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Structured audio representations are semantic and symbolic
descriptions that are useful for ultralow-bit-rate transmission,
flexible synthesis, and perceptually based manipulation and
retrieval of sound. We present an overview of techniques for
transmitting and synthesizing sound represented in structured
format, and for creating structured representations from audio
waveforms. We discuss applications for structured audio in virtual
environments, music synthesis, gaming, content-based retrieval,
interactive broadcast, and other multimedia contexts.
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I. INTRODUCTION

In this paper, we introduce the concept ofstructured
audio representations. These are description formats that
are made up of semantic information about the sounds they
represent and that make use of high-level or algorithmic
models. Certain representations that have been previously
examined elsewhere contain structured information, such as
musical-instrument digital interface (MIDI) musical-event
lists, music synthesis languages, and the linear-prediction
model of speech. We will interrelate this work and subsume
it into a larger discussion about general-purpose structured-
sound representations.

We will discuss various examples of technology and
applications that exemplify our ideas about structured media
description and explain why this way of organizing things
is a valuable one. We are not attempting to provide an
exhaustive review of research into audio synthesis, analysis,
or coding but to highlight concepts and previous work that
relate to our narrative; many of the subdomains we will
discuss are large enough to support extensive review articles
in their own right.
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We specifically focus on two primary applications
of structured sound. First, structured descriptions allow
ultralow-bit-rate transmission of audio content, exploiting
formerly unexamined forms of redundancy in signals;
second, they also allow perceptually informed access,
providing more naturalistic interfaces for the search
and manipulation of sonic data. We will also describe
a structured-sound system we have developed for the
Motion Pictures Experts Group (MPEG)-4 standard, which
unifies many ideas about algorithmic and structured
compression in a context of audio coding, and highlight
future directions toward annotation methods applicable to
sound-understanding systems.

A. Rationale

There have been many explorations into methods of
analyzing and synthesizing sound; it is now apparent that
much of this work may be profitably connected and related
in order to build transmission and analysis systems that
are more powerful than their individual parts. Our own
projects on “NetSound” [14] and the MPEG-4 structured
audio decoding standard [97] have shown us the value
of integrating research at the forefront of sound analy-
sis, musical sound synthesis, sound-effects processing, and
sound coding. By exploring such connections, we hope to
stimulate discussion about structure in sound and the ways
that it may be exploited in many sorts of audio applications.

We especially hope to demonstrate how much potential,
both for researchers and for application developers, there
is for broader perspective in thinking about the semantics
of sound. In the past, “structured audio” has sometimes
been envisioned only as “three-dimensional (3-D) audio for
virtual reality.” While this is one important component, we
argue that there are many other useful kinds of structured
audio as well. Representations that contain explicit infor-
mation about the perceptual qualities of a sound provide
expanded sound quality and functionality for sound systems
of all kinds.
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As integrated multimedia applications and signal-
processing systems become more common, it is important
for audio and acoustics researchers who focus on one
area to be aware of the rest of the world of sound
research, to understand how results from one area may
be leveraged to another, and to assist in the construction
of multidimensional tools that draw from many different
disciplines.

B. Definitions

While any attempt to draw boundaries between different
representations, coding schemes, or processing algorithms
inevitably produces gray areas, we will attempt to define
our terms carefully in order to provide context for later
sections.

A structured media representationhas a number of fea-
tures by which it can be identified. One characteristic
is that structured representations encode a signal, in our
case a sound, in relation to amodel—that is, they make
assumptions about the nature of the sound being represented
and use these assumptions in defining a parameter space.
Sounds that fall outside the assumptions for a particular
model will often be impossible to represent accurately in
its parameter space. We might further say that the lower
the dimensionality of the feature space, the “more struc-
tured” the representation is—in a very-low-dimensional
representation, each coordinate must have relatively “more
meaning.” In a structured representation, the parameters
used have a “semantic meaning” in a larger context. That is,
the parameters are individually interpretable as represent-
ing certain high-level features about the sound, and their
manipulation gives simple control over perceptual aspects
of the sound.

Traditionally, within a certain signal-processing and
pattern-recognition literature, the term “parametric,”
especially as distinguished from “nonparametric,” is used
to describe representations in which the dimensions of
variation of a sound can be described using a simple
equation, generally continuously varying in the parameters.
Our use of this term subsumes both meanings and, more
generally, any model for sound in which different sounds
can be distinguished using a set of parameters, regardless
of the nature of the particular model.

It is important that we discuss structured sound models in
terms of theirperceptualaspects—a fundamental concern
in the development of structured audio representations is an
understanding of how listeners perceive sound. We are less
interested in properties often desirable from an engineering
standpoint, such as perfect reconstruction of a target sound,
than we are in the relationship of a parametric model to
human audition. Thus, in many cases, the development
of error criteria for comparison of different representa-
tion methods is problematic—a simple “minimum squared
error” criterion does not suffice because humans do not
measure “noise” or “reduction in quality” of sound this
way.

To contrast two simple examples, a digitally sampled
waveform encoded in pulse code modulation (PCM) format

is not a structured representation—it is a high-dimensional
description of the sound, there is no contextual model
embodied in the parameter space, and the individual sample
values have little meaning taken one at a time. It is only by
examining many, many samples in relation to one another
(and likely transforming them into some other domain)
that we might begin to understand the perceptual qualities
of the sound. Although the description may be made
more compact by using subband coding and perceptual
approximation [40], [46], the resulting bit stream still
contains little structure.

On the other hand, a music track stored in MIDI format is
a highly structured representation. MIDI data are very com-
pact, requiring only hundreds of bits per second rather than
hundreds of thousands for PCM data, and the individual
parameters represent perceptual aspects of the signal such
as “pitch” and “onset time.” There is a very strong music-
generation model used to allow this concise description.
The MIDI representation has drawbacks, though—it is not
applicable to description of subtly changing sounds, the
description does not completely specify a sound (because
timbre is left out of the MIDI description), and it is very
difficult to generate a MIDI representation automatically
from a given waveform. However, as the MIDI standard
is a very important, widely used sound-encoding scheme,
it is clear that these are not insurmountable barriers to the
utility of a representation.

In fact, for many domains, there is great applicability
for sound representations that only encode partial infor-
mation about a sound or that cannot be easily encoded
from a sound waveform. The task ofcoding, in which
we are interested in a complete loop—from encoding
through transmission to decoding—is only one area within
the study of structured-sound representations. For other
domains—such as interactive music systems, content-based
retrieval, and virtual environments—we may consider other
representations with other features.

The structured formats we will discuss have many prop-
erties that may be used to contrast them and examine their
suitability for various applications. We will consider the
degree to which formats areencodable—that is, how easy
it is to extract the representation directly from an audio
waveform—and whether they aresynthesizable—whether
the representation can be turned back into sound without
more information. For synthesizable descriptions, we wish
to know howaccuratethe resynthesis may be with respect
to a target sound. We are interested in thegeneralityof a
representation—to know whether it applies to every sound
or only a few specific kinds of sound. Sound formats
that are highlysemantic,that is, for which the individual
parameters have a clear high-level meaning, are easier to
manipulate. Last, in many applications, we wish to consider
the efficiencyor compactnessof a sound format; the more
compact a representation is, the less bandwidth it takes to
transmit sounds in that format.

These properties govern the situations in which a certain
representation is useful. There is no reason to believe that
one sound model will be appropriate for all tasks; part of
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the goal of this paper is to explore the range of possibilities
for representations applicable to many different domains.

It is important to realize that there is an essential trade-
off in structured-signal representations between efficiency
and generality. That is, representations that are maximally
compact for a particular type of sound must make use of
strong assumptions about the process by which that sound is
generated. Because of these assumptions, the representation
is a poor one for sounds that do not lie in the domain being
modeled. For example, the MIDI representation is useful for
representing certain kinds of sounds, such as piano music,
because the pitch/onset/duration model is appropriate for
that domain. Other sounds, such as speech, are not modeled
well within this framework, and so other representations
must be discovered that are more appropriate for those
domains. By embodying specific assumptions about the
nature of the sound, the MIDI format allows for very
concise description of sounds that have this nature but
precludes its use for sounds that do not. In contrast, the
PCM format is very general; it allows the (inefficient)
representation of any band-limited sound whatsoever.

This tradeoff is not a drawback when designing repre-
sentations for the transmission of sound, as it is always
possible to conjoin two representations into one by adding
a few extra bits to indicate which representation to use. The
“coding space” of the joint representation is then the union
of the coding spaces of the two underlying representations.
This approach is represented by general-purpose synthesis
languages; see Section II-D.

Structured-audio methods are useful for sound com-
pression and transmission because they exploit signal re-
dundancies that other coding methods cannot. Existing
sound-compression methods work in one of two ways.
Lossless coders removeentropic or information-theoretic
redundancy [103] from a digitally sampled signal. This
redundancy arises from the fact that successive samples are
not statistically independent and that some sample values
occur more often than others. Sounds coded in this manner
may be exactly reconstructed. Perceptual coders remove
perceptualredundancy from a signal, that is, redundancy
created by overspecifying the sound format with regard
to the human perceptual system and including details that
cannot be perceived. When the perceptually unneeded infor-
mation is removed, the result is a lossy coding scheme; that
is, the original waveform cannot be reconstructed exactly
from the coding. However, the reconstructed waveform will
sound like the original to a human listener.

Most sound signals also contain what we termstructural
redundancy,which arises in several ways. First, many
notes or sound events in a soundtrack sound the same
or nearly the same; in waveform coding, these events
will simply be represented multiple times. Using timbral
models, we can concisely describe the similarities and
differences between different notes with the “same” timbre.
Many soundtracks contain sections of repeated material;
for example, footsteps, drumbeats in popular music, and
exact recapitulations in classical music. If we can represent
these repetitions symbolically, we can reclaim a great deal

of redundant information. Last, many sounds are more
simply represented as processes than as waveforms; for
example, consider speech sounds processed to add artificial
reverberation. We may use a highly efficient speech coder
to transmit the flat, unreverberated speech, and parameters
to (or an algorithmic description of) a reverberation algo-
rithm, and do the effects postprocessing after the speech
is decoded. This is a more efficient transmission method
than using a general-purpose coding scheme to transmit the
reverberated waveform.

C. Overview

The remainder of this paper will present an in-depth
discussion of various methods for generating and processing
sound. Table 1 contains a summary of the various analysis
and synthesis methods discussed, showing where in the
paper they are presented and their properties according to
the list in the preceding section.

Section II describes representations appropriate for cre-
ating sound from structured descriptions, including music
synthesis, effects processing, and our recent work on the
MPEG-4 structured-audio standard. Section III describes
the state of the art in extracting structured descriptions
from waveform audio, including parameter estimation
and so-called “computational auditory scene analysis.”
Section IV discusses applications for structured-audio
representations, such as very-low-bit-rate transmission,
content-based retrieval, and sound-manipulation systems.
Last, Section V concludes with brief thoughts on the
implementation methodologies useful for structured-audio
systems and describes future research prospects in this area.

II. SOUND FROM STRUCTURE

In this section, we discuss methods of generating sound
from a structured description. If we wish to communicate
a sound description over a channel, we require both an
encoder and a decoder. The encoder and decoder have
a priori knowledge of the underlying sound model; the
description is then a set of model parameters, expressed
in symbolic or numerical form. Thus, the description is
a parameterized sound representation. Principally, we are
interested in descriptions that are reasonably compact and
describe the sound in some meaningful or semantic way.

The encoder may obtain the parameters by analyzing ex-
isting sound, in which case the encoder/decoder process is
often termed ananalysis/synthesisprocedure. The encoding
might also be strictly generative, however, such as in the
reproduction of a musical score or other scripted sequence
of sound events. In this case, the model parameters are not
obtained automatically but by a human designer authoring
them to create the desired content or from a generative
algorithm implementing a world model.

A. MIDI and Other Event Formats

MIDI is a combined hardware and software specification
for musical content [57], [69]. It allows for the real-
time transmission of musical-instrument performance data,
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Table 1 Properties of Various Structured Representations of Sound. See Referenced Sections for
Details. “Encodable” Representations Are Those That Can Be Automatically Extracted from
Sound with Current Technology. “Synthesizable” Representations Are Those That Can Be Turned
Back into Sound; For These, “Accurate” Models Are Those for Which the Reconstructed Sound
Must Be Very Similar to the Original or Target Sound. “General” Representations Are Those That
Can Encode All Sorts of Sound. “Semantic” Representations Assign High-Level Meaning to
the Individual Parameters. “Efficient” Representations Are Those in Which
Different Sounds May Be Distinguished with Relatively Few Bits

including note start and stop events, control parameter
updates, and patch, or timbre, changes. Although MIDI has
a number of deficiencies, such as poor time resolution and
low bandwidth [70], it is an overwhelmingly successful and
useful standard.

The MIDI file format is a standard method of representing
time-sequenced events and can efficiently represent a mu-
sical performance as a set of note onset and offset times
with associated amplitudes, patch numbers, and control

parameters. The file does not encode the exact sound to
be played, only a patch number; the sound realization
depends on the device used to play back the sound. Another
standard, called General MIDI, defines a set of standard
musical-instrument sounds and assigns patch numbers for
them; any musical instrument capable of rendering the
General MIDI sound set can play back General MIDI files.
This standard does not guarantee a high degree of sonic
consistency across platforms because different instruments
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use different methods to synthesize the sounds, but it does
provide an extremely compressed representation for musical
data.

MIDI is one example of anevent-list representation.An
event list is a sequence of control parameters that, taken
alone, do not define the quality of a sound but instead
specify the ordering and characteristics of parts of a sound
with regard to some external model. The external model is
often encapsulated in the form of a hardware synthesizer
using one of the methods in Section II-B or as a set
of descriptions in an algorithmic synthesis language—see
Section II-C. Many event-list formats only contain infor-
mation about timbre at the highest semantic level, in the
form of specifying which sound to use from a list of
those available; others contain rudimentary timbral data.
For example, a new addition to the MIDI specification
allows the inclusion of downloadable sound samples (see
Section II-B1), and the score file language for the algorith-
mic synthesis language “Csound” (see Section II-D) can
contain data for the synthesizer to process.

Event lists are particularly appropriate to soundtracks,
which are characterizable as a series of discrete events;
piano and other percussive instruments are the prime ex-
ample. Musical instruments with more continuous control
capability, such as the violin, are harder to describe via
parameters in an event list. Speech and singing are very
difficult due to the slow and subtle transitions from sound
to sound.

Very powerful and user-friendly software packages have
been developed for authoring MIDI event lists. Called
“sequencers,” because they allow the specification and
modification of event sequences, they have become an
important tool of the modern composition studio. It is likely
that new versions of these tools will be created to handle
new structured-sound formats.

Related to event lists, and omnipresent in the real-
world musical community, isstandard musical notation.
This familiar “dots-on-lines” notation, having evolved over
many centuries of Western music, is a powerful and flexible
medium for the description of certain kinds of music. It is
highly graphical in nature, however—cues such as the shape
of a particular object on the page, or whether it is filled in or
left open, indicate the durations of notes in the composition.
As a result, it is difficult for today’s computers to use this
notation effectively. Many recent research projects attempt
to allow the interconnection of computer-based methods
and standard musical notation [101].

B. Sound Representations and Synthesis Methodologies

This section will discuss various algorithmic represen-
tations of sound, most developed as music- or speech-
synthesis techniques. It is important to note that although
the text is describing synthesis algorithms, in each case
there is an implicit domain (or “representation space”) of
parameters used to control the synthesis method and a range
of sounds easily generated with the method. The suitability
of each of the methods for a particular application depends
on the sound that must be generated and the sophistication

of parameterization that is available. For each method, the
parameters in the domain map to a specific sound from
the range in a complex model-dependent way; thus, each
synthesis method is also a parametric sound model.

Table 2 summarizes the typical domain and range of each
method discussed here.

1) Sampling: Many modern music synthesizers are
based onsampling synthesis[64]. Individual instrument
sounds (notes) are digitally recorded and stored in memory
in the instrument. When the instrument is played, the note
recordings are reproduced and mixed (added together) to
produce the output sound. This can be a very effective
and realistic synthesis method, although it requires a lot
of memory.

Several techniques can greatly reduce storage require-
ments. First, by transposing the pitch of a sample during
playback, a single recording can reproduce a range of
notes. Second, quasi-periodic sounds can be “looped” after
the attack transients have died out by replaying one or
more periods of the recording. Thus, the internal recording
stored in memory only consists of the attack section and a
looping section. The synthesis technique based on looping a
single waveform is known aswavetable synthesis;sampling
synthesizers are sometimes called wavetable synthesizers.

A looping section composed of a single period of the
fundamental frequency will only reproduce perfectly har-
monic timbres, which tend to sound lifeless. To synthesize
nonharmonic partials, the looping section must contain
more than one period of the fundamental. Long loops,
on the order of seconds, may be necessary to reproduce
complex sounds like a bowed string section realistically.

When a sound that should normally decay is looped, the
amplitude envelope of the sound must be artificially re-
stored; this is easily accomplished by multiplying the output
of the sample playback engine with an amplitude envelope.
Another useful technique is to process the output with a
frequency-dependent filter whose response is changed over
time. This can restore a natural timbral evolution to an
otherwise lifeless and static sound. A recent development is
the creation of new representations in which sound samples
are associated with simple processing methods that describe
envelopes and filter parameters [89].

Sampling is a technique that can be applied to any type of
sound. Compact descriptions are obtained when the original
sound can be decomposed into recurring elements, like
notes in a musical piece, or if the elements themselves
are quasiperiodic and appropriate for a looped represen-
tation. Sampling is poor at encoding transitions between
elements as part of a larger context. For example, speech
can be reconstructed by concatenating individual phoneme
recordings, but the resulting synthesis may sound awkward
because the transitions between phonemes are incorrect
and contextual parameters such as stress and intonation
are missing. When longer term information about these
continuous parameters is added to the representation, high-
quality speech may be produced.

Sampling can be used effectively to reproduce envi-
ronmental sounds, as witnessed by the large number of
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Table 2 The Domain (Parameterization) and Range (Sounds Typically Generated) for Each of the
Synthesis Methods Discussed in this Section. See Text for Details on Methods. While the
Theoretical Ranges Are Broader Than Shown Here, We Focus on Those
Sounds for Which the Method Is Best Suited in a Practical Sense

sample libraries devoted to sound effects for film and video
postproduction. The process of creating sound effects for
film, called “Foley” after its originator, is rather similar
to a sampling synthesis paradigm. An expert Foley artist
uses special (or sometimes common) equipment to produce
sounds like thunder, footsteps, gunshots, etc.; these sounds
are recorded to an effects track and later mixed with the
rest of the film sound. The samples often require additional
processing to fit the needed context, for example, trimming,
time-scale modification, reverberation, flanging, filtering,
etc. The subject of model-based postproduction is discussed
in a later section.

2) Additive Synthesis:Additive synthesis is a method of
synthesizing sound from the superposition of sinusoidal
components, each with time-varying amplitudes and fre-
quencies. Quasi-periodic musical sounds, consisting of a
set of partials, are particularly well suited to this represen-
tation, and consequently, additive synthesis has been used
extensively to study musical-instrument timbre [35], [43],
[82], [83], [110] (see also Section III-A). Amplitude and
frequency data are created algorithmically or by analyzing
acoustic data; tones are resynthesized by driving a bank of
sinusoidal oscillators with this information.

Impulsive sounds cannot be realistically synthesized us-
ing a small number of sinusoidal tracks. This means that
additive techniques are ineffective at synthesizing, for ex-
ample, a flute tone that contains a great deal of breath noise.
Serra [102] proposed an extension to the additive model
that includes a time-varying noise component. Sinusoidal

analysis is performed by computing the short-time Fourier
transform (STFT), finding spectral peaks, and matching
peaks in adjacent analysis frames to form sinusoidal tracks
[66]. The difference between the original sound and the
synthesized sinusoids is computed, and the spectrum of
this residual is smoothed. The synthetic noise component
is defined by the time-varying set of spectral envelopes and
resynthesized using the inverse STFT. Using this model, it
is possible to resynthesize the breath component of a flute
tone and vary this independently of the pitched component.

3) Subtractive Synthesis:Subtractive synthesis is char-
acterized by a harmonically rich source sound that is
subsequently filtered, a model that applies to many physical
sound-producing systems. Many of the early analog music
synthesizers were based on the subtractive-synthesis para-
digm. Typically, the output of a periodic oscillator (triangle,
sawtooth, square, and pulse waves have been commonly
used) is passed through a voltage-controlled filter (VCF)
and then to a voltage-controlled amplifier (VCA). Both the
VCF and VCA are controlled by simple envelope generators
that specify the time evolution of the sound’s spectrum
and amplitude. Simple networks of oscillators, filters, and
amplifiers can synthesize many different sounds from a
small number of control parameters, but the resulting tones
have a distinctive “analog synthesizer” character that, while
sometimes desirable, is difficult to avoid.

Speech synthesizers are often based on a subtractive
synthesis model. Voiced speech (i.e., a vowel) is created by
a periodic glottal excitation that is filtered by the resonances
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of the vocal tract (see [80] for a complete discussion of
speech production). The resonances, orformants,give a
vowel-like quality to the sound that is independent of pitch;
the perceived vowel depends on the pattern of formant
frequencies. Pitched glottal sources can be modeled using
periodic pulses, fricative sources can be modeled using
noise, and the vocal-tract resonances can be modeled with
simple pole-zero filter networks [79]. The formants can be
estimated from recorded speech using linear prediction [5],
[61] (see also Section III-A1).

Rabiner [78] has described a rule-based speech synthe-
sizer that can convert sequences of phonemes into control
signals for a digital speech synthesizer. Modern speech
synthesizers, though perfectly intelligible, still suffer from a
mechanical quality and are easily distinguished from natural
speech. Subtle differences between the subtractive model
and the physical speech process, and the lack of pitch and
timing cues, create this lack of expression that is important
to the human perception of natural speech. It is very difficult
to arrive at algorithmic representations of these sorts of
cues [16].

4) Formant and Granular Synthesis:Driving a formant
filter with a periodic source of impulses results in an
output that is a sum of delayed formant time responses;
this suggests a time-domain method of generating voiced
speech where copies of formant filter impulse responses
are overlaid. The synthesis method of Rodet [88] defines a
time-domain formant wave function (FOF, forfonctions
d’onde formantique), parametrized in terms of center
frequency, amplitude, and bandwidth. The FOF’s are
synchronously overlaid in time to create a pitched output;
summing multiple FOF’s allows the creation of complicated
spectral shapes to simulate speech or instrument sounds
[23].

The general synthesis method of summing parametrized
time functions is calledgranular synthesis[24], [85]. Typ-
ically, the sound components, orgrains, are band-limited
time functions on the order of 10–20 ms duration obtained
by windowing an existing signal or by applying an envelope
to an oscillator. These window functions control both the
time-domain (length) and frequency-domain (bandwidth)
characteristics of the grain. Each band-limited grain tiles
a portion of time-frequency space; thus, by summing many
grains in a specific pattern, it is possible to control the dis-
tribution of energy in time-frequency space. This synthesis
method is often used in a way that is highly abstract and
best suited to the generation of noisy or textural sounds like
water, wind, applause, and fire [86].

5) Frequency Modulation (FM) and Wave-Shaping Synthe-
sis: One of the most widely used synthesis techniques
is FM synthesis [17]. FM results when the instantaneous
frequency of a waveform, called thecarrier, is modulated
according to the amplitude of a modulating wave. This
creates symmetrical sidebands above and below the carrier
frequency, with each sideband offset from the carrier by an
integer multiple of the modulating frequency. Increasing
the depth of the modulation (the modulation scaling factor
is called the modulation index) creates sidebands of greater

intensity. By suitable choice of the carrier and modulation
frequencies, it is easy to obtain harmonic spectra or bell-like
inharmonic sounds that have a preponderance of low-
frequency energy and a spectral bandwidth controlled by
the modulation index. Furthermore, the dependence of the
amplitudes of spectral components on the modulation index
is complex, so that slowly changing the modulation index
imparts a rich timbral evolution of the sound.

Using a simple FM circuit, where both the modula-
tion index and the signal amplitude are controlled by
envelope generators, it is possible to synthesize brass-like
and woodwind-like tones. A slightly more complicated
circuit is required to generate percussive sounds containing
inharmonically related partials. Bowed string and piano
tones can be synthesized using complicated modulating
waves [52], [100]. Although FM techniques provide a large
variety of musically useful timbres, the sounds tend to have
an “FM quality” that is readily identified. Also, there are no
straightforward methods to determine a synthesis algorithm
from an analysis of a desired sound; therefore, the algorithm
designs are largely empirical.

FM synthesis is an efficient method to create harmonic
sounds whose spectral content evolves over time. It is
one of a general family of techniques called wave-shaping
synthesis [53], [84]. Wave shaping is accomplished by
applying a nonlinear function to the output of a sinusoidal
oscillator, causing the creation of harmonic distortion prod-
ucts. These overtones create a rich harmonic spectrum. The
harmonic content can be made to evolve over time by
changing the amplitude of the oscillator or by adjusting the
nonlinear distorting function. The technique is well suited to
reproducing brass tones [7] because these instruments have
the property that the high-frequency energy depends on the
amplitude of the fundamental due to nonlinearities in the
mouthpiece. An analysis method is possible; Beauchamp
[7] derived the nonlinear distorting function from acoustic
measurements of brass tones, and the resulting synthesis
algorithm produced realistic brass-sound synthesis.

6) Physical Modeling:The synthesis of musical sounds
by physical modeling of the instrument is an approach that
has recently come to the forefront of synthesis technology
[32], [107], [108]. Physical modeling offers faithful sonic
reproduction under both static and dynamic playing condi-
tions. The control parameters of the synthetic instrument are
identical to the real controls, providing a natural expressive
interface. The simulation of instruments is sufficiently accu-
rate to include idiosyncratic behavior, such as a saxophone
that squawks when misplayed.

An acoustical instrument can be simulated by solving
the differential equations (e.g., the wave equation) that
govern its behavior. The problem can be discretized by
using numerical techniques to solve for the values of
acoustic variables at a grid of points distributed throughout
the instrument. The direct solution of these differential
equations is of course prohibitively expensive for real-
time performance; however, wind and string instruments are
based on acoustic tubes and vibrating strings, which may
be accurately modeled as one-dimensional waveguides.
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One-dimensional waveguides are efficiently modeled in
signal processors using bidirectional delay lines; the signals
in the delay lines represent the two modal waves that
propagate in opposite directions in the waveguide. For
a vibrating string, rigid termination at the end of the
waveguide is implemented by connecting the output of one
delay line to the input of the other through an inverting gain
(multiplication by 1). Any frequency-dependent losses
or dispersion in the acoustic medium can be lumped into
discrete elements placed in series with the delay lines. Con-
sequently, it is possible to model the physics of an acoustic
tube or a vibrating string using a pair of bidirectional delay
lines in series with a frequency-dependent filter. This is
easily implemented for real-time performance on typical
digital signal processors.

In practice, waveguide synthesis models require addi-
tional components to simulate a given instrument. For
example, in a clarinet model, one end of the waveguide
is terminated by a single reed mechanism and the other
end is terminated by a bell. The reed mechanism acts
to inject energy into the waveguide; efficient physical
models of the single reed have been developed [107]. The
bell radiates high frequencies and reflects low frequencies,
which are easily implemented using a crossover filter at the
terminating junction [108]. The clarinet model may also
include models for the tone holes; these lead to yet more
complicated filtering in the waveguide [113].

Other physical models that have been developed in-
clude brass instruments [19], human singers [20], bowed
string instruments [107], and flutes [48]. In addition, two-
dimensional waveguide meshes have been developed [112];
these allow the modeling of drums, soundboards, cymbals,
gongs, etc. Only simple physical systems have yet been
modeled with these methods, and it is still an open problem
to determine the best way to realize the damping filters
and nonlinearities for a particular model. These features
are particularly important, as most instruments sound very
similar when simplified to a linear waveguide model; it
is the addition of nonlinear elements that gives specific
instruments their characteristic expressivity.

7) Perceptual Models:A desirable attribute of a sound
representation is that it allow the parameters to control in-
dependently perceivable qualities of the sound. Many of the
synthesis algorithms we have discussed provide perceptual
controls such as pitch and amplitude as a natural result
of their design; we seek methods that can systematically
provide perceptually relevant control over other aspects of
sound.

Historically, this problem has been approached by con-
sidering a set of sounds and experimentally establishing
the perceptually relevant axes in this space of sounds using
multidimensional scaling [42], [105]. This is accomplished
by first obtaining similarity judgments for all pairs of the
sounds; a mathematical technique is then used to assign the
sounds to points in a Cartesian space such that the distances
between the points match the similarity judgments for the
corresponding sounds. If the similarity judgments are based
on only a few perceptual cues, then a low-dimensional

space should account for the similarity judgments. Descrip-
tive axes into the space can be determined by correlating
subjective or objective parameters with the data. Once the
perceptual axes are determined, a synthesis method can be
devised with corresponding perceptual parameters [122].

An alternative approach is to perform a principal compo-
nent analysis of the set of sounds [15], [51], [92]. The result
of this procedure is a set of orthogonal basis vectors, linear
combinations of which can reconstruct any of the analyzed
sounds. Often, a small subset of these vectors accounts for
most of the variation in the data, and combinations of these
vectors alone can reconstruct any of the original sounds
with high accuracy. Consequently, the original sounds can
be parametrized as a small set of basis vector weights. It is
then possible to interpolate between sounds by interpolating
between these weights. There is no guarantee that this
interpolation will be perceptually meaningful because the
basis vectors are obtained by statistical rather than percep-
tual means; nevertheless, the basis vectors often represent
salient features in the sound.

C. Model-Based Postproduction

The postproduction process turns multitrack recordings,
in which each component of the sound scene such as music,
speech, and sound effects is represented separately, into a
distribution format, such as a monophonic, stereophonic,
or other multichannel mix. This mixing process involves
the dynamic filtering of soundtrack components, the spatial
positioning of sound, and the addition of other spatial
effects, such as artificial reverberation [36]. In a strictly
musical production, there may be complete artistic freedom
in applying these effects; in a film or video production, the
spatial cues are carefully coordinated with the visual scene
to enhance realism or artistic impact.

Currently, postproduction work is a laborious task done
by skilled sound engineers. They use knowledge about the
presentation format, artistic context, and sound material to
carefully design filtering and spatial effects for a particular
piece of content. With structured techniques, it may be
possible to perform some of this manipulation algorithmi-
cally. A strictly computational implementation requires a
production modelto constrain the processing and determine
exactly what effects must be applied to which sounds.

One approach is to use a virtual-reality world model, such
as the virtual-reality modeling language [118], where the
world is physically defined and the listener’s relationship
to the world is defined by the camera viewpoint. This
approach would not be adequate for many video and film
productions; for example, we do not expect the positions
of sounds to jump when the camera changes viewpoint
within the same scene or to Doppler shift during rapid
camera motion. A better model needs to be developed that
anticipates cinematographic requirements.

The MPEG-4 standard [97] will contain a scene-
description language for the high-level description of audio
scenes made of both waveform-encoded and structured-
audio sound sources. These sources can be related
to each other spatially and temporally and processed
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with transforms and filters custom designed for the
postproduction of each sound scene. As it allows scenes
to contain sound sources coded in many different ways,
the scene description acts as a metarepresentation for the
different coding methods in the standard. Each track of
audio may be coded in the way most appropriate to the
scene and track requirements. These tracks are then filtered
and, if desired, presented spatially using a method that is
appropriate to the listener’s speaker configuration.

TheSpatialisateursystem [47] is an example of a general
system for the spatial processing of sounds, intended for
multimedia or virtual-reality applications. It allows control
over the position of multiple sounds and provides separate
control for reverberation, which is implemented as a set of
perceptual controls. The system also produces a variety of
output formats, including binaural formats for headphones
or loudspeakers, or multichannel surround sound formats.
Gardner [37] has recently described a more advanced sys-
tem that takes the listener’s position into account to make
the spatial synthesis more robust to listener motion and
provide higher quality perceptual cues to spatial location
of sounds.

D. Synthesis Languages

Many computer languages for specifying sound-synthesis
algorithms have been developed [38], [87], [93]; for exam-
ple, the popular Csound language [116], which is descended
from the MUSIC IV and MUSIC V languages developed
by Mathews in the 1960’s [65]. Most of these languages
are based onunit generators,which are simple functional
blocks like oscillators, filters, and envelopes that may be
connected into networks to describe a signal flow path.
The connections can be specified using a functional syntax,
such as

output oscillator freq envelopetime

or made by graphically connecting objects on a screen, such
as with the MAX program [77].

Synthesis languages play an important role in structured
audio because they can be used to define hybrid repre-
sentations of sound. That is, many soundtracks can be
more effectively represented when components are gener-
ated using different synthesis methods. Where a hardware
synthesizer likely uses only one or two synthesis methods
for all the different sounds it generates, these synthesis
languages allow each instrument to be generated with an
appropriate method—FM for brasses, physical modeling
for strings, sampling for drums. In addition, signal-flow
networks may be created that do not correspond exactly to
any “standard” method of sound synthesis. Hybrid synthesis
methods can be created as needed.

General-purpose sound-synthesis languages that contain
both wavetable and algorithmic synthesis methods are theo-
retically complete in the kinds of sounds they can generate;
there are no sounds that cannot be created by using arbitrary
algorithms to process wavetable data. However, it requires a
great deal of skill to write algorithms that generate pleasing

sound algorithmically. As there are not yet robust methods
for automatically generating the appropriate algorithm to
synthesize a given soundtrack, it is not likely that such
languages will replace acoustic musical performance.

We have developed a new language based on MUSIC
V called “structured audio orchestra language” (SAOL) for
the transmission of synthetic sound algorithms in the “struc-
tured audio and effects” component of MPEG-4 [95], [97].
SAOL brings many new features to this lineage, including
a more powerful functional abstraction, a new effects-
processing metaphor, better score-based controllability, and
the possibility of describing dynamic sequencing algorithms
and virtual performers. The language retains features from
Csound that allow the development of efficient compilers
for dedicated signal-processing hardware.

Between this language and the scene-description capabil-
ity described above, the MPEG-4 standard provides a very
powerful, efficient method for encoding and transmitting
all sorts of sounds. It can be viewed as the unification
of all of the structured-sound methods we have described
to this point. “Natural” sounds are represented as PCM
samples, subband coded waveforms, or with a sophisticated
linear predictive coding (LPC) model. “Synthetic” sounds
are represented as algorithms in SAOL, controlled by a
MIDI file or a score written in a new event-list format.
Any of the methods described above, or hybrids or new
methods, may be represented as SAOL code. These pieces
are composited together under the control of software
algorithms, also described in SAOL, for manipulating and
filtering the sounds.

III. STRUCTURE FROMSOUND

In this section, we survey methods for processing sound,
especially for the purpose of extracting structured rep-
resentations directly from acoustic waveforms. In some
cases, such as LPC (which can be viewed as a specific
example of aparameter-estimationtechnique), we are
interested in synthesizable representations that at some
future point will be turned back into sound. In others,
we are interested incharacterizingor describing a sound
and using the resulting structured information to solve
some problem other than synthesis. We call methods for
analyzing sound and producing synthesizable representa-
tions invertiblemethods. Certain approaches lie in the gray
area between these interests; in some of these cases, such
as “automatic transcription” systems, the representations
extracted may be similar to the event-list formats described
in Section II-A.

Multimedia applications such as search and retrieval, sig-
nal manipulation, and signal classification are particularly
well suited to nonsynthesizable structured-audio represen-
tations. Highly structured signal descriptions are necessary
for these applications because in order for humans to
interact with signals, the interface must provide infor-
mation about the semantic sound content to the user.
This perceptual representation is most readily available
from a structured description. In some cases (for example,
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MIDI and other event-based representations), the high-level
information is created by the author directly; in others, we
are interested in extracting this information from a low-
level representation (typically a waveform) and creating a
hybrid or annotated, description. The high-level structured
information acts as metadata on the underlying low-level
content.

Although there are no representations yet that allow this,
it is interesting to imagine a description format in which
data suitable for resynthesis, such as LPC soundtracks,
synthesis languages, or MIDI files, could be annotated
with higher level semantic information, such as information
on speaker identity, the phonemes spoken, or the emotive
content of the speech. The future MPEG-7 work on stan-
dards for search and retrieval of multimedia information is
currently envisioned to contain these sorts of representa-
tions; thus, the envisioned MPEG-7 standard can be seen
as unifying the various methods ofdescribing sound in
the same way as MPEG-4 unifies methods forgenerating
sound.

A. Invertible Parameter Estimation

Parameter-estimation approaches attempt to find the best
fit of a sound-generation model to a target sound by analyz-
ing the sound and finding model parameters that allow the
model to best approximate it. In invertible cases, the model
and parameter set are a complete enough characterization of
the signal to allow resynthesis (although a particular type
of lossy synthesis); in others, which we termdescriptive
analysis, the goal is not resynthesis but some type of signal
understanding.

1) Linear Prediction: The most common and well-
studied parametric representation for sound is undoubtedly
the linear prediction model of speech, which was also
discussed as a form of subtractive synthesis in Section II-
B3. This model has shown great utility in ultralow-bit-rate
coding of speech for transmission, as well as serving as
a front end for certain attempts at speech recognition
(although it has been largely supplanted by cepstral frames
for this purpose in modern systems).

The LPC model is useful for speech transmission because
it serves as a crude approximation to the actual physical
process of speech generation. There is a large literature
on LPC analysis of sounds, both “classical” analyses for
error criteria such as mean-squared error [61] and more
recent work that attempts to use perceptual error criteria to
guide the parameter estimation [6]. This process generally
takes the form of spectral whitening with an inverse filter,
followed by subtraction and pitch estimation to model
the residual. The spectral whitening may be accomplished
in many ways and in any of several domains, including
the time domain, frequency domain, cepstral domain, and
autocorrelation lag space [61]. In many cases, the corre-
spondence is so direct between the LPC model and the
speech model that we may estimate parameters of the vocal
tract itself based on LPC analysis of the sounds produced
[18].

LPC-based methods form an important component of the
modern toolkit for low-bit-rate coding. Using codebook-
excited linear prediction techniques, transmission that is
perceptually lossy (that is, degraded in quality) but still
adequate for understanding content and identifying speakers
may be achieved at bit rates as low as 2 kb/s. Percep-
tually “transparent” coding (that is, coding in which the
resynthesized signal is perceptually indistinguishable from
the original source) may be achieved for speech at about
16 kb/s. International standards for sound transmission at
low bit rates such as MPEG-4 and those of the Inter-
national Telecommunications Union—Telecommunications
Sector (ITU-T) include LPC variants.

2) Phonemic Encoding:A second invertible method for
modeling speech, using even lower bit rates than LPC, is
phonemic encoding. Using a speech recognizer, we model
speech as a sequence of phonemes, perhaps in conjunction
with pitch track or vocal-quality information. Using a
speech synthesizer, we can recreate speech containing the
same verbal content as the original sound but with a
different speaker’s voice. As phonemic speech rates are
extremely low (perhaps 4–8 phonemes/s) and the phoneme
alphabet rather small (human languages have anywhere
from around ten to around 60 phonemes), the resulting
bit stream is extremely compact. However, there are not
yet widespread models for synthetic speech that allow the
presentation of cues to speaker identity [25] or emotional
quality [16] in a robust, yet compact, fashion. Speech anal-
ysis/synthesis is nonetheless an appropriate transmission
technique for applications in which these cues are not of
paramount importance.

3) Model Parameter Estimation:In theory, any of the
synthesis methods described in Section II may be the target
model for a parameter-estimation approach, but in practice,
some are more appropriate than others. Synthesis methods
that are heavily hybridized, such as those expressed as
“instruments” in high-level music-synthesis languages, cor-
respond to a very complex parameter space that is not easily
searched. Methods that can be parametrized by a vector of
known, fixed-length, scalar values, such as additive, FM,
and physical modeling synthesis, are more amenable to
such an approach.

The earliest mechanized attempts at model-based sound
analysis/resynthesis involved thechannel vocoder,in which
the subband envelopes of a sound are calculated and then
applied to modulation of some other sound. Dudley’s
classic work with the channel vocoder used only analog
electronics; his early work, with the goal of speech trans-
mission, preceded the advent of digital computers altogether
[27].

The analysis of sound by estimating parameters for
additive synthesis has been a historically fruitful one. In
the early days of computer music, this process was called
“analysis by synthesis” [83] and sparked a great deal of
important research on musical timbre, such as the discovery
that the relative temporal evolution curves of partials in a
complex tone are an important characteristic of its timbre
and that the attack transient is a more important perceptual
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cue to instrument type than the steady-state portion of a
sound.

Early work on additive-synthesis modeling used painstak-
ing hand analysis of spectra to trace out the relative
strengths of harmonics of a complex sound [110]. This
approach was later replaced by automation with thephase
vocoder[26], [72], which performs a similar task automat-
ically and often generates a lower dimensional representa-
tion. Further refinements includesinusoidal analysis[66],
which models a sound as the sum of a set of sinusoids
whose amplitudes and frequencies vary in time. All of these
methods generate representations appropriate for additive
resynthesis and also for signal analysis and manipulation
to various degrees.

Parameters to other synthesis techniques have been es-
timated in several ways. Smith [106] used sophisticated
digital-filter theory to characterize the formant structure
of a violin sound and used that knowledge to create a
physical model of the violin body. More recently, Casey
[13] and Horner [45] have used learning methods (neural
networks in Casey’s case, genetic algorithms in Horner’s)
to perform a search through the synthesis parameter space
for a given model. That is, using a fixed, but parametric,
synthesis model such as FM synthesis or a physical model
of a musical instrument, with which we wish to model a
target acoustic sound, we use the following steps:

1) synthesize a sound using test parameters;

2) compare the resulting synthetic sound with the target
sound;

3) adjust the test parameters in a way that will make the
synthetic sound more closely match the target;

4) return to step 1).

Obviously, the proper methods for 2) and 3) are not at
all obvious for most models—What is the proper domain
of comparison? What is the best adjustment step?—but
good results have been empirically demonstrated for certain
instrument and synthesis models.

The differences between neural networks and genetic
algorithms for this sort of procedure are subtle, but a
short discussion is useful. In neural-network systems, a set
of desired outputs is matched through a set of recursive
update rules to a set of training inputs. In Casey’s case,
the inputs were a dimensionally reduced sound model,
and the outputs the parameters to a physical model of a
musical instrument. The result of this matching process
is a set of training weights that efficiently represent the
covariance of output with input but may be difficult to
interpret semantically. In contrast, in the genetic-algorithms
framework, the algorithms themselves are the space of
learning; the algorithms are gradually (or, in some cases,
suddenly) adjusted until they give the desired result. In
many cases, the result may be interpreted by a human
reader; however, genetic processing may also expand the
effective parameter space unnecessarily.

The estimation of parameters for physical models has
a particular advantage over equivalent estimation for ad-

ditive, FM, or other abstract synthesis models in that
the resulting parameter set has a clearly understandable
interpretation, which aids in further signal manipulation.
For example, Casey’s estimation of clarinet parameters
yields such data as “breath speed,” “reed stiffness,” “mouth
pressure,” “tube length,” and so forth. In contrast to this,
sinusoidal modeling and FM synthesis parameter estimation
do not correspond to data spaces so easily interpretable by
musicians.

While models with broad parameter spaces such as FM
synthesis and sinusoidal modeling may be equally useful for
engineeringapplications, such as compression and trans-
mission, models with parameters that are more semantic
are clearly superior for authorship and manipulation of
structured sound. On the other hand, models of the former
type are more general, and thus less information about
model selection and characterization needs to be presented.
A similar distinction applies to phonemic encoding versus
LPC coding of speech. While LPC-coded speech is more
general, and able to capture more “natural” variation in a
speech signal, the phonemic encoding is easier to manip-
ulate at a high semantic level; for example, replacing one
word with another.

B. Descriptive Analysis of Sound

The previous sections described methods for analyzing
sounds and estimating parameters to sound models for
future resynthesis; however, there has also been a great
deal of research into structured-audio representations that
cannot be converted back into sound. While these models
are not applicable to the transmission of sound at low bit
rates, they often fall instead into thesignal understanding
application domain. That is, they enable applications such
as multimedia retrieval or signal manipulation tools that
allow an author to control the alteration of digital sound
using perceptually based guidelines.

1) Speech Processing:The most common signal-
understanding methods are certainly speech-processing
algorithms, such as speech-recognition, speaker-
identification, speech-understanding, and language-
identification systems. Many volumes have been written
on these techniques; we will not discuss them further here.

2) Musical Features:Aside from speech applications,
probably the most common signal-understanding method
is the pitch tracker. Many musical and vocal sounds
have a pitch, which is an important cue to high-level
understanding—in speech, to the prosody and emotive
content of the words, and in music, to the melodic structure
of the line. Pitch extraction is similar to, but more difficult
than, the problem offundamental frequencyextraction; the
term pitch refers to a psychological construct that may be
present even in signals missing a fundamental frequency.
Pitch tracks are clearly a nonsynthesizable representation
for sound. If all that is preserved of a signal is a stream of
numbers corresponding to samples of the pitch, we cannot
use the pitch track to reconstruct the original signal without
a great deal more information.
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Pitch trackers typically operate in the time domain, in
time-frequency space, or in various lag spaces, such as
autocorrelation or average-magnitude difference function
space. Various implementations span a great deal of en-
gineering territory, from very fast, low-latency, relatively
inaccurate systems appropriate for transducing an acoustic
musical performance into a synthetic one in real time [50]
to highly accurate models of the human perceptual system,
which take more time to calculate [67].

There have been recent attempts to build systems ca-
pable of extracting rhythmic information from musical
signals. Vercoe [115] described the use of thenarrowed
autocorrelation[12] for beat extraction. The rhythmogram
[111] is a multiscale representation that has been used to
analyze monophonic music and speech and give a visual
representation of the rhythmic content. Goto [41] built a
system for analysis of popular music; his system extracts
the timings of the drumbeats and looks them up in a data
base of patterns; his system not only can determine the
beat and tempo but also can find the strong and weak
beats of a musical pattern. Scheirer [94] has described a
highly parallel algorithm, with a vocoder-like frequency
decomposition and banks of parallel comb-filter resonators,
which is claimed to be very robust for determining the
tempo and beat in a broad range of musical situations.

There have been some attempts to build systems that can
automatically recognize and classify musical timbre, at least
in a monophonic (one-note-at-a-time) setting. The study
of musical timbre is still a fairly ill-defined area; there is
not even an agreed-upon extensional definition of the term
“timbre.” Some researchers have attempted to use dynamic
spectrum analyses, i.e., the STFT [1], [2], while others try
to reduce the dimensionality of the problem using principal
components analysis [109] or homomorphic deconvolution
[11]. Further, some of the parameter-estimation methods
described above are applicable to instrument recognition if
they are used with a goodness-of-fit measure. In any case, a
system that could identify instruments robustly, particularly
in the presence of other interfering instruments, would be a
useful addition to a suite of musical tools. This recognition
capability does not yet exist.

3) Signal Classification:There have been a few attempts
to use statistical methods to classify whole signals by type.
Speech-music discrimination has been approached several
times, using a variety of features and classification methods.
The system claiming the best results [98] used 13 spectral
and temporal features and examined four multidimensional
classifiers, resulting in up to 98% discrimination perfor-
mance in real time over a large test set of data. Foote [33]
used cepstral frames (homomorphic signal analysis and data
reduction) and a branching classifier to distinguish musical
genres from one another for a restricted set of test cases.

C. Computational Auditory Scene Analysis (CASA)

An important recent development in the study of sound-
analysis methods is the new field of CASA. Named as
the computational analogue to Bregman’s seminal psychoa-

coustic work on auditory scenes and auditory streaming
[10], CASA organizes research in a number of historically
separate areas into a common framework. The various
topics addressed includeautomatic transcription,which
is the attempt to reconstruct a “score” from an audio
waveform, and the so-called “cocktail party” problem,
which is the attempt to recognize speech in the presence
of competing sounds.

There is an important relationship between CASA re-
search and the structured-audio approach to sound repre-
sentation. In many cases, CASA systems can be viewed as
the analysis component corresponding to structured sound
synthesis. A multisource structured soundtrack that com-
bines synthetic music, speech voice-over, and sound effects,
then applies artificial reverberation and spatial processing,
results in a multichannel set of mixed audio waveforms.
CASA methods attempt to separate and/or understand the
component sounds of the waveforms by grouping together
pieces of the sound that are perceived as belonging together.
The use of CASA systems to act as a fully automatic
“structured-audio encoder” is still far in the future, however,
as today’s state-of-the-art CASA models are not yet capable
of doing such sophisticated processing.

As with parameter estimation, the bulk of recent CASA
research has centered in the speech community. Many
systems have been built to attempt to solve theconcurrent
vowel problem, where vowel sounds from two different
speakers are isolated and recognized. A wide variety of
approaches have been taken, including using pitch trackers
[121], grouping sinusoidal “tracks” from a phase-vocoder
representation [28], and using coupled-oscillator models
[119]. Recently, approaches have been taken that incor-
porate more high-level linguistic information to guide the
models [74] or incorporate binaural information [58], [73],
attempting to utilize spatial cues. The best systems today
can provide somewhat accurate performance in highly
constrained test circumstances but not yet anything close
to robust separation in general environments.

Researchers involved in this sort of CASA work typically
pay close attention to results from the psychoacoustic and
perceptual study of human audition. When new discoveries
are made in these areas, they are used to guide the con-
struction of new models [22]. The construction of real-time
models is not yet a concern, as achieving best performance
is paramount; many such separation models take hundreds
of times longer than real time on a fast modern computer
to process sounds.

In contrast, research intoblind source separationattempts
to use statistical measurements to separate signals encoded
into multiple channels of sound [3], [8], [104]. That is,
if multiple microphones are placed in a room, the cross
correlations in the signal can be used to separate the various
input sounds. These techniques may run very quickly and
may be more accurate than human perception; on the other
hand, they are not appropriate for circumstances in which
there are more signals to be separated than channels of
audio available. They have a great potential for automatic
structured-scene encoding.
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An important area of research within CASA is the
musical scene analysis, orautomatic-transcription,prob-
lem. Automatic-transcription systems attempt to reverse
the musical-performance process to recover an event-list
description of a piece of music from an acoustic per-
formance. Early attempts at transcription placed a large
number of constraints on the music that could be ana-
lyzed [71], especially the number, timbre, and harmonic
relationship of the voices. Later work relaxed the harmonic
relationships that could be included [60] and included
a more perceptually motivated analysis [62], [68]. Most
recently, transcription systems have attempted to use high-
level constraints, domain information, or rule-based systems
to guide the acoustic analysis [49], [63], [96].

Even with this relatively long historical evolution,
automatic-transcription systems are still very rudimentary
compared to the problem at hand. It is unlikely that
robust systems capable of translating expressive acoustic
performances in genres like rock and roll, jazz, or classical
music into high-quality MIDI representations will be built
within the next decade. The state-of-the-art systems cannot
yet transcribe music with more than three or four simple
voices and cannot be applied to music with unknown
timbres.

As well as representations applicable to speech sounds
and musical sounds, there has been a small amount of work
on the classification of noisy, quasi-periodic, and impulsive
sounds. Saint-Arnaud and Popat used the Wold decompo-
sition to attempt the separation of sounds into periodic and
stochastic components [91]; this approach is similar to the
“deterministic stochastic” model of Serra [102], which
used direct spectral analysis. The Saint-Arnaud and Popat
system was used to classify (and resynthesize, although
classification was the goal) machine sounds and other
“sound textures.” Ellis [29] built a large system using an
intermediate model of the human auditory and perceptual
grouping system, which could, to some extent, isolate sound
effects and noises in complex auditory scenes. His system
is based on a novel sound representation called theweft,
an extension of the autocorrelation model. It also includes
representations of noise textures and impulsive sounds.

A number of audio-perception researchers have reported
that human listeners seem to be able accurately to distin-
guish characteristics of the excitation method from charac-
teristics of the affected object in the perception of transient
sounds such as impacts, fractures, and “bouncing and
breaking” sounds [119]. There have been recent attempts
[15] to apply this sort of decompositional approach to
automatic perceptual analysis of transient sounds.

IV. A PPLICATIONS

In this section, we will describe some applications for
structured-audio techniques. We will juxtapose the use of
structured-sound descriptions with use of traditional audio-
coding schemes, contrasting the relative advantages of
each. References are provided where we are aware of
implementations of systems similar to what we describe;

in some cases, the description is still a speculative one.
These applications fall into two broad groups. In one,

the advantage of using structured-audio techniques is due
to their efficiency or conciseness; in the other, the advantage
is due to flexibility or the availability of perceptual hooks
for searching or modifying signals.

A. Low-Bandwidth Transmission

Many of the synthesis and analysis descriptions in
Sections II and III have been described with regard
to ultralow-bit-rate compression. This application is a
clear area in which structured-audio techniques provide
impressive gains over even the best perceptual coding
schemes for waveforms. Structured coding for low-bit-
rate transmission can be viewed as the elimination of
structural redundancy, as described in Section I-B, by
using algorithmic, scene-based, and event-list descriptions
of sound.

When implementing low-bandwidth coding with struc-
tured audio, we are typically trading off transmission band-
width for computation on the client side. That is, we
transmit a structured description and dynamically render
it into sound on the client side rather than rendering in
a studio on the server side. As certain sound-processing
algorithms (physical modeling synthesis, 3-D spatialization)
are quite expensive computationally, only situations in
which adequate horsepower is available at the client for
rendering are appropriate for this form of transmission.
Additionally, traditional coding forms have the advantage
that we may estimate the amount of computation required
for decoding and rendering by examining the bit stream.
With structured methods, this may be difficult, and is
uncomputable in situations where the representation is
sufficiently powerful to represent arbitrary algorithms.

It is interesting to think about the relationship between
structured-audio representations, especially algorithmic
ones like synthesis languages and the MPEG-4 standard,
and the Kolmogorov complexity of sound waveforms
[54]. In theoretical computer science, the Kolmogorov
complexity of a string is the length of the shortest program
that, when executed, produces that string as output. For
truly random strings, entropic coding is typically near
the Kolmogorov limit, but for algorithmically generated
strings, an algorithm-based approach must be more
efficient in the long run if the underlying algorithm is
discovered. Rissanen’s minimum description length (MDL)
principle [81] has similar implications—that description
length is composed of both the parametric size of a
representation and the size of the algorithm needed to
decode or understand the representation. Thus, we may
view algorithmic encoding methods as using MDL models
in conjunction with perceptual limits.

B. Sound Generation from Process Models

Structured-audio representations typically provide bet-
ter parameters for high-level control of sound than do
traditional waveform representations. This means that in
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applications where we have aprocess modelgoverning
the computation, it is generally easier to couple the sound
representation tightly to the process model if the sound
representation is structured. By “process model,” we mean
that the sound is not created from an event list but rather is
dynamically generated in response to evolving, nonsound-
oriented computation.

Video games fall into this category; in fact, the video-
game domain has naturally embraced structured-audio con-
cepts for many years. The sound effects for a video game
cannot be scored, as they must be scheduled in response to
user interaction. Most recent games have used a wavetable
approach to sound effects; that is, artists create sounds in
a studio using a process not unlike Foley for filmmaking,
and the sounds are triggered by sample playback as they are
needed. Few games today can afford to allocate computa-
tional resources to sound synthesis that would be required to
use more sophisticated techniques. Such techniques might
include having source/excitation models for sound (“a steel
bullet, traveling at 300 m/s, impacts a concrete wall”)
or otherwise creating an object-oriented model of sonic
properties. If future hardware-based audio systems that
include more advanced structured capability become widely
available, some of these techniques might be explored.

Some video games include musical soundtracks, and
various structured and nonstructured approaches have been
taken to presenting them. Many games include MIDI file
specifications for each section or level of play; as the
players advance to a new level, they are presented with
a new musical theme as background. The use of MIDI
files serves as a form of structured compression, because
only the event data must be stored; many PC-based sound
cards provide the ability to synthesize them into audio
in hardware. The musical and timbral quality of such
backgrounds has often been quite low, however, and many
video-game players often simply shut the music off.

More recently, the increase in storage provided by CD-
ROM-based video games has allowed the sound designer
to include custom wavetable instruments, or even full
waveform audio soundtracks, with a game, improving the
musical quality. Last, certain games have attempted to cre-
ate dynamic soundtrack algorithms, where the background
music actually changes in response to the moment-to-
moment action in the game [56]; that is, when the game
activity is faster, the music will become more agitated
or otherwise change to reflect and influence the mood.
Such algorithms are very difficult to create, bearing a
close relationship with the body of research on computer
composition [76].

A second form of process model, sometimes related to
gaming, is in virtual-reality applications. To create the
illusion of virtual space, sound systems must reverberate
and spatialize the sounds present in the virtual environment,
and these effects must be dynamic in response to listener in-
teraction and movement [37]. The effects cannot be “mixed
into” a soundtrack in the studio, because the particular
parameters to be used are not known until it is time to
present the sound to the listener. Thus, structured models for

sound that can be controlled parametrically are an essential
component in sound systems for virtual environments.

C. Flexible Music Synthesis

The currently prevalent MIDI standard leads to many
problems for composers who use it for creating and dis-
seminating their work. The use of fixed hardware/software
synthesizers that differ in sound quality makes it difficult
for composers to know what their pieces will sound like
on any particular listener’s equipment when the music is
transmitted using MIDI. Current end-user synthesis sys-
tems—particularly the most common, General-MIDI-based
wavetable systems—allow for very little expressivity in
performance or sophisticated control of timbre. High-end
physical modeling synthesizers that do have this expressiv-
ity are very difficult to control—it is difficult to design and
build physical interfaces that are easy to use and yet give
the desired degree of control.

Structured-audio encoding methods based on synthesis
languages, like NetSound [14] and MPEG-4 Structured
Audio [97], alleviate the unknown and unsophisticated
nature of fixed synthesizers. Because the algorithms for
synthesis are created and transmitted by the composer along
with the event descriptions, any system that can understand
and render the structured audio encoding will use the
same algorithms to generate the same sound. When new,
more sophisticated synthesis methods are invented, they can
be immediately incorporated in a composition rather than
being dependent on the hardware-development life cycle
for distribution.

Structured-audio systems based on music-synthesis lan-
guages can also represent synthesis methods with very
expressive nuance and yet allow the use of simple controls
by composers. By using the synthesis language to represent
not only the instrument but also a synthetic performer who
“knows about” the timbral qualities of the instrument, the
composer can specify only the notes or chords to be played
and perhaps a small number of parameters that control the
virtual performer. The synthetic performer, then, using the
notes given by the composer, produces control parameters
for the instrument to generate the sound [21], [39].

This method is similar to the method commonly used by
pop-music composers who incorporate drum machines into
their work. However, using a structured audio language, the
algorithms embodied in the “drum machine” or other virtual
performer may be very sophisticated. As with synthesis,
when new methods are discovered for improving the musi-
cal “feel” of an algorithm [9], composers/programmers may
immediately incorporate them into their compositions. The
relationship between the composer and synthesizer becomes
similar to the traditional composer–performer relationship.
The composer delegates the final decisions about notes,
timing, and control to the performer in order to focus more
clearly on high-level issues.

D. Interactive Music Applications

As well as allowing for flexible, controllable music
synthesis, structured sound methods are typically used
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in interactive music performance systems. Byinteractive
performance,we refer to a process in which a computer
system listens to a human performer or performers and
adjusts its own performance in some way in response.
Thus, these systems utilize both “structure from sound”
techniques, when they listen to the human performers, and
“sound from structure” techniques, when they produce new
sounds in response to their current model of the musical
situation.

Some of the earliest work of this sort was onautomatic
accompaniment;that is, the use of computer accompanists
in a “music-minus-one” framework, where the computer
played an accompaniment to the human part. Early systems
used the computer only to play back recorded music, as a
tape would, but soon gave way to truly interactive systems
that could follow the human performer [114] and learn
from experience in rehearsal [117]. More recent systems
have included compositional sophistication in the computer
algorithms [90] and have sometimes grown to enormous
proportions [59].

Algorithmic structured audio techniques have a great deal
of potential in the karaoke market, as the algorithms for
sensing and following the performer may be specified in
conjunction with the synthesis methods. Structured-audio
representations that allow for the real-time construction and
control of structural models (like tempo, phrase, and so
on) might be used to allow karaoke-like systems to adjust
themselves in myriad ways to the human performer.

E. Waveform Manipulation

The application areas described in the preceding para-
graphs make use of structured-audio representations to
control synthesis. However, there are also compelling appli-
cations for the analysis and extraction of structured-sound
descriptions.

There are many tools available to assist sound designers,
editors, and composers in working with waveform audio.
However, most of these tools are deaf with regard to the
content of the waveform being analyzed. If capabilities for
extracting structured information are added to such tools,
they could be much more powerful and user friendly. For
example, using timbre recognition (technology yet to be
developed), a soundtrack editor could instruct the program
to “skip to where the violins come in.” Advanced auditory
scene-analysis software would allow a composer to turn
an existing sound clip into symbolic data such as MIDI
for manipulation, or perhaps even to remove or amplify
individual instruments from an audio mix.

If a waveform is annotated with symbolic representations
of its musical content, these symbols can be used for
alignment and synchronization. For example, Scheirer [94]
describes using a beat-tracking algorithm to locate points
in a song that are aligned with a drum track using time-
stretching techniques. Standards such as SMPTE time codes
already provide interfaces for a wide range of tools to
schedule and synchronize each other and are commonly
used in the sound-editing industry; it is easy to imagine

other ways that such markers could be associated with
structured representations.

Dynamic waveform manipulation may itself become part
of a real-time system if enough information is extracted
from the signal to allow accurate control. We have used
the music-synthesis language Csound [116] to dynamically
harmonize singers in real time: first, an input signal is pitch
tracked so that we know the starting point and extract
the glottal pulse from the waveform as a model of the
vowel and vocal timbre. Then we resynthesize new singers
at harmonically related pitches specified through real-time
keyboard control. The effect upon mixing these sounds
together is that of a chorus of the same voice’s singing in
harmony. To accomplish this, we are dynamically building,
and then using, a structured representation of the original
singer.

F. Content-Based Retrieval

Content-based multimedia retrieval, also known asquery
by image contentfor images andquery by audio content
(QBAC) for sound, is the process of accessing a multimedia
data base by automatically analyzing and categorizing the
digital content of the entries. There have been many systems
built for this purpose in the visual domain [30], [75], with
varying degrees of success, but relatively few attempts in
the audio domain—see [123] for one suggested framework.

There are many compelling applications for QBAC sys-
tems. There have been several companies started recently to
provide Web-based “intelligent agent” systems, which try
to suggest songs, musicians, or albums (as well as movies,
foods, etc.) that their users might enjoy [31]. Using QBAC
technology, such a system could make recommendations
based on its own assessment of the musical content rather
than only on statistical analysis of user communities, which
is how such systems work today.

“Query by humming” systems [55] allow users to access
a data base of songs by humming or whistling the melody
to a computer interface. Typically, the data base is hand en-
tered or created from symbolic MIDI data; with sufficiently
powerful automatic-transcription technology, the data base
could be created automatically from acoustic data. A data
base of automatically annotated performances would addi-
tionally be an extremely useful tool for musicologists and
other researches into human-performance practice. Some of
the transcription and description analysis tools described in
Section III have been used for this purpose [96].

Others have built systems [34] that use speech recogni-
tion to aid searching of video segments. Analogous systems
could be built for searching video segments based on
musical content or sound effects—this is particularly useful
in the case where the action sought occurs off-screen.

V. CONCLUSION

There are no systems yet implemented that integrate
the variety of techniques we have described in a flexible
real-time package. Clearly, to make possible many of
the scenarios we described earlier, a broadly distributed
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framework for structured audio is necessary. We have built
two prototype systems: one that allows a certain amount
of capability in a real-time implementation (NetSound) and
one with broader capability that has not yet been imple-
mented efficiently (the verification model of the MPEG-4
structured-audio standard). It is our hope that by including
powerful structured capability in a respected international
standard, more companies will choose to build systems
containing this sort of functionality.

Existing standards for audio transmission such as MPEG,
MPEG-2, and ITU-T became most practically useful once
dedicated hardware was available to decode and play back
downloaded audio streams. For the MPEG-4 structured-
audio standard, the situation will likely be no different.
The capabilities described by MPEG-4 are just at the
current state of the art in many areas, so it may be several
years after standardization before fully functional hardware
implementations are available. However, the language and
capabilities have been designed with efficient hardware
implementation in mind.

There is a difficult issue in the development of new
systems for representation and transmission of multime-
dia; namely, the chicken-and-egg problem of content and
implementations. If content is to be created in a new
(structured) format, there must be authoring tools and
decoding/rendering tools available for the authoring and
playback process; however, this implies that those tools
must be provided in the absence of existing content. It
is a difficult question whether to make an expenditure in
time and resources on either side of this coin—authoring
content in formats for which there are few playback tools or
creating playback tools for formats in which little content
is available.

The standardization process helps to solve this problem
by allowing industrial interests to come together to de-
cide on a technical solution and proceed together toward
new tools, implementations, and content. However, the
transmission of truly structured and scene-based audio
description requires rather large changes at many points of
the modern content-delivery path in authoring, production,
transmission, broadcast, and playback.

In this paper, we have discussed a wide variety of
techniques for algorithmic representation, annotation, trans-
mission, and synthesis of sound in structured formats. Using
these techniques, future sound hardware will allow simple,
flexible access to composers and sound designers for the
efficient control of sound, and future multimedia data bases
will be searchable by parameters to sound content. We have
tied together a number of typically separate domains of
inquiry into a unified framework to demonstrate the shared
viewpoint that underlies them all. Last, we have described
standards at and beyond the state of the art that unify
structured-audio methods.

Future work on structured audio will use these repre-
sentations for sound in many applications. New algorithms
for creating and processing sound will be developed and
efficient hardware implementations of these techniques con-
structed.
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based on the Karhunen-Loève transform,”IEEE Trans. Acoust.,
Speech, Signal Processing, Mar. 1988, pp. 305–319.

[110] W. Strong and M. Clark, “Synthesis of wind-instrument tones,”
J. Acoust. Soc. Amer., vol. 41, pp. 39–52, 1967.

[111] N. P. Todd, “The auditory ‘primal sketch’: A multiscale model
of rhythmic grouping,”J. New Music Res., pp. 25–70, 1994.

[112] S. Van Duyne and J. O. Smith, “Physical modeling with the 2-
D digital waveguide mesh,” inProc. 1993 Int. Computer Music
Conf., pp. 40–47.

[113] V. Valimaki, M. Karjalainen, and T. I. Laakso, “Modeling of
woodwind bores with finger holes,” inProc. 1993 Int. Computer
Music Conf., pp. 32–39.

[114] B. Vercoe, “The synthetic performer in the context of live
performance,” inProc. 1984 Int. Computer Music Conf., pp.
199–200.

[115] , “Perceptually-based music pattern recognition and re-
sponse,” inProc. 1994 Int. Conf. Music Perception and Cogni-
tion., pp. 59–60

[116] B. Vercoe, “Csound: A manual for the audio processing sys-
tem,” Massachusetts Institute of Technology Media Lab, Cam-
bridge, 1996.

[117] B. Vercoe and M. Puckette, “Synthetic rehearsal: Training the
synthetic performer,” inProc. 1985 Int. Computer Music Conf.,
pp. 275–278.

[118] Virtual reality modeling language. (1997). [Online]. Available:
http://www.vrml.org.

[119] D. Wang, “Stream segregation based on oscillatory correlation,”
in Readings in Computational Auditory Scene Analysis, H.
Okuno and D. Rosenthal, Eds. Mahweh, NJ: Erlbaum, 1998.

[120] W. Warren and R. Verbrugge, “Auditory perception of breaking
and bouncing objects,” inNatural Computation, W. Richards,
Ed. Cambridge, MA: MIT Press, 1988.

[121] D. Weintraub, “A theory and computational model of audi-
tory monaural sound separation,” Ph.D. dissertation, CCRMA,
Stanford Univ., Stanford, CA, 1985

[122] D. L. Wessel, “Timbre space as a musical control structure,”
Comput. Music J., pp. 45–52, Summer 1979.

[123] L. Wyse and S. Smoliar, “Toward content-based audio indexing
and retrieval,” inReadings in Computational Auditory Scene
Analysis, H. Okuno and D. Rosenthal, Eds. Mahweh, NJ:
Erlbaum, 1998.

Barry L. Vercoe was born in New Zealand.
He received degrees in music and mathematics
from the University of Auckland, New Zealand,
and the Ph.D. degree in composition from the
University of Michigan, Ann Arbor.

He conducted postdoctoral research in digital
synthesis at Princeton University, Princeton, NJ.
He is the developer of the Music360 (1969),
Music11 (1973), and Csound (1985) software-
synthesis languages, which have become stan-
dards in the industry. He has taught at Oberlin

College, Oberlin, OH, and Yale University, New Haven, CT. Since 1971,
he has been a Member of the Faculty of the Massachusetts Institute of
Technology (MIT), Cambridge, where he was a Founding Member of the
MIT Media Laboratory in 1985. At the Media Lab, he has been Head of
groups on music and cognition, synthetic listeners and performers, and
machine listening. Under a Guggenheim Award in 1982–1984, he did
pioneering work at IRCAM, Paris, France, on live instrument tracking,
score following, and automatic accompaniment, which remains a special
interest.

VERCOE et al.: STRUCTURED AUDIO 939



William G. Gardner was born in Meriden,
CT, in 1960. He received the B.S. degree in
computer science and the Ph.D. degree from the
Massachusetts Institute of Technology (MIT),
Cambridge.

For seven years, he was a Software Engineer
for Kurzweil Music Systems, where he helped
develop software and signal-processing algo-
rithms for Kurzweil synthesizers. He recently
founded Wave Arts, Inc., a company that devel-
ops innovative audio-processing software. His

research interests are spatial audio, reverberation, sound synthesis, real-
time signal processing, and psychoacoustics.

Dr. Gardner is a member of the Audio Engineering Society and the
Acoustical Society of America. He received a Motorola Fellowship at the
MIT Media Lab and the 1997 Audio Engineering Society Publications
Award.

Eric D. Scheirer (Student Member, IEEE)
was born in Binghampton, NY. He received
the bachelor’s degree in computer science
and linguistics from Cornell University,
Ithaca, NY, and the M.S. degree from the
Massachusetts Institute of Technology (MIT)
Media Laboratory, Cambridge. He currently is
pursuing the Ph.D. degree at the MIT Media
Lab.

His research focuses on the construction
of music-understanding computer systems and

methods of structured audio coding and transmission. He has been an
Intern with the Interval Research Corporation. He is an Editor of the
Motion Pictures Experts Group (MPEG)-4 audio standard, the Principal
Technical Contributor to the sound-synthesis components of MPEG-4,
and the Inventor of the MPEG-4 standard synthesis language SAOL. He
is an accomplished jazz trombonist.

Mr. Scheirer is a member of the Audio Engineering Society. He received
an Interval Research Fellowship to the MIT Media Lab and was twice an
Advanced Music Performance Scholar at MIT.

940 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 5, MAY 1998


