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ABSTRACT

We present a novel approach to pitch estimation and note de-
tection in polyphonic audio signals. We pose the problem in a
Bayesian probabilistic framework, which allows us to incorporate
prior knowledge about the nature of musical data into the model.
We exploit the high correlation between model parameters in adja-
cent frames of data by explicitly modelling the frequency variation
over time using latent variables. Parameters are estimated jointly
across a number of adjacent frames to increase the robustness of
the estimation against transient events. Individual frames of data
are modelled as the sum of harmonic sinusoids. Parameter esti-
mation is performed using Markov chain Monte Carlo (MCMC)
methods.

1. INTRODUCTION

Pitch estimation of polyphonic musical signals has received little
attention compared to that of monophonic signals. Most mono-
phonic techniques are not suited to polyphonic data, for instance
cepstral and pitch-synchronous methods. There have been some
very diverse approaches for polyphonic signals, however. Macleod
[1] interpolates the discrete Fourier spectrum to obtain high res-
olution frequency estimates. Klapuri [2] detects prime number
harmonics to resolve harmonically related notes in chords. Rossi
et al. [3] search for spectral patterns from a database, exploiting
the inharmonicity in piano strings. Martin’s blackboard system
[4] successively abstracts STFT frequency tracks into higher level
constructs of partials, notes and chords.

We present a model-based approach to polyphonic pitch es-
timation where the estimation of the fundamental frequency1 and
other parameters is performed along with model order detection,
i.e., determination of the number of concurrently sounding notes,
and the number of harmonics in each. We adopt a harmonic sig-
nal model, which is a natural choice given the nature of the sound
production mechanisms of many musical instruments (e.g., source-
filter, resonant cavities, etc.). Our method has the advantage that
detailed a priori knowledge of the characteristics of individual in-
strument is not required (unlike [2, 3]), and is applicable to a wide
range of instruments.

1For the purposes of this paper, we define pitch as the fundamental
frequency of a harmonic signal.

Most pitch estimation and sinusoidal analysis methods con-
sider data on a frame-by-frame basis, and then infer frequency
tracks as a later step. Here we exploit the fact that in musical
signals, the frequencies of interest are those with a significant du-
ration (i.e., longer than a single frame), and model this explicitly.
This has the chief advantage that the incidence of spurious fre-
quency estimates arising from transient events is greatly reduced.

2. HARMONIC MODEL

Data is segmented into frames di of length N , chosen to make the
frame duration around 20ms, during which time we assume the
data is stationary. The model is constructed as the sum of an un-
known number of concurrently sounding notes, where the param-
eters of note q in frame i are: fundamental frequency ωq

i , number
of harmonics Hq

i and harmonic amplitudes bq
i .

A maximum limit of Q notes is imposed, but each note can be
switched into or out of the model via a binary indicator variable
γq

i , which is estimated along with the other parameters, hence the
model order selection is implicitly carried out within the estima-
tion process. Each note is expressed as a General Linear Model
(GLM) [5] in terms of a harmonic basis matrix Gq

i , the amplitudes
bq

i , and an error term ei which is assumed Gaussian, independent
and identically distributed with variance σ2

ei
,

di =

QX
q=1

γq
i G

q
i b

q
i + ei (1)

Gq
i = [ s(ωq

i ) . . . s(H
q
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i ) c(ωq

i ) . . . c(Hq
i ω
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i )] (2)

s(ω) = [ sin(ωt1) sin(ωt2) . . . sin(ωtN) ]t (3)

c(ω) = [ cos(ωt1) cos(ωt2) . . . cos(ωtN) ]t. (4)

Denoting the note parameters by Θq
i = {γq

i , ω
q
i ,H

q
i ,b

q
i }, the

likelihood for frame i is given by

p(di|{Θq
i ; q=1. . .Q}, σ2

ei
) =

1

(2πσ2
ei

)
N
2

exp

�
−‖ei‖2

2σ2
ei

�
(5)

A least-squares or maximum likelihood method would seek to
maximise eq. (5), but here we pose the model in a Bayesian frame-
work which enables us to impart prior information into the model
via a priori probability densities on the parameters, and which also
provides a basis for probabilistic model selection.
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Figure 1: Graphical model showing how the parameters of mul-
tiple frames can be tied together through the hyperparameters
{∆q

Θ}.

2.1. Graphical Model

Graphical models are a useful tool for investigating different model
structures. They reflect the independence structure between model
parameters and provide a simple means for evaluating the full con-
ditional densities, which will be used in the numerical methods
adopted for the parameter estimation. Figure 1 shows a graphical
model representing eq. (1) for a set of Nf frames of data (termed
a block). The a priori densities of the parameters of each note are
dependent upon the hyperparameters {∆q

Θ} which represent any
prior knowledge we may have about the note parameters. Hyper-
parameters represent the constraints upon the underlying variation
of the note parameters over the course of the block, and hence
the prior distributions for the parameters are conditional upon the
block hyperparameters, and provide a good local model fit.

2.2. Choice of priors

Figure 2 shows the detail of the graphical model for the parame-
ters of note q in frame i. The block hyperparameters are {νq, σ2

ωq}
which denote respectively the pitch over the block and a measure
of its spread, and Γq which represents whether the note is active
(switched on) in this block. The arrows pointing to the note param-
eters signify dependence, such that the prior for ωq

i is dependent
on νq and σ2

ωq , for example. The prior distributions used are:

p(bq
i ) =I[−B

2 , B
2 ](b

q
i )/B

2Hmax (6)

p(Hq
i = h) =I[1,Hmax] B

−2(h−1) (7)

p(γq
i |Γq) =

�
1 − αγ , if γq

i = Γq

αγ , otherwise
(8)

p(ωq
i |νq, σ2

ωq) =LN(νq, σ2
ωq ) (9)

p(σ2
ei

) =IG(ασ, βσ) (10)

The prior for the harmonic amplitudes bq
i is a uniform distribution

over the maximum dimension 2Hmax, where IY (y) is the indica-
tor function (unity if y ∈ Y, zero otherwise) and ±B/2 is the

νq σ2
ωq

σ2
ei

di

ωq
i γq

i

Γq

Hq
ibq

i

Figure 2: Structure of a harmonic model showing the dependencies
of the parameters of one note for a single frame of data.

maximum allowable range of any element of bq
i . The parameter

Hq
i has a range of 1 . . .Hmax and acts as a selector into bq

i , such
that only the firstHq

i in-phase and quadrature (i.e., sine and cosine)
components are used. The prior is chosen to penalise higher model
orders as the improvement in model fit achieved by increasing Hq

i

must outweigh the cost of increasing the model dimensions. The
prior for the switch variable γq

i has a Bernoulli form and encour-
ages γq

i to follow the trend of Γq. The prior for the frequency is
a lognormal density (LN) which has the useful property that the
width of the distribution is proportional to frequency for a given
σ2

ωq . The error variance σ2
ei

is given a diffuse Inverse Gamma
(IG) prior.

The hyperparameters are also given prior distributions:

p(Γq) =

(
α

Nf

Γ , if Γq = 1

1 − α
Nf

Γ , otherwise
(11)

p(νq) ∝
�

(2g νq
prev)

−1, if |νq − νq
prev| < g νq

prev

β, otherwise
(12)

The latent switch variable Γq is given a Bernoulli prior which re-
flects the prior probability that a note should be switched on, where
0<αΓ <1. The latent frequency variable νq is given a prior which
has high probability within a small fraction g of the frequency in
the previous block νq

prev, and a very low probability β outside that
range. This prior creates a dependence between successive blocks,
to encourage continuous frequency tracks and a value of g = 0.05
is used to make the width of p(νq) plus or minus one semitone.
The value of the hyperparameter σ2

ωq should be specified a priori
as it provides a constraint on the deviation from νq of the fre-
quency of a single note over the block.

3. PARAMETER ESTIMATION

The joint posterior distribution for all parameters is obtained via
Bayes’ theorem as
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p({Θq
i }, {∆q

θ}, {σ2
ei
}|{di}) ∝ p({Θq

i}, {∆q
θ}, {σ2

ei
}) (13)

×
YNf

i=1
p(di|{Θq

i }, σ2
ei

).

Our aim is to produce optimal parameter and hyperparameter es-
timates by locating the regions of highest probability of eq. (13),
but as it is intractable to optimise this expression analytically we
employ Markov chain Monte Carlo (MCMC) methods to simulate
a Markov chain with eq. (13) as its stationary distribution [6]. A
stream of dependent samples from the posterior are generated and
the final state of the Markov chain is used for the parameter esti-
mates.2

The successive states of the Markov chain are generated by
the Metropolis-Hastings (M-H) algorithm [6]. A transition kernel
T (Θk,Θ∗) generates a proposal state Θ∗ from the current state
Θk which is then accepted with probability min(1, Q(Θk,Θ∗))
where Q(·, ·) is the M-H acceptance function:

Q(Θk,Θ∗) =
p(Θ∗|d)

p(Θk|d)

T (Θ∗,Θk)

T (Θk,Θ∗)
. (14)

T (Θk,Θ∗) here is also used to represent the transition probability
of proposing the move from Θk to Θ∗. If the proposal only affects
the subset θ ⊂ Θ, then Q(·) simplifies to a function of the full
conditional for θ,

Q(θk, θ∗) =
p(θ∗|d,Θk

−{θ})

p(θk|d,Θk
−{θ})

T (θ∗, θk)

T (θk, θ∗)
. (15)

where Θ−{θ} denotes all parameters except those in θ. The ben-
efit of sampling from the full conditionals is that the distributions
are simpler and cheaper to calculate than the joint posterior. The
simulation method consists of iteratively sampling for each note,
and so great efficiency savings can be made by defining a residual
rq

i and expressing the error as a GLM in terms of the residual and
the note parameters:

rq
i =dq

i −
X
q′ �=q

γq′
i Gq′

i bq′
i (16)

eq
i =rq

i − γq
i G

q
i b

q
i . (17)

3.1. Choice of transition kernels

In this algorithm we apply global and local transition kernels:
global kernels propose a state space move for hyperparameters
and/or note parameters for a particular note q but across all frames
i= 1 . . . Nf , whereas local kernels propose a move only in a sin-
gle frame. The estimation algorithm is a two stage process, where
the first stage is a stochastic scheme composed of global moves to
steer the Markov chain into high probability regions, and the final
stage is made up of local moves to obtain more accurate parame-
ter estimates. Given good starting values (e.g., initialised with the
results of the previous block), convergence is rapid, and typically
a total of 50–100 iterations in total is adequate.

The selection of transition kernels for harmonic models has
been previously reported in [7]. Andrieu and Doucet [8] also de-
scribe a number of suitable kernels for estimation of multiple sinu-
soids. We employ a few different types of global transition kernels

2Due to the very sharp multimodal posterior distribution, generally
moves are only made to states with a higher posterior probability.

as described in the following subsection. In each instance, the M-H
acceptance function is readily calculated from eq. (15). The local
kernels are simply random perturbations about the current value
and aren’t described here in further detail.

3.1.1. Global kernels

• Independence sampler. The most important of the kernels in this
algorithm is an independence sampling step that efficiently creates
parameter proposals from a distribution which has its modes in
similar locations to the posterior. A joint move is proposed for the
following parameters of note q: {νq , {ωq

i ,b
q
i ,H

q
i }i}.3 Defining

the order P harmonic transform [7] of a signal x, HP (x, l) as

Xp[l] =

Nfft−1X
n=0

x[n] e
− j2πpln

Nfft (18)

HP (x, l) =
PX

p=1

X∗
p [l]Xp[l], (19)

where l is the frequency bin number (l = 1 . . . L, L = �Nfft/P �),
we define a proposal distribution q(ωq∗|Hq∗) to be

q(ωq∗|H∗) ∝ 1

Nf

NfX
i=1

HH∗(rq
i ,
j
ωq∗/∆ω

k
). (20)

A value H∗ is sampled from a discrete distribution q(H∗) which
has a peak roughly around H∗ =4, and using this value we calcu-
late the harmonic transform of the residual rq

i for all frames. The
modes of this distribution are the fundamental frequencies corre-
sponding to notes with significant energy in their first few har-
monics, which is typical of musical notes. The proposal for the
harmonic amplitudes is calculated for each {ωq

i ,H
q
i }i pair from

the least-squares projection: bq∗
i = (G∗ tG∗)−1G∗ trq

i .
• Multiple step. This is an efficient method of overcom-

ing octave errors and some other problems which arise due to
the non-uniqueness of the harmonic representation, in which
the most compact representation is to be favoured. A joint
move for {νq, {ωq

i ,b
q
i , H

q
i }i} is proposed by sampling u ∼

{ 1
3
, 1

2
, 2

3
, 3

2
, 2, 3} and setting

νq∗ = u νqk

ωq∗
i = νq∗ Hq∗

i =
l
Hq∗/u

m
(21)

with bq∗
i chosen as in the independence step. This kernel traverses

harmonically related modes of the posterior distribution.
• Perturbation step. Perturbations are applied to {Hq

i }i and to
{νq , {ωq

i }i} which constitute a random walk with a small variance
about the current current parameter values.

• Switch step. A note is switched on or off across the entire

block by a joint proposal {Γq , {γq
i }i}, setting Γq∗ = 1−Γqk

and
γq∗

i = Γq∗ . This can also be incorporated into the independence
sampling step described above.

3Introducing the notation {φi}i ≡ {φi; i = 1 . . . Nf}.
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Figure 3: Log scale fundamental frequency tracks for a short ex-
tract of synthesised piano music. The parameters plotted are {ωq

i },
taken from the final state of the Markov chain. The frame length
was 1000 samples (Fs =44.1kHz), the block length was 5 frames,
and a Q = 5 model was applied. Notes can clearly be distin-
guished in the ‘piano roll’ format. A threshold was applied so that
only notes with an energy within 30dB of the signal energy are
plotted.

4. RESULTS

A ‘piano roll’ plot of the fundamental frequencies ωq
i from an ex-

tract of synthesised piano music are shown in figure 3. Smooth
frequency tracks are obtained with very few outliers due to tran-
sients. There are some errors due to octave and perfect fifth in-
tervals however, such as frames 15–20, which can be difficult to
resolve when notes in the same chord are playing at the same time,
since they will share a large number of harmonics. This is a com-
mon problem in harmonic models, since the representation can be
ambiguous for chords, but major chords and octave intervals can
often be detected successfully with this method, as can be seen in
frames 45–60. This is possible since notes with fewer harmon-
ics are favoured, which reduces the occurence of harmonic roots
where the detected frequency is very low and the number of har-
monics are high, and most harmonics have near zero amplitudes.

In addition to the fundamental frequency, we have estimates
of the other model parameters, so the method can be applicable
both to music transcription and signal separation. Both applica-
tions however require a higher level of modelling to determine the
source of each frequency track. Musical instrument recognition
relies on more than the steady-state harmonic amplitudes — the
harmonic variation over time, and particularly the attack phase are
very important characteristics [9]. A higher level model which ac-
counts for the time and frequency domain variation of notes from
different instruments and combines the currently disparate steps
of signal modelling and musical context integration is clearly re-
quired, and is to be the subject of future work.

5. CONCLUSIONS

We have shown the effectiveness of a multiple frame approach to
polyphonic pitch estimation which estimates harmonic model pa-
rameters jointly over a number of frames of data.

The algorithm is more robust to transient disturbances (e.g.,
note attacks) and so fewer spurious frequency candidates are pro-
duced. The detection and estimation task is posed in a Bayesian
framework, and the parameter full conditional densities have been
obtained from graphical models to yield an efficient MCMC sim-
ulation scheme.
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