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ABSTRACT

This paper addresses the problem of automatic speech recog-
nition in the presence of interfering signals and noise with sta-
tistical characteristics ranging from stationary to fast changing
and impulsive.

A technique of signal decomposition using hidden Markov
models, [1], is described. This is a generalisation of conventional
hidden Markov modelling that provides an optimal method of
decomposing simultaneous processes. The technique exploits
the ability of hidden Markov models to model dynamically vary-
ing signals in order to accomodate concurrent processes, includ-
ing interfering signals as complex as speech.

This form of signal decomposition has wide implications for
signal separation in general and improved speech modelling in
particular. However, this paper concentrates on the application
of decomposition to the problem of recognition of speech con-
taminated with noise.

1 INTRODUCTION

There are two fundamentally different approaches to the recog-
nition of speech contaminated by noise. The first attempts to
derive the best estimate, in some sense, of the speech signal from
the contaminated signal. This may be achieved through some
pre-processing technique, such as spectral estimation or adap-
tive filtering. The second approach is not to pre-process the
signal but rather to allow for the presence of noise in the recog-
nition process itself. Here the problem of dealing with noise con-
tamination in the recognition phase of a hidden Markov model
based recogniser is one of obtaining the best estimate of the like-
lihood of an input observation conditioned on a particular state
of the model and given the knowledge available about the con-
taminating noise. A previous paper, [2], developed three noise
compensation techniques that used the latter approach. The
results showed that such an approach works well and in par-
ticular that the masking principle of Klatt, [3], gives the best
performance.

Signal decomposition using hidden Markov modelling, intro-
duced in this paper, is an optimal theoretical framework for the
second approach. It provides a new and significantly enhanced
technique for the recognition of speech contaminated with other
signals, such as background noise, and can be used to deal with
noises that have statistical characteristics ranging from station-
ary to highly time varying and impulsive. Decomposition also
provides a framework from which the three noise compensation
techniques can be understood and their relative performances
explained.

The advantage of decomposition over the previous approaches
is that it provides an optimal method for recognising the speech
and the noise simultaneously. Since hidden Markov models can
model dynamically varying signals, the technique makes it pos-
sible to deal with structured and highly time varying noise, e.g.
background talkers, key clicks or a door slam.

2 SIGNAL DECOMPOSITION USING
HIDDEN MARKOV MODELS

Signal decomposition using hidden Markov modelling, [1],is a
general technique in which concurrent events are recognised si-
multaneuosly. This is acheived by using parallel hidden Markov
models, one set for each of the components into which the signal
is to be decomposed.

Consider a signal made up of two separate components added
together. The two individual components can be modelled by
conventional HMMs, and the signal resulting from the combi-
nation of the two components can be modelled as a function of
their combined outputs. The observation probability evaluated
for the combined effect of the simultaneous HMMs is thus:

Observation Probability = P(Observation|M1 ® M2)

where M1 and M2 are the parallel hidden Markov models of the
simultaneous components, and @ is any combination operator,
e.g. addition, multiplication, convolution etc. Recognition is
carried out by extending the normal Viterbi decoding algorithm
to a search of the combined state-space of the two models.

In the normal Viterbi process the recurrent relation for eval-
uating the most likely state sequence is:

Py(3) = mePg_l(u)-au,i-bi(ot) (1).

“where Py(i) is the probability of being in state i at time t, ay,;

is the transition probability from state u to state i, and b;(0¢)
is the probability of the observation O, coming from state i.

In the case of decomposition for two simultaneous compo-
nents the relation becomes:

Py(3,7) = mu%th,l(u, v).aly;.a2,,5.01; ® b2;(0:)  (2)

where Py(i, ) is the probability, at time ¢, of the first component
being in state i and the second in state j: aly,; is the transi-
tion probability from state u to state ¢ for the first component;
a2,,; is the transition probability from state v to state  for the
second component; b1; ® b2;(0;) is the observation probability.
Evaluation of the observation probability will take the general
form

CH2847-2/90/0000-0845 $1.00 © 1990 BCC



b1; ® b2;(0;) = /P(Olt,02t|i,j) (3)

where the integration is over all couples (O1,, 02;) such that:
0;=01,® 02,

Using equation (2) the optimal state sequence for each of
the simultaneous models sets can be found, thus carrying out
recognition of simultaneous signal components by searching the
3-dimensional lattice of the state-space shown in figure 1. The
extension to more than two components is straight forward.

MODEL. ¢

OBSERVATIONS

Figure 1: Decomposition of 3-dimensional state-sequence into
two 2-dimensional projections in the M1 and M2 state spaces.

3 DECOMPOSITION FOR RECOGNITION OF
SPEECH IN NOISE

In the case of speech contaminated with noise, the components
of the decomposition are the usual speech models of whole words
(for example) and a second concurrent set of noise models. The
observation probabilities are evaluated on the basis of the out-
put of a speech model combined with the output of a noise
model. Recognition of the speech is carried out with one set
of models while the noise is “recognised” simultaneously by the
other set of models.

In general an observed signal will consist of various compo-
nent signals combined together in some way, i.e. by means of
some combination operator or set of operators. In the examples
used in this paper the observed signal consists of speech with
noise added to it at various signal-to-noise ratios. This is passed
through a filter bank front end which generates log energy levels
in each channel, i.e.

0, = log(0'1¢ + 0'2,). (4)
where O'1; & 0'2, are the energy levels of the two components,
the speech and the noise. To a first approximation it is possible
to write:

0, = log(0'1¢ + 0'2;) = max(01¢, 02;) (5)

where O1; = log(O'l;) and 02, = log(0'2,). Thus it is possible
to approximate the required integration, in eguation (3), for
evaluation of the observation probability as follows:
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bL; ® b2;(0;) = P(max(01e, 02,)]i,5) =
C(O1y, sy C1))N (024, 25, 022) +
C(024, 424,022 )N (014, pl;, 017)

(6)

where C(Oy, i, 0?) is the cumulative probability of all observa-
tion levels less than O, coming from a Normal distribution with
mean p and variance ¢, Similarly N (O, y,0?) is the probabil-
ity of observation O; coming from a Normal distribution with
mean g and variance o2.

This combination operator exploits the fact that in a filter
bank the effect of noise in a particular frequency band or channel
has only a limited effect (due to passband overlap) across the
rest of the spectrum.

In a recent paper, [4], N4das et al. also recognised equa-
tion (6).

4 RELATIONSHIP WITH KLATT MASKING

In the Klatt noise masking algorithm, [2], both the input obser-
vation and the template are “masked” with a noise threshold
that depends on the composite of the estimate of the noise dur-
ing training and the estimate of the input noise. Re-phrasing
this in hidden Markov model terms; if either the model mean or
the observation is below the composite noise mask then it is re-
placed with the noise mask, otherwise the distance is calculated
as usual. The observation probability is thus evaluated as:

P(maz(0,N)|i: y; = maz(pi, N)) =
N{(maz(0, N),maz(u;, N),c?)

Where O is the observed energy level, N is the current noise es-
timate,  is the model mean and o? is the model variance. Thus
the observation probability of the masked observation is evalu-
ated as coming from a Normal distribution with masked model
mean; the variance is that of the model. It can be seen that this
turns out to be an interesting approximation to equation (6).

5 EXPERIMENTS AND RESULTS

The objective of the experiments was to compare the perfor-
mance of decomposition with that of a conventional baseline
recogniser and the Klatt masking technique.

5.1 Experimental data

The speech data used were isolated digits, extracted from the
NATO RSG-10 single digit database, [8]. These consist of sev-
eral continuous tables each of 100 digits spoken in isolation.
One table was used to train the models, one table was used
for parameter optimisation and the remaining three tables for
tests. The noise data were taken from the NATO RSG-10 noise
database [9]. The noises used in the experiments reported here
were stationary pink noise (equal energy in 1/3 octaves) and
machine-gun noise (an example of highly impulsive irregularly
time varying noise).

The speech and the noise signals were recorded separately
and added together digitally at seven different signal-to-noise
ratios: +21, +15, 49, +3, ~3, —9 and —15dB. The signal-to-
noise ratio was calculated on the basis of signal level measure-
ments made using the British Telecom SV6 speech voltmeter.
The SV6 conforms to the CCITT standard, [10], for speech level
measurement.



The corresponding segmental signal-to-noise ratio, (2}, and
global signal-to-noise ratio were calculated for comparison: seg-
mental SNR is roughly 7~ 8dB lower than the SNR values given
above; the global SNR, calculated only over speech regions, is
roughly 2dB lower than the values given above.

5.2 Experimental setup

The recognisers all had a single microphone input with no ex-
tra sensors. The one-pass continuous speech recognition algo-
rithm, {5), was used. The ohservation vectors were the log en-
ergy levels of a 27 channel filter bank analyser, [6]. The channels
of the filter bank are roughly critical band spaced and overlap-
ping, based on a successful channel vocoder design, [7}; the fre-
quency range covered is 0 — 10kHz. The channel energies were
quantised with 8 bits in 0.5dB steps; the filter bank analysis
was carried out at a rate of 100 frames per second.

Ten-state left-to-right speaker-dependent whole-word hid-
den Markov models were used and the output distribution for
each state was multi-variate Normal with diagonal covariance
matrix. The speech models were all trained under noise-free
conditions. Separate training, optimisation and test sets were
used.

In the case of speech with pink noise the baseline recog-
niser and the Klatt recogniser both used a noise tracking silence
model to recognise the non-speech periods, details of this can
be found in [2]. A true silence model, i.e. zero means, was used
together with the word models in the speech component for the
decomposition test, a single state pink noise model, described
in section 5.3, was used as the second (noise) component.

In the case of speech with machine gun noise the baseline
recogniser used the five-state machine gun model described in
section 5.3 together with a noise tracking silence model and
the digit models. The results for the Klatt algorithm were ob-
tained without the use of the machine gun model, simply a noise
tracking silence model. It was found that the use of a machine
gun model together with Klatt masking worked very poorly (no
investigation of the reasons for this were made). The decompo-
sition results were obtained as with the pink noise, i.e. a true
silence model together with the digits in the speech component
and the five-state machine gun model as the second (noise) com-
ponent.

5.3 Noise models

Models of stationary pink noise and machine gun noise were
built using a standard Baum-Welch re-estimation algorithm.
The pink noise model was a single state model, consisting sim-
ply of the means and variances of the noise in each channel of
the filter bank front end. The machine gun was modelled with
a five state non left-right model. A minimum threshold on the
magnitude of the model variances was set. The magnitude of
this threshold was found empirically using the optimisation data
set.

5.4 Results

Tables 1 and 2 give the result for recognition of speech with
pink noise. Table 1 shows the number of digits misclassified
out of a test set of 300, table 2 gives the corresponding number
of insertions. It can be seen that decomposition gave the best
overall performance.
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[SNR indB oo | +21 [+15 | +9 [ + T3] -9 ]-15]
Baseline | 0| 67[202[282| *| *[ * o
Klatt [0 o] 0 }2 6] 68 2’48”[”"‘"
Decomp 0| o o o] o] 9]163] *

Table 1: Words not correctly recognised out of 300 digits
spoken in isolation for each algorithm at various signal-to—
noise ratios with added pink noise. (* indicates that no
words were recognised correctly).

SNR indB oo | +21 | +15 | +9 [+3[ -3 [-9[-15]
VBaseline 0 29 1 0 * * * *
Klatt | ol 1 3y 2 7[ a0} *
Decomp | 0| 3| 4le66| 3| 3] of *

Table 2: Insertions corresponding to results in table 1.

Tables 3 and 4 give corresponding results for speech and
machine gun noise. The results for decomposition here are pre-
liminary, it is expected that further development of the machine
gun model will improve performance. However, it can be seen
that decomposition gives improved recognition performance, in
particular significantly reducing the number of insertions.

[SNRindB | +21 | +15 [ +9 [+3[-3] -9 [ 15
Baseline 16 | 16| 27 | 52 | 96 | 125 | 169
Klatt 22| 24|33|30[45] 70| 94
Decomp 0 3011|2775 | 356 31

Table 3: Words not correctly recognised out of 300 digits
spoken in isolation for each algorithm at various signal-to-
noise ratios with added machine gun. (* indicates that no
words were recognised correctly).

[SNR in dB: | 121 | +15 | +9 | +3 =37 =9 ] -15 |

Baseline || 235 | 290 | 850 | 639 | 932 | 775 | 1316
Klatt 410 | 527 | 804 | 887 | 978 | 871 | 603
Decomp || 6| 14| 81| 60214327 [ 449 I

Table 4: Insertions corresponding to results in table 2.

6 CONCLUSIONS

The results of the experiments showed that signal decompo-
sition using hidden Markov modelling provides significant im-
provements in speech recognition performance for both station-
ary and highly non-stationary noise. In stationary pink noise
good performance is obtained down to a signal-to-noise ratio
of —3dB. The technique also successfully deals with impulsive
background noise.

Finally it is important to note the artificial nature of these
experiments, the speech and the noise were recorded indepen-
dently and added together for these experiments. Many other
effects must be taken into account for real speech in noise, e.g.
the Lombard effect, microphone characteristics, etc. Also mod-
els of the noise were created off-line and were somewhat artifi-
cial in nature. Despite this, it is believed that decomposition is
a very important technique in the speech recognition armoury
having wide application in problems other than recognition of
speech in noise, see [1].
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