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A Computationally Efficient Multipitch
Analysis Model
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Abstract—A computationally efficient model for multipitch  allowing more simultaneous tones to be detected with greater
and periodicity analysis of complex audio signals is presented. gccuracy.
The model essentially divides the signal into two channels, below The concept of pitch [15] refers to auditory perception and

and above 1000 Hz, computes a “generalized” autocorrelation of h | lati hip to phvsical i f . |
the low-channel signal and of the envelope of the high-channel as a compiex refationship to pnysical properties of a signal.

signal, and sums the autocorrelation functions. The summary Thus, it is natural to distinguish it from the estimation of
autocorrelation function (SACF) is further processed to obtain an fundamental frequency and to apply methods that simulate

enhanced SACF (ESACF). The SACF and ESACF representations human perception. Many such approaches have been proposed
are used in observing the periodicities of the signal. and they generally follow one of two paradigms: place (or

The model performance is demonstrated to be comparable to f th d timi iodicity) th Neith
those of recent time-domain models that apply a multichannel requency) theory and timing (or periodicity) theory. Neither

analysis. In contrast to the multichannel models, the proposed Of these in pure form has been proven to show full compat-
pitch analysis model can be run in real time using typical personal ibility with human pitch perception and it is probable that a
computers. The parameters of the model are experimentally combination of the two approaches is needed. Recently it has
E‘gﬁdléﬁrtgﬁztsm”'“p'mh discrimination with typical mixtures of  heapn demonstrated that a peripheral auditory model that uses
Thpe proposéd pitch analysis model may be used in complex timg-domain processing of periodicity properties _shows.ability
audio signal processing applications, such as sound sourcetO Simulate many known features of pitch perception which are
separation, computational auditory scene analysis, and struc- often considered to be more central [16], [17]. Such models
tural representation of audio signals. The performance of the are attractive since auditory processes may be simulated with
model is demonstrated by pitch analysis examples using sound yg|atively straightforward digital signal processing (DSP)
mixtures which are available for download at http://www.acous- . " o .
tics.hut fi/~ttolonen/pitchAnalysis/. algorithms. Addmonal_ featurgs may be r<_ead|ly included using,
) ) o ) . e.g., frequency domain algorithms if desired.
icit';‘i%’;;‘;{?;ﬁ#%‘g&F:‘t“igﬂe"“g’ multipitch analysis, period- g unitary pitch analysis model of Meddis and O'Mard
' ' [16] and its predecessors by Meddis and Hewitt [17] are among
the best known recent models tifne-domainpitch analysis.
I. INTRODUCTION The unitary model is shown to exhibit qualitatively good corre-
ANY principles have been proposed for the modelin p_on_dence to human percgption in many listening .tasks such as
of human pitch perception and for practical pitch de- ISSINg fundamgntal, musical 'chords', etc. A pract!cal problem
termination of simple audio or speech signals [1]-[3]. For re -'_th _the model is that, d(_asplte_ of its qun_e stra|ghtforwa_1rd
ciple, the overall algorithm is computationally expensive

ular signals with harmonic structure, such as clean speech th VSIS | iod out US: itich | audit
a single speaker, the problem is solved quite reliably. When t yoce the analysis IS carried out using a multichannel auditory

complexity increases further, e.g., when harmonic complexes '(]thrt;ﬁ.nk' ¢ itiitch vsi del that i
sounds or voices are mixed in a single signal channel, the deter IS Paperwe present a muitipiich analysis model that 1S

mination of pitches is generally a difficult problem that has n(gf:)mputationally efficient. While it does not attempt to simulate

been solved satisfactorily the human auditory system in detail, it is still intuitive from
Computational algorithms for multipitch identification, for]tc.h(:fj audlt?_ry tmode!mg V|eV\|/p0|nt.dQur .plttrlanaly&s mO(jteI K
instance, in automatic transcription of polyphonic music, havi'0S applications in complex audio signai processing tasks,
been around for over 20 years. The first systems had typicaﬁ ch as sound source separation, computational auditory scene
alysis [18]-[21], structural representation of audio signals,

substantial limitations on the content, and they were only atff d tont vsis techni Th d model is. t
to detect up to two simultaneous harmonic tones [4]-[9]. TG content analysis techniques. The proposed modet s, 1o a
tain extent, a computationally superior simplification of the

more recent systems have advanced in performance uOH?/%lddis and O’Mard model which has very similar behavior

as will be demonstrated below. Additional features will be
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(ACF) There are several approaches for computation of the autocor-

- —PFI Ill’el’iodiCity detectiorli | é relation or a similar periodicity measure within each of the chan-

L .% oo ] ] nels. The time domain approach is acommon ch0|ce [1_6], [17],

" ol & E F IT - lJ [21]_. In the;e systems, an expopentlal window is applied with

Input §_ 1 e § Z|l e T : TTT a window time constant that varies from 2.5 ms [17] to 25 ms
—> g S8 |52 ¢ 0 . LIl [21]. Our experiments have determined that the effective length
@ e § §. - - IJ of the window should be approximately 10-30 ms so that the

SN O - g E—-——— ] window spans more than one period of the pitched tone with all

= . 'Lj fundamental periods that are in the range of interest. Ellis [21]

’H applies a logarithmic scale of the autocorrelation lag with ap-
A i \ proximately 48 samples for each octave. He motivates the use
of such a scale by better resemblance with the pitch detection
(SACF) resolution of the human auditory system. This requires interpo-
lation of the signals in the channels. Ellis notes that half-wave
rectification is preferred over full-wave rectification in order to
suppress octave errors.

The paper is organized as follows. In Section I1, the proposedSome of the pitch analysis systems prefer to use a discrete
pitch analysis model is introduced and compared to pitch pérourier transform (DFT) based autocorrelation computation for
ception models reported in the literature. Section 1ll describeégmputational efficiency [24]. This approach also allows for
how the periodicity representation can be enhanced so that percessing of the signal in the frequency-domain. As discussed
odicities may be more easily investigated. Section IV discusgeglow, nonlinear compression of the DFT magnitude may be
the model parameters and shows with examples how they @$ed to enhance the performance of the pitch analysis. Such
fect the behavior of the model, and Section V demonstrates gagompression is not readily implementable in a time-domain
model performance in multipitch determination. Finally, Segystem.

tion VI concludes the paper with a summary and discussion. Although the unitary pitch perception model of Meddis and
O’'Mard has been widely adopted, some studies question the

general validity of the unitary pitch perception paradigm. Par-

["Cross-channel summation |

Fig. 1. Block diagram of the Meddis—O’Mard model [17].

[I. PITCH ANALYSIS MODEL ticularly, it has been suggested that two mechanisms for pitch
. . . perception are required: one for resolved harmonics and one for
A. Multichannel Pitch Analysis unresolved harmonics [25], [26]. The term resolved harmonics

In many recent models of human perception, the key comp@fers to the case when only one or no components fall within the
nent is a filterbank that simulates the behavior of the cochlek)-dB-down bandwidth of an auditory filter [27]. In the other
The filterbank separates a sound signal into subband chanreglse, the components are said to be unresolved. The present
that have bandwidths corresponding to the frequency resolut@dy does not attempt to answer the question on the pitch de-
of the cochlea. A common choice is to use a gammatone filtéection mechanism of the human auditory system. In fact, the
bank [22] with channels corresponding to the equivalent rectaproposed model has only two channels and does not attempt di-
gular bandwidth (ERB) channels of human audition [23].  rectly to follow human resolvability. Interestingly enough, as

Fig. 1 depicts the pitch perception model of Meddis anghown in the following subsection, the model still qualitatively
O'Mard [17] that uses the filterbank approach. The inputroduces similar and comparable results to those of the more
signal is first divided into 40-128 channels depending on tigéaborate multichannel pitch analysis systems.
implementation [16], [17], [21]. The signal in each channel is The computational demands of multichannel pitch analysis
half-wave rectified and lowpass filtered. Essentially, this stegystems have prohibited their use in practical applications where
corresponds to the detection of the envelope of the signaltypically real-time performance is required. The computational
each channel. From the envelope signals, a periodicity mégduirements are mostly determined by the number of channels
sure, such as the autocorrelation function (ACF), is computgged in the filterbank. This motivates the development of a sim-
within each channel. Finally, the ACFs are summed across léied model of pitch perception presented below that is more
channels to yield a summary autocorrelation function (SAFGVitable in practical applications and still qualitatively retains
that is used in pitch analysis. the performance of multichannel systems.

In studies that have applied the pitch analysis paradigm of
Fig. 1, several implementations are reported. In some systeﬁs,
pre-processing of the signal is performed before the signalA block diagram of the proposed two-channel pitch analysis
enters the filterbank. For instance, in [17] a bandpass filter isodel is illustrated in Fig. 2. The first block is a pre-whitening
used for simulating the middle ear transfer function. In [17] thidter that is used to remove short-time correlation of the
half-wave rectification and lowpass filtering block is replacedignal. The whitening filter is implemented using warped linear
with a block that estimates the probability of neural activatioprediction (WLP) as described in [28]. The WLP technique
in each channel. In [24], an automatic gain control block isorks as ordinary linear prediction except that it implements
added after the half-wave rectification and the lowpass filteringitical-band auditory resolution of spectral modeling instead
is removed. of uniform frequency resolution, and can be used to reduce the

Two-Channel Pitch Analysis



710 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 8, NO. 6, NOVEMBER 2000

Input Pro-whiteui 1
—»=| Pre-whitenin x
e —l 1 0.5
X high 0
Highpass Half-wave rect. Periodicity -0.5 . . .
|\_> at1kHz [ "] Lowpass filt. ™1 detection *2 0 0.(?05 0.91 O.QIS
| .| Lowpass * low - Periodi.(:ity 0.9
at | kHz detection
0.8}
nhanced 7 0.005 001 SACFI '( )
»| SACF o EnthanC . , ag (s
" | Enhancer SACF

Fig. 3. Comparison of the SACF functions of the two models using the
“musical chord” test signal. The two-channel SACF is plotted on the top and

Fig. 2. Block diagram of the proposed pitch analysis model. the Meddis—Hewitt SACF on the bottom.

filter order considerably. A WLP filter of 12th order is used here

with sampling rate of 22 kHz, Hamming windowing, framedue to the autocorrelation [notice the modulus in (1)]. However,

size of 23.2 ms, and hop size of 10.0 ms. Inverse filtering with€ high channelis phase-sensitive since it follows the amplitude
the WLP model yields the pre-whitened signal. To a certafivelope of asignalin the frequency band above 1000 Hz. Thus,
extent, the whitening filter may be interpreted as functional§il Phase-sensitivity in our model is inherently caused by the
similar to the normalization of the hair cell activity level towardVigh channel. This is different from the Meddis—Hewitt model

spectral flattening due to the adaptation and saturation effedere all channels are phase-sensitive since they follow the en-
[29], [30]. velope of the signal in the corresponding frequency band. How-

The functionality of the middle part of Fig. 2 corresponds t§Ver, when lower channels resolve the harmonics, the difference

that of the unitary multichannel pitch analysis model of Fig. 1 relatively small since in that case the autocorrelation compu-
The signal is separated into two channels, below and abovéation removes the phase-sensitivity.

kHz. The channel separation is done with filters that have 12

dB/octave attenuation in the stop-band. The lowpass block afse Comparison of Multichannel and Two-Channel Models

includes a highpass rolloff with 12 dB/octave below 70 Hz. The The performance and validity of the proposed two-channel
high-channel signal is half-wave rectified and lowpass filtere§ACF model (without pre-filtering and pre-whitening, using
with a similar filter (including the highpass characteristic at 7Rinning autocorrelation similar to [17]) in pitch periodicity anal-
Hz) to that used for separating the low channel. ysis is evaluated here by a comparison with the multichannel
The periodicity detection is based on “generalized autocorrsACF model of Meddis and Hewitt. The AIM software [32]
lation,”i.e., the computation consists of a discrete Fourier trangas used to compute the Meddis—Hewitt SACFs. The test sig-
form (DFT), magnitude compression of the spectral represengis were chosen according to [17].
tion, and an inverse transform (IDFT). The sigralin Fig. 2 The results of the “musical chord” experiment [17] with the
corresponds to the SAFC of Fig. 1 and is obtained as two-channel and the multichannel models are illustrated on the
‘ ‘ top and the bottom plots of Fig. 3, respectively. In this case, the
z2 = IDFT(|DFT(z100)|") + IDFT(IDFT(wnign)|*) test signal consisted of three harmonic signals with fundamental
=IDFT(|DFET (210w )|* + [DFT(2hign)|*) (1) frequencies 392.0, 523.2, and 659.2 Hz corresponding to tones
G*, C°, and B, respectively. The Gtone consisted of first four

Whereyo, andzyigy are the low and high channel signals bep .o nics and the Cand B tones contained the first three
fore the periodicity detection blocks in Fig. 2. The paraméterh '

determi the f d . on 1311, F %:monics each. All the harmonic components were of equal
etermines the Irequency domain compression [31]. -ornor plitude. Both models exhibit an SACF peak atalag of 7.7 ms.
autocorrelationt = 2 but, as detailed in Section IV, it is ad-

%= This corresponds to a frequency of 130 Hz (tori®, @hich is
vantageous to use a value smaller than 2. Note that perlodwﬂtr\é root tone of the chord. The waveforms of the two summary

computation using the DFT aII(_)WS the contrql of the parametgl; -orrelation functions are similar although the scales differ.
k or the use of some other nonlinear processing of the frequenC)(Nhile it is only possible to report this experiment here

transform, e.g, application of natural logarithm resulting in t $e models behave similarly with a broader range of test
cepstrum. This is not directly possible with time-domain period-

@cit_y detection algorithms_. The fast Fourier transform (FFT)_ aq;{?::ﬁm_zzeoj Sxtirgilﬁts fi?jttiéggn /?)?tihﬁfal?/;?s /f?\vallable at
its inverse (IFFT) are typically used to speed the computation 0
the transforms. The last block of Fig. 2 presents the processing
of the SACF (denoted-). This part of the algorithm is detailed
in Section IIl.

Before comparing the performance of the models of Figs. 1 The peaks in the SACF curve produced as ouipudf the
and 2, itis instructive to study the sensitivity to the phase proprodel in Fig. 2 are relatively good indicators of potential pitch
erties of the signal in pitch analysis when using a multichanngériods in the signal being analyzed as shown in Fig. 3. How-
model or a two-channel model. In the two-channel case, the lewer, such a summary periodicity function contains much redun-
channel is phase-insensitive (except for the windowing effectdant and spurious information that makes it difficult to estimate

I1l. ENHANCING THE SUMMARY AUTOCORRELATION
FUNCTION
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20F TABLE |
10+ SUGGESTEDPARAMETER VALUES FOR THEPROPOSEDTWO-CHANNEL MODEL
0 L
-10 ) ) k | window size | pre-whitening | filter order
0 2 4 6 8 10 0.67| 464 ms | 12-order WLP | 2/trans. band
20 ' C P '
ESACF 221081:;
I z 4 . . .
10F /\ <147 Hz to that of the human perception or approximately optimal based
0 . . . /\ . on visual inspection of analysis results. The suggested param-
0 2 4 6 8 Lag(ms) eter values are collected in Table I.

In the following section, there are two types of illustrations.
Fig. 4. An example of multipitch analysis. A test signal with three clarin ; ;
tones with fundamental frequencies 147, 185, and 220 Hz, and relative 3ntr113Flgs' 5and7, the SACFs of one frame of the Slgnal are pIotted

values of 0.4236, 0.7844, and 1, respectively, was analyzed. Top: two-char@l the top, and one or two ESACF'’s that correspond to the pa-
SACF, bottom: two-channel ESACF. rameter values that we found best suited are depicted on the
bottom. In Figs. 6 and 8, consecutive ESACFs are illustrated as

which peaks are true pitch peaks. For instance, the autocorreldunction of time. This representation is somewhat similar to
tion function generates peaks at all integer multiples of the futhe spectrogram: time is shown on the horizontal axis, ESACF
damental period. Furthermore, in case of musical chords the rtsj on the vertical axis, and the gray level of a point corresponds
tone often appears very strong though in most cases it should faathe value of the ESACF. Test signals are mixtures of synthetic
be considered as the fundamental period of any source soutakmonic tones, noise, and speech signals. Each synthetic tone
To be more selective, a peak pruning technique similar to [2Has the amplitude of the first harmonic equal to 1.0, and the
but computationally more straightforward, is used in our modeimplitude of thexth harmonic equal t@/». The initial phases

The technique is the following. The original SACF curve, asf the harmonics are 0. The noise that is added in some exam-
demonstrated above, is first clipped to positive values and thgles is white Gaussian noise. In this work, we have used speech
time-scaled (expanded in time) by a factor of two and subtractedmples that have been recorded in an anechoic chamber and in
from the original clipped SACF function, and again the result isormal office conditions. The sampling rate of all the examples
clippedto have positive valuesonly. Thisremovesrepetitive peak$2 050 Hz.
with double the time lag where the basic peak is higher than the
duplicate. Italso removes the near-zero time lag part of the SAGF Compression of Magnitude in Transform Domain
curve. This operation can be repeated for time lag scaling with
factors ofthree, four, five, etc., asfaras desired, inordertorem
highermultiples of each peak. Theresultingfunctioniscalledh
the enhanced summary autocorrelation (ESACF).

An illustrative example of the enhanced SACF analysis

In Section Il we motivated the use of transform-domain com-
Station of the “generalized autocorrelation” by two considera-
Bns: 1) it allows nonlinear compression of the spectral repre-

sentation and 2) it is computationally more efficient. The fol-

Swing examples concentrate on magnitude compression and

shown in Fig. 4 for a signal consisting of three clarinet tone gest that the normal autocorrelation functibr=(2) is sub-

The fundamental frequencies of the tones are 147, 185, and %@ S . .
X . ' ' imal for our periodicity detection model. Exponential com-
Hz. The SACF is depicted on the top and the enhanced SA ession is easily available by adjusting paraméter (1).

curve on the bottom, showing clear indication of the three funda- hile we only consider exponential compression in this

mental periodicities and no other peaks. We have experimen ehtext. other nonlinear functions may be applied as well. A
with different musical chords and source instrument sounds. 8mmo}1 choice in the speech processing community is to use

most cases, sound combinations of two to three sources aAr& e natural logarithm, which results in the cepstrum. Nonlinear

solved quite easily if the amplitude levels of the sources are Q‘%mpression in the transform domain has been studied in the

tool d|ffer.|ent. Foli chorr?s t\;]wth fmiLotr more s?ttjrzces, the SUbSIcgc')nttext of pitch analysis of speech signals [31]. In that study,
nais easily mask each other so that some ot (€ sources are,Ag periodicity measure was computed using the wideband
resolved reliably. One further idea to improve the pitch resol

. . . . X . . l’§Tgnal directly without dividing into channels. It was reported
tion with complex mixtures, especially with relatively dn‘feren&hat the compression parametet= 0.5 gave the best results
amplitudes, is to use an iterative algorithm, whereby the m ’ '

cﬁ?‘\mas also shown that pre-whitening of the signal spectrum

prominent sounds are first detected and filtere.d out (See_sgﬁbwed a tendency of improving the pitch analysis accuracy.
tion V) or attenuatgd property, and then the pitch analysis 1S Fig. 5 illustrates the effect of magnitude compression to the
repeated for the residual. SACF. The upper four plots depict the SACF's that are obtained
usingk = 0.2, k = 0.67, k = 1.0, andk = 2.0, whereas the
bottom plot shows the ESACF that is obtained from the SACF
The model of Fig. 2 has several parameters that affect thith £ = 0.67. A Hamming window of 1024 samples (46.4 ms
behavior of pitch analysis. In the following, we show with exwith a sampling frequency of 22 050 Hz) is used.
amples the effect of each parameter on the SACF and ESACHhe test signal consists of two synthetic harmonic tones
representations. In most cases, it is difficult to obtain the camith fundamental frequencies 140.0 and 148.3 Hz and white
rect value for a parameter from the theory of human perceptiddaussian noise with signal-to-noise ratio (SNR) of 2.2 dB. The
Rather, we attempt to obtain model performance that is simiandamental frequencies of the harmonic tones are separated

IV. M ODEL PARAMETERS
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Fig. 5. An example of magnitude compression. Test signal consists of two 0 0.2 0.4 0.6 0.8
harmonic tones with added Gaussian white noise (SNR is 2.2 dB). The first Time (s)

ESACEF lag (ms)

four plots from the top illustrate the SACF computed witk= 0.2, k = 0.67,

k = 1.0, andk = 2.0, respectively. The bottom plot depicts the ESACF_. . . .
corresponding to the second plot with= 0.67. Fig. 6. An example of the effect of the window length. Test signal consists

of the Finnish vowel /a/ spoken by a male. The pitch of the vowel is falling.
The signal is added onto itself after a delay of 91 ms. Plots from top to bottom

by one semitone. The two tones are identifiable by listening ittystrate the ESACF computed with window length 23.2, 46.4, 92.9, and 185.8
the signal, although the task is much more involved than wifff 'esPectively.

the signal without the additive noise (see the examples at the

WWW). The example shows that the SACF peaks get broadgs used as well. For stationary signals, increasing the window
as the value oft increases. However, the performance withength reduces the variance of the spectral representation. How-
low values ofk is compromised by sensitivity to noise, as seegver, the sound signals typically encountered in pitch analysis
by the number and level of the spurious peaks in the top plake far from stationary and a long window is bound to degrade
According to this example, ~ 0.67 is a good compromise the performance when the pitch is changing. Fig. 6 illustrates
between lag-domain resolution and sensitivity to noise. this trade-off.

While we prefer the use &f = 0.67, in some computationally ~ Consecutive frames of ESACF’s computed on the test signal
critical applications it may be useful to use= 0.5 if optimized  are plotted in a spectrogram-like fashion in Fig. 6. The darker
routines are available for the square-root operation but not f@Ipoint is in the figure, the higher is the value of the ESACF.
the cubic-root operation. It is interesting to compare exponeThe test signal consists of Finnish vowel /a/ spoken by a male.
tial compression to the cepstrum where logarithmic compreBhe pitch of the vowel is falling. The vowel signal is added
sion is used. Cepstral analysis typically results in higher lag-dento itself after a delay of 91 ms. Listening to the signal reveals
main resolution than exponential compression Witk 0.2, but  that the human auditory system is easily able to distinguish two
it may be problematic with signals with low amplitude levelsyowels with falling pitches. The value of the hop size parameter
since the natural logarithm approaches as the signal ampli- is 10 ms, i.e., consecutive frames are separated in time by 10
tude approaches 0 [31]. ms. The Hamming window lengths of the analysis are, from the

) ) ) ) top to the bottom, 23.2, 46.4, 92.9, and 185.8 ms. The two plots
B. Time-Domain Windowing on the top of Fig. 6 exhibit two distinct pitch trajectories, as

The choice of the time-domain window in correlation comdesired. However, as the window length is increased, the two
putation affects the temporal resolution of the method and alsajectories are merged into one broader trajectory, as shown
sets a lower bound to the lag range. The shape of the windowthe two bottom plots. Clearly, the two cases on the top are
function determines the leakage of energy in the spectral dweferred over the two on the bottom.
main. It also determines the effective length of the window that When the two top plots of Fig. 6 are compared, it is no-
corresponds to the width of the main lobe of the window iticed that the one using a shorter window exhibits more un-
the spectral domain. We have applied a Hamming window desired peaks in the ESACF. As expected, the use of a longer
our pitch analysis model, although other tapered windows magndow reduces the artifacts that correspond to noise and other
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un-pitched components. From Fig. 6 it is suggested that a Ham-

ming window with a length of 46.4 ms is a good compromise. 02

When a tapered time-domain window, such as the Hamming _0‘(2’ A ]
window, is used, the hop size is typically chosen to be less than 0 0.005 001 0015 0.02
half of the window length. This ensures that the signal is evenly " " "
weighted in the computation. The hop size may be further re-
duced to obtain finer sampling of the ESACF frames in time,
if desired. We have chosen a hop size equal t(_) 10 ms which, 0 0005 001 0015 0.02
from our experiments, seems a good compromise between the Lag (s)
displacement of consecutive ESACF frames and computational
demands. A similar hop size value is very often used in speech g,
and audio processing applications. % 0.2}

m

SACF

SACF
o oo
— N

C. Pre-Whitening 0 0.005 0.01 0.015 0.02

The pre-whitening filter that is used before the filterbank re- & 0.2}
moves short-time correlation from the signal, e.g., due to for- &5 0.1}

mant resonance ringing in speech signals. In the spectral do-* 0 A A | D WA Mo AAL
main, this corresponds to flattening the spectral envelope. We 0 0.005 0.01 0.015 0.02
thus expect the whitening to give better resolution of the peaks Lag (s)

in the autocorrelation function. . i N
. o Fig. 7. Anexample of the effect of pre-whitening. The test signal is the same as
Since whitening flattens the overall spectral envelope ofjgrig. 5. The first two plots illustrate the SACF without (top) and with (second)

signal, it may degrade the signal-to-noise ratio of a narrowbapr@-whitening. The third and the fourth plot depict the ESACF corresponding
signal since the noise outside the signal band is strengtherf@g firstand the second plot, respectively.

However, as the following example illustrates, the whitening

does not typically degrade the two-channel pitch estimatieduencies above the crossover frequency is weak. The method
performance. Fig. 7 demonstrates the effect of pre-whiteniffgreally a periodicity estimator: it is not capable of simulating
with test signal of Fig. 5, i.e., two harmonic tones with funProperly the spectral pitch, i.e., a pitch that is based on resolved
damental frequencies separated by one semitone and addffi@gemnonics with fundamental frequency higher than 1000 Hz.
white Gaussian noise. The first two plots illustrate the SACHote that the other aforementioned filterbank methods are also
without (top) and with (second) pre-whitening. The peaks #feriodicity detectors and have their fundamental frequency
the whitened SACF are better separated than those withégtection upper limit related to the lowpass filter after the
whitening. The spurious peaks that are caused by the nonf-wave rectification.

still appear at a relatively low level. This is confirmed by Both filters are of the Butterworth type for maximally flat
investigation of the corresponding ESACFs in the third and tf@ssbands. The filter order that is used for every transition band

fourth plot of Fig. 7. is a parameter that has a significant effect on the temporal res-
olution of the periodicity detector. Fig. 8 shows an example of
D. Two-Channel Filterbank the effect of channel-separation filtering. The test signal is the

same as that in the example of Fig. 6, i.e., a Finnish vowel /a/
The choice of the filterbank parameters affects the pegith a falling pitch is added to itself after a delay of 91 ms.
formance of the periodicity detector quite significantly, a$ne piots from top to bottom illustrate the ESACF'’s when filter
demonstrated by the .following example. The most importaapders 1, 2, and 4 (corresponding to a rolloff of 6, 12, and 24
parameters are the filter orders and cut-off frequencies. fB/octave) are used for each transition band, respectively. It is
discussed in Section Il, the two filters are bandpass filters wighserved that the spurious peaks in the ESACF representations
passband from 70-1000 Hz for the lower channel and frogje reduced as the filter order is increased. By examination of
1000-10000 Hz for the upper channel. The lowest cut-off frgsg_ g we conclude that filter order 2 for each transition band is

quency at 70 Hz is chosen so that DC and very-low-frequengiye pest compromise between resolution of the ESACF and the
disturbances are suppressed while the periodicity detectiongfmber of spurious peaks in the ESACF.

low-pitched tones is not degraded. The crossover frequency

at 1000 Hz is not a critical parameter; it may vary between V. MODEL PEREORMANCE

800-2000 Hz (see, e.g., [30], [33]). It is related to the upper ) ) )

limit of fundamental frequencies that may be estimated prop-_The performance of the pitch analysis model is demonstrated
erly using the method and naturally also affects the lag domaHifh three examples:

temporal resolution of periodicity analysis. When a tone with 1) resolution of harmonic tones with different amplitudes;

a fundamental frequency higher than the crossover frequency2) musical chords that are played with real instruments;

is analyzed, the SACF is dominated by the contribution from 3) ESACF representation of a mixture of two vowels with
the high channel. The high-channel compressed autocorrela- varying pitches.

tion is computed after the low-pass filtering at the crossov&he test signals can be downloaded at http://www.acous-
frequency, thus, the high-channel contribution for fundamentéds.hut.fi/~ttolonen/pitchAnalysis/.
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150 0.2 0.4 0.6 0.8 1 Fig. 9. Example of the resolution of harmonic tones with varying amplitudes.
’ ’ Ti : ’ The amplitude ratios of the two tones are, from the top to the bottom, 0.0, 3.0,
ime (s) 6.0, and 10.0 dB.
Fig. 8. An example of the effect of channel-separation filtering. Test signal
is the same as in Fig. 6. The plots from top to bottom illustrate the ESACF's 0
when the filter orders 1, 2, and 4 (corresponding to a roll-off of 6, 12, and 24 .~ - .
dB/octave) are used for each transition band, respectively. k) 5t
Liof
Fig. 9 shows the first example where the test signal consists ) ) )
of two synthetic harmonic tones with different amplitude ratios. 0 0.5 1 1.5
The fundamental frequencies of the tones are 140.0 and 148.3 Time (s)

Hz. The amplitude ratios in the plots of Fig. 9 are, from the top
to the bottom. 0.0. 3.0. 6.0. and 10.0 dB. The tones are cleafri¢- 10- An example of the pitch analysis of two vowels with crossing pitch
Lo T e T ) S .., trajectories. The test signal consists of two Finnish vowels /ae/, one with a
separated in the top plot and the separation degrades with il 4 vitch and the other one with a falling pitch.
creasing amplitude ratio, as expected. This is in agreement with
percept!oq of the test 5|gr_1als; the test signal W.'th 0.0d8B amp#{an the peaks corresponding to tongsdhd A;. Finally, inclu-
tude ratio is clearly perceived as two tones while at 10.0 dB the . .
. . . sion of tone G again alters the peak heights of the other peaks.
weaker signal is only barely audible. : C
. . . This dependence of the peak height is caused partly by the com-
Fig. 10 shows an ESACF representation of a mixture of two .~ .
: . . L utation of the ESACF representation from the SACF represen-
vowels with varying pitches. The two Finnish /ae/ vowels ha\Pe : . . . -
. . : tion, and partly since the tones have harmonics with colliding
been spoken by a male in an anechoic chamber and mixed. [he . ;
. L : . . : reguencies. In all the cases, however, the tones are clearly dis-
figure shows two distinct trajectories with few spurious peaks[. . .
: : . : . tinguishable from the ESACF representation.
The example of Fig. 11 illustrates pitch analysis on musical
chords. The test signals consist of 2—4 clarinet tones that are
mixed to get typical musical chords. The tones that are used for
mixing are Dy (146.8 Hz), E (185.0 Hz), A (220.0 Hz), and  The multipitch analysis model described above has been de-
C. (261.6 Hz). The plots from the top to the bottom show theeloped as a compromise between computational efficiency and
ESACF of one analysis frame. The test signals are, respectivalyditory relevance. The first property is needed to facilitate ad-
tones 3 and Ag; D3 and F3 Ds, F3 and A;; and D; F3 Az, vanced applications of audio and speech signal analysis. Com-
and C,. putational auditory scene analysis (CASA) [18]-[21], structured
This example allows us to investigate the performance of taad object-based coding of audio signals, audio content anal-
model when tones are added to the mixture. The little arrowsis, sound source separation, and separation of speech from
above the plots indicate the tone peaks in the ESACF repressevere background noise are among such applications. Auditory
tations. The first two plots show the performance with only tweelevance is advantageous in order to enable comparison of the
tones present. In both cases, the two tones are shown with pegksgtem performance with human auditory processing.
of equal height. The maximum value of the peak correspondingComputational efficiency was shown by testing the algorithm
to the tone [ at lag of~7 ms is almost 30 in the top plot andof Fig. 2 on a 300 MHz PowerPC processor (Apple Macin-
only a little more than 20 in the second plot. In the third plotpsh G3). Computation of the SACF using WLP pre-whitening,
three tones are present. The tones are the same that were gaatple rate of 22 kHz, and frame size of 1024 samples (46 ms)
for the first two plots, but now the Ppeak is more pronouncedtook less than 7.0 ms per frame. With a 10 ms hop size, only a

VI. SUMMARY AND DISCUSSION
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i , . removes the common periodicities such as the root tone of
B 20t musical chords. This is useful in sound source separation of
S 10l harmonic tones. In music signal analysis, the complement of
= 0 L N R such pruning, i.e., detection of chord periodicities and rejection
of single tone pitches, might as well be a useful feature for
o 20f chord analysis.
) ol An interesting question of pitch analysis is the temporal inte-
4 A A 1 gration that the human auditory system shows. As with a large
0 * b set of other psychoacoustic features, the formation of pitch per-
o 20l y cept takes 100—-200 ms to reach its full accuracy. Using a single
Q I\ frame length of 46 ms, corresponding to an effective Hamming
Qa 10 window length of about 25 ms, is a compromise of pitch tracking
0 A NP and sensitivity to noise. Averaging of consecutive frames can be
20F bid ot . . used to improve the stability of SACF with steady-pitch signals.
) Better temporal integration strategies may be needed when there
§ 10 AJ is faster pitch variation.
0 | L LA . L This paper has dealt with multipitch analysis of an audio
0 0.005 Lg~0(ls) 0.015 0.02 signal using the SACF and ESACF representations. The next
g

step in a typical application would be to detect and describe
pitch objects and their trajectories in time. Related to such pitch
Flig- 115 Example of ?itph alrlaIVSiS_Of_ mUSfical ChOchijS with ClalfiHEt tonez- Thsbject detection is the resolution of the analysis when harmonic
Egoiic&%Ep?Sf FBS Eg ffnndaicgﬁﬁasgm)? ;ggeédgg ’A/fg(’tc;ﬂg g)’(b%tf:)nm tones o_f dif_ferent amplitu_des are found_ ina mixture signal. As
plot). shown in Fig. 9, separation of pitch objects is easy only when
the levels of tones are relatively similar. An effective and nat-

) N . . . ural choice to improve the pitch analysis with varying ampli-
part of processor’s capacity is used in real-time pitch anaIyS{ des is to use an iterative technique, whereby the most promi-
A multichannel model with correlation in each channel coul ’

t be impl ted i Vsi ) A ent pitches are first detected and the corresponding harmonic
Not be implemented as real-time analysis using current gene plexes are filtered out by FIR comb filtering tuned to reject
purpose processors.

) ) a given pitch. Tones with low amplitude level can then be ana-
Although the auditory analogy of the model is not very stron%zed from the residual signal.

it shows some features that make it easier to interpret analySige same approach is useful in more general sound (source)
results from the point of view of human pitch perception. Thgaparation of harmonic tones [35]. The pitch lags can be used
pre-whitening of the input signal, often considered useful igy generate sparse FIR’s for rejecting (or enhancing) specific
pitch analysis, may be seen to have minor resemblance o SReGmonic complexes in a given mixture signal. An example

tral compression in the auditory nerve. of vowel separation and spectral estimation of the constituent

The division of the audio frequency range into two subrangagwels is given in [35]. This can be considered as kind of mul-
below and above about 1 kHz, is a kind of minimum division t@pitch prediction of harmonic complex mixtures.

realize direct time synchrony of neural firings at low frequen-
cies and envelope-based synchrony at high frequencies. Note
that the model is a periodicity analyzer that does not implement
spectral pitch analysis, which is needed especially if the funda{1)
mental frequency of the input signal exceeds the synchrony limit
frequency of about 1 kHz. In this study we focused on the pitch
analysis of low-to-mid fundamental frequencies and did not try [3]
to include spectral pitch analysis.

The computation of time-lag correlation (generalized auto- 4]
correlation) is difficult to interpret from an auditory point of
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