information Retrieval (ISMIR)
2002, pp. 107-115.

[5] Neuros Audio web site: http://www.neurosaudio.com/
[6] Sean Ward and Isaac Richards, WIPO publication WO

02/073520A1, 19 September 2002, (Priority 13 March
2001)

[7] Audible Magic web site:
http://www.audiblemagic.com/

[8] Erling Wold, Thom Blum, Douglas Keislar, James
Wheaton, “Content-Based Classification, Search, and
Retrieval of Audio”, in IEEE Multimedia, Vol. 3, No.
3: FALL 1996, pp. 27-36

[9] Clango web site: http://www.clango.com/
[10] Cheng Yang, “MACS: Music Audio Characteristic

Sequence Indexing For Similarity Retrieval”, in IEEE
Workshop on Applications of Signal Processing to
Audio and Acoustics, 2001

