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A Computationally Efficient Multipitch
Analysis Model

Tero Tolonen, Student Member, IEEE,and Matti Karjalainen, Member, IEEE

Abstract—A computationally efficient model for multipitch
and periodicity analysis of complex audio signals is presented.
The model essentially divides the signal into two channels, below
and above 1000 Hz, computes a “generalized” autocorrelation of
the low-channel signal and of the envelope of the high-channel
signal, and sums the autocorrelation functions. The summary
autocorrelation function (SACF) is further processed to obtain an
enhanced SACF (ESACF). The SACF and ESACF representations
are used in observing the periodicities of the signal.

The model performance is demonstrated to be comparable to
those of recent time-domain models that apply a multichannel
analysis. In contrast to the multichannel models, the proposed
pitch analysis model can be run in real time using typical personal
computers. The parameters of the model are experimentally
tuned for best multipitch discrimination with typical mixtures of
complex tones.

The proposed pitch analysis model may be used in complex
audio signal processing applications, such as sound source
separation, computational auditory scene analysis, and struc-
tural representation of audio signals. The performance of the
model is demonstrated by pitch analysis examples using sound
mixtures which are available for download at http://www.acous-
tics.hut.fi/~ttolonen/pitchAnalysis/.

Index Terms—Auditory modeling, multipitch analysis, period-
icity analysis, pitch perception.

I. INTRODUCTION

M ANY principles have been proposed for the modeling
of human pitch perception and for practical pitch de-

termination of simple audio or speech signals [1]–[3]. For reg-
ular signals with harmonic structure, such as clean speech of
a single speaker, the problem is solved quite reliably. When the
complexity increases further, e.g., when harmonic complexes of
sounds or voices are mixed in a single signal channel, the deter-
mination of pitches is generally a difficult problem that has not
been solved satisfactorily.

Computational algorithms for multipitch identification, for
instance, in automatic transcription of polyphonic music, have
been around for over 20 years. The first systems had typically
substantial limitations on the content, and they were only able
to detect up to two simultaneous harmonic tones [4]–[9]. The
more recent systems have advanced in performance [10]–[14]
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allowing more simultaneous tones to be detected with greater
accuracy.

The concept of pitch [15] refers to auditory perception and
has a complex relationship to physical properties of a signal.
Thus, it is natural to distinguish it from the estimation of
fundamental frequency and to apply methods that simulate
human perception. Many such approaches have been proposed
and they generally follow one of two paradigms: place (or
frequency) theory and timing (or periodicity) theory. Neither
of these in pure form has been proven to show full compat-
ibility with human pitch perception and it is probable that a
combination of the two approaches is needed. Recently it has
been demonstrated that a peripheral auditory model that uses
time-domain processing of periodicity properties shows ability
to simulate many known features of pitch perception which are
often considered to be more central [16], [17]. Such models
are attractive since auditory processes may be simulated with
relatively straightforward digital signal processing (DSP)
algorithms. Additional features may be readily included using,
e.g., frequency domain algorithms if desired.

The unitary pitch analysis model of Meddis and O’Mard
[16] and its predecessors by Meddis and Hewitt [17] are among
the best known recent models oftime-domainpitch analysis.
The unitary model is shown to exhibit qualitatively good corre-
spondence to human perception in many listening tasks such as
missing fundamental, musical chords, etc. A practical problem
with the model is that, despite of its quite straightforward
principle, the overall algorithm is computationally expensive
since the analysis is carried out using a multichannel auditory
filterbank.

In this paper we present a multipitch analysis model that is
computationally efficient. While it does not attempt to simulate
the human auditory system in detail, it is still intuitive from
the auditory modeling viewpoint. Our pitch1 analysis model
finds applications in complex audio signal processing tasks,
such as sound source separation, computational auditory scene
analysis [18]–[21], structural representation of audio signals,
and content analysis techniques. The proposed model is, to a
certain extent, a computationally superior simplification of the
Meddis and O’Mard model which has very similar behavior,
as will be demonstrated below. Additional features will be
proposed in order to allow for further analysis of multipitch
signals, such as musical chords and speech mixtures. The per-
formance of the model is demonstrated by periodicity analysis
examples using sound mixtures available at http://www.acous-
tics.hut.fi/~ttolonen/pitchAnalysis/.

1Following a common practice, we use term pitch even when fundamental
period or pitch period could be more precise concepts.
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Fig. 1. Block diagram of the Meddis–O’Mard model [17].

The paper is organized as follows. In Section II, the proposed
pitch analysis model is introduced and compared to pitch per-
ception models reported in the literature. Section III describes
how the periodicity representation can be enhanced so that peri-
odicities may be more easily investigated. Section IV discusses
the model parameters and shows with examples how they af-
fect the behavior of the model, and Section V demonstrates the
model performance in multipitch determination. Finally, Sec-
tion VI concludes the paper with a summary and discussion.

II. PITCH ANALYSIS MODEL

A. Multichannel Pitch Analysis

In many recent models of human perception, the key compo-
nent is a filterbank that simulates the behavior of the cochlea.
The filterbank separates a sound signal into subband channels
that have bandwidths corresponding to the frequency resolution
of the cochlea. A common choice is to use a gammatone filter-
bank [22] with channels corresponding to the equivalent rectan-
gular bandwidth (ERB) channels of human audition [23].

Fig. 1 depicts the pitch perception model of Meddis and
O’Mard [17] that uses the filterbank approach. The input
signal is first divided into 40–128 channels depending on the
implementation [16], [17], [21]. The signal in each channel is
half-wave rectified and lowpass filtered. Essentially, this step
corresponds to the detection of the envelope of the signal in
each channel. From the envelope signals, a periodicity mea-
sure, such as the autocorrelation function (ACF), is computed
within each channel. Finally, the ACFs are summed across the
channels to yield a summary autocorrelation function (SAFC)
that is used in pitch analysis.

In studies that have applied the pitch analysis paradigm of
Fig. 1, several implementations are reported. In some systems,
pre-processing of the signal is performed before the signal
enters the filterbank. For instance, in [17] a bandpass filter is
used for simulating the middle ear transfer function. In [17] the
half-wave rectification and lowpass filtering block is replaced
with a block that estimates the probability of neural activation
in each channel. In [24], an automatic gain control block is
added after the half-wave rectification and the lowpass filtering
is removed.

There are several approaches for computation of the autocor-
relation or a similar periodicity measure within each of the chan-
nels. The time domain approach is a common choice [16], [17],
[21]. In these systems, an exponential window is applied with
a window time constant that varies from 2.5 ms [17] to 25 ms
[21]. Our experiments have determined that the effective length
of the window should be approximately 10–30 ms so that the
window spans more than one period of the pitched tone with all
fundamental periods that are in the range of interest. Ellis [21]
applies a logarithmic scale of the autocorrelation lag with ap-
proximately 48 samples for each octave. He motivates the use
of such a scale by better resemblance with the pitch detection
resolution of the human auditory system. This requires interpo-
lation of the signals in the channels. Ellis notes that half-wave
rectification is preferred over full-wave rectification in order to
suppress octave errors.

Some of the pitch analysis systems prefer to use a discrete
Fourier transform (DFT) based autocorrelation computation for
computational efficiency [24]. This approach also allows for
processing of the signal in the frequency-domain. As discussed
below, nonlinear compression of the DFT magnitude may be
used to enhance the performance of the pitch analysis. Such
a compression is not readily implementable in a time-domain
system.

Although the unitary pitch perception model of Meddis and
O’Mard has been widely adopted, some studies question the
general validity of the unitary pitch perception paradigm. Par-
ticularly, it has been suggested that two mechanisms for pitch
perception are required: one for resolved harmonics and one for
unresolved harmonics [25], [26]. The term resolved harmonics
refers to the case when only one or no components fall within the
10-dB-down bandwidth of an auditory filter [27]. In the other
case, the components are said to be unresolved. The present
study does not attempt to answer the question on the pitch de-
tection mechanism of the human auditory system. In fact, the
proposed model has only two channels and does not attempt di-
rectly to follow human resolvability. Interestingly enough, as
shown in the following subsection, the model still qualitatively
produces similar and comparable results to those of the more
elaborate multichannel pitch analysis systems.

The computational demands of multichannel pitch analysis
systems have prohibited their use in practical applications where
typically real-time performance is required. The computational
requirements are mostly determined by the number of channels
used in the filterbank. This motivates the development of a sim-
plified model of pitch perception presented below that is more
suitable in practical applications and still qualitatively retains
the performance of multichannel systems.

B. Two-Channel Pitch Analysis

A block diagram of the proposed two-channel pitch analysis
model is illustrated in Fig. 2. The first block is a pre-whitening
filter that is used to remove short-time correlation of the
signal. The whitening filter is implemented using warped linear
prediction (WLP) as described in [28]. The WLP technique
works as ordinary linear prediction except that it implements
critical-band auditory resolution of spectral modeling instead
of uniform frequency resolution, and can be used to reduce the
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Fig. 2. Block diagram of the proposed pitch analysis model.

filter order considerably. A WLP filter of 12th order is used here
with sampling rate of 22 kHz, Hamming windowing, frame
size of 23.2 ms, and hop size of 10.0 ms. Inverse filtering with
the WLP model yields the pre-whitened signal. To a certain
extent, the whitening filter may be interpreted as functionally
similar to the normalization of the hair cell activity level toward
spectral flattening due to the adaptation and saturation effects
[29], [30].

The functionality of the middle part of Fig. 2 corresponds to
that of the unitary multichannel pitch analysis model of Fig. 1.
The signal is separated into two channels, below and above 1
kHz. The channel separation is done with filters that have 12
dB/octave attenuation in the stop-band. The lowpass block also
includes a highpass rolloff with 12 dB/octave below 70 Hz. The
high-channel signal is half-wave rectified and lowpass filtered
with a similar filter (including the highpass characteristic at 70
Hz) to that used for separating the low channel.

The periodicity detection is based on “generalized autocorre-
lation,” i.e., the computation consists of a discrete Fourier trans-
form (DFT), magnitude compression of the spectral representa-
tion, and an inverse transform (IDFT). The signalin Fig. 2
corresponds to the SAFC of Fig. 1 and is obtained as

(1)

where and are the low and high channel signals be-
fore the periodicity detection blocks in Fig. 2. The parameter
determines the frequency domain compression [31]. For normal
autocorrelation but, as detailed in Section IV, it is ad-
vantageous to use a value smaller than 2. Note that periodicity
computation using the DFT allows the control of the parameter

or the use of some other nonlinear processing of the frequency
transform, e.g, application of natural logarithm resulting in the
cepstrum. This is not directly possible with time-domain period-
icity detection algorithms. The fast Fourier transform (FFT) and
its inverse (IFFT) are typically used to speed the computation of
the transforms. The last block of Fig. 2 presents the processing
of the SACF (denoted ). This part of the algorithm is detailed
in Section III.

Before comparing the performance of the models of Figs. 1
and 2, it is instructive to study the sensitivity to the phase prop-
erties of the signal in pitch analysis when using a multichannel
model or a two-channel model. In the two-channel case, the low
channel is phase-insensitive (except for the windowing effects)

Fig. 3. Comparison of the SACF functions of the two models using the
“musical chord” test signal. The two-channel SACF is plotted on the top and
the Meddis–Hewitt SACF on the bottom.

due to the autocorrelation [notice the modulus in (1)]. However,
the high channel is phase-sensitive since it follows the amplitude
envelope of a signal in the frequency band above 1000 Hz. Thus,
all phase-sensitivity in our model is inherently caused by the
high channel. This is different from the Meddis–Hewitt model
where all channels are phase-sensitive since they follow the en-
velope of the signal in the corresponding frequency band. How-
ever, when lower channels resolve the harmonics, the difference
is relatively small since in that case the autocorrelation compu-
tation removes the phase-sensitivity.

C. Comparison of Multichannel and Two-Channel Models

The performance and validity of the proposed two-channel
SACF model (without pre-filtering and pre-whitening, using
running autocorrelation similar to [17]) in pitch periodicity anal-
ysis is evaluated here by a comparison with the multichannel
SACF model of Meddis and Hewitt. The AIM software [32]
was used to compute the Meddis–Hewitt SACFs. The test sig-
nals were chosen according to [17].

The results of the “musical chord” experiment [17] with the
two-channel and the multichannel models are illustrated on the
top and the bottom plots of Fig. 3, respectively. In this case, the
test signal consisted of three harmonic signals with fundamental
frequencies 392.0, 523.2, and 659.2 Hz corresponding to tones
G , C , and E , respectively. The Gtone consisted of first four
harmonics, and the Cand E tones contained the first three
harmonics each. All the harmonic components were of equal
amplitude. Both models exhibit an SACF peak at a lag of 7.7 ms.
This corresponds to a frequency of 130 Hz (tone C), which is
the root tone of the chord. The waveforms of the two summary
autocorrelation functions are similar although the scales differ.

While it is only possible to report this experiment here,
the models behave similarly with a broader range of test
signals. More examples of SACF analysis are available at
http://www.acoustics.hut.fi/~ttolonen/pitchAnalysis/.

III. ENHANCING THE SUMMARY AUTOCORRELATION

FUNCTION

The peaks in the SACF curve produced as outputof the
model in Fig. 2 are relatively good indicators of potential pitch
periods in the signal being analyzed as shown in Fig. 3. How-
ever, such a summary periodicity function contains much redun-
dant and spurious information that makes it difficult to estimate
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Fig. 4. An example of multipitch analysis. A test signal with three clarinet
tones with fundamental frequencies 147, 185, and 220 Hz, and relative rms
values of 0.4236, 0.7844, and 1, respectively, was analyzed. Top: two-channel
SACF, bottom: two-channel ESACF.

which peaks are true pitch peaks. For instance, the autocorrela-
tion function generates peaks at all integer multiples of the fun-
damental period. Furthermore, in case of musical chords the root
tone often appears very strong though in most cases it should not
be considered as the fundamental period of any source sound.
To be more selective, a peak pruning technique similar to [21],
but computationally more straightforward, is used in our model.

The technique is the following. The original SACF curve, as
demonstrated above, is first clipped to positive values and then
time-scaled (expanded in time) by a factor of two and subtracted
from the original clipped SACF function, and again the result is
clippedtohavepositivevaluesonly.Thisremovesrepetitivepeaks
with double the time lag where the basic peak is higher than the
duplicate. It also removes the near-zero time lag part of the SACF
curve. This operation can be repeated for time lag scaling with
factorsof three, four, five,etc.,as farasdesired, inorder to remove
highermultiplesofeachpeak.Theresultingfunctioniscalledhere
the enhanced summary autocorrelation (ESACF).

An illustrative example of the enhanced SACF analysis is
shown in Fig. 4 for a signal consisting of three clarinet tones.
The fundamental frequencies of the tones are 147, 185, and 220
Hz. The SACF is depicted on the top and the enhanced SACF
curve on the bottom, showing clear indication of the three funda-
mental periodicities and no other peaks. We have experimented
with different musical chords and source instrument sounds. In
most cases, sound combinations of two to three sources are re-
solved quite easily if the amplitude levels of the sources are not
too different. For chords with four or more sources, the subsig-
nals easily mask each other so that some of the sources are not
resolved reliably. One further idea to improve the pitch resolu-
tion with complex mixtures, especially with relatively different
amplitudes, is to use an iterative algorithm, whereby the most
prominent sounds are first detected and filtered out (see Sec-
tion VI) or attenuated properly, and then the pitch analysis is
repeated for the residual.

IV. M ODEL PARAMETERS

The model of Fig. 2 has several parameters that affect the
behavior of pitch analysis. In the following, we show with ex-
amples the effect of each parameter on the SACF and ESACF
representations. In most cases, it is difficult to obtain the cor-
rect value for a parameter from the theory of human perception.
Rather, we attempt to obtain model performance that is similar

TABLE I
SUGGESTEDPARAMETER VALUES FOR THEPROPOSEDTWO-CHANNEL MODEL

to that of the human perception or approximately optimal based
on visual inspection of analysis results. The suggested param-
eter values are collected in Table I.

In the following section, there are two types of illustrations.
In Figs. 5 and 7, the SACFs of one frame of the signal are plotted
on the top, and one or two ESACF’s that correspond to the pa-
rameter values that we found best suited are depicted on the
bottom. In Figs. 6 and 8, consecutive ESACFs are illustrated as
a function of time. This representation is somewhat similar to
the spectrogram: time is shown on the horizontal axis, ESACF
lag on the vertical axis, and the gray level of a point corresponds
to the value of the ESACF. Test signals are mixtures of synthetic
harmonic tones, noise, and speech signals. Each synthetic tone
has the amplitude of the first harmonic equal to 1.0, and the
amplitude of the th harmonic equal to . The initial phases
of the harmonics are 0. The noise that is added in some exam-
ples is white Gaussian noise. In this work, we have used speech
samples that have been recorded in an anechoic chamber and in
normal office conditions. The sampling rate of all the examples
is 22 050 Hz.

A. Compression of Magnitude in Transform Domain

In Section II we motivated the use of transform-domain com-
putation of the “generalized autocorrelation” by two considera-
tions: 1) it allows nonlinear compression of the spectral repre-
sentation and 2) it is computationally more efficient. The fol-
lowing examples concentrate on magnitude compression and
suggest that the normal autocorrelation function ( ) is sub-
optimal for our periodicity detection model. Exponential com-
pression is easily available by adjusting parameterin (1).

While we only consider exponential compression in this
context, other nonlinear functions may be applied as well. A
common choice in the speech processing community is to use
the natural logarithm, which results in the cepstrum. Nonlinear
compression in the transform domain has been studied in the
context of pitch analysis of speech signals [31]. In that study,
the periodicity measure was computed using the wideband
signal directly without dividing into channels. It was reported
that the compression parameter gave the best results.
It was also shown that pre-whitening of the signal spectrum
showed a tendency of improving the pitch analysis accuracy.

Fig. 5 illustrates the effect of magnitude compression to the
SACF. The upper four plots depict the SACF’s that are obtained
using , , , and , whereas the
bottom plot shows the ESACF that is obtained from the SACF
with . A Hamming window of 1024 samples (46.4 ms
with a sampling frequency of 22 050 Hz) is used.

The test signal consists of two synthetic harmonic tones
with fundamental frequencies 140.0 and 148.3 Hz and white
Gaussian noise with signal-to-noise ratio (SNR) of 2.2 dB. The
fundamental frequencies of the harmonic tones are separated
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Fig. 5. An example of magnitude compression. Test signal consists of two
harmonic tones with added Gaussian white noise (SNR is 2.2 dB). The first
four plots from the top illustrate the SACF computed withk = 0:2, k = 0:67,
k = 1:0, andk = 2:0, respectively. The bottom plot depicts the ESACF
corresponding to the second plot withk = 0:67.

by one semitone. The two tones are identifiable by listening to
the signal, although the task is much more involved than with
the signal without the additive noise (see the examples at the
WWW). The example shows that the SACF peaks get broader
as the value of increases. However, the performance with
low values of is compromised by sensitivity to noise, as seen
by the number and level of the spurious peaks in the top plot.
According to this example, is a good compromise
between lag-domain resolution and sensitivity to noise.

While we prefer the use of , in some computationally
critical applications it may be useful to use if optimized
routines are available for the square-root operation but not for
the cubic-root operation. It is interesting to compare exponen-
tial compression to the cepstrum where logarithmic compres-
sion is used. Cepstral analysis typically results in higher lag-do-
main resolution than exponential compression with , but
it may be problematic with signals with low amplitude levels,
since the natural logarithm approaches as the signal ampli-
tude approaches 0 [31].

B. Time-Domain Windowing

The choice of the time-domain window in correlation com-
putation affects the temporal resolution of the method and also
sets a lower bound to the lag range. The shape of the window
function determines the leakage of energy in the spectral do-
main. It also determines the effective length of the window that
corresponds to the width of the main lobe of the window in
the spectral domain. We have applied a Hamming window in
our pitch analysis model, although other tapered windows may

Fig. 6. An example of the effect of the window length. Test signal consists
of the Finnish vowel /a/ spoken by a male. The pitch of the vowel is falling.
The signal is added onto itself after a delay of 91 ms. Plots from top to bottom
illustrate the ESACF computed with window length 23.2, 46.4, 92.9, and 185.8
ms, respectively.

be used as well. For stationary signals, increasing the window
length reduces the variance of the spectral representation. How-
ever, the sound signals typically encountered in pitch analysis
are far from stationary and a long window is bound to degrade
the performance when the pitch is changing. Fig. 6 illustrates
this trade-off.

Consecutive frames of ESACF’s computed on the test signal
are plotted in a spectrogram-like fashion in Fig. 6. The darker
a point is in the figure, the higher is the value of the ESACF.
The test signal consists of Finnish vowel /a/ spoken by a male.
The pitch of the vowel is falling. The vowel signal is added
onto itself after a delay of 91 ms. Listening to the signal reveals
that the human auditory system is easily able to distinguish two
vowels with falling pitches. The value of the hop size parameter
is 10 ms, i.e., consecutive frames are separated in time by 10
ms. The Hamming window lengths of the analysis are, from the
top to the bottom, 23.2, 46.4, 92.9, and 185.8 ms. The two plots
on the top of Fig. 6 exhibit two distinct pitch trajectories, as
desired. However, as the window length is increased, the two
trajectories are merged into one broader trajectory, as shown
in the two bottom plots. Clearly, the two cases on the top are
preferred over the two on the bottom.

When the two top plots of Fig. 6 are compared, it is no-
ticed that the one using a shorter window exhibits more un-
desired peaks in the ESACF. As expected, the use of a longer
window reduces the artifacts that correspond to noise and other



TOLONEN AND KARJALAINEN: COMPUTATIONALLY EFFICIENT MULTIPITCH ANALYSIS MODEL 713

un-pitched components. From Fig. 6 it is suggested that a Ham-
ming window with a length of 46.4 ms is a good compromise.

When a tapered time-domain window, such as the Hamming
window, is used, the hop size is typically chosen to be less than
half of the window length. This ensures that the signal is evenly
weighted in the computation. The hop size may be further re-
duced to obtain finer sampling of the ESACF frames in time,
if desired. We have chosen a hop size equal to 10 ms which,
from our experiments, seems a good compromise between the
displacement of consecutive ESACF frames and computational
demands. A similar hop size value is very often used in speech
and audio processing applications.

C. Pre-Whitening

The pre-whitening filter that is used before the filterbank re-
moves short-time correlation from the signal, e.g., due to for-
mant resonance ringing in speech signals. In the spectral do-
main, this corresponds to flattening the spectral envelope. We
thus expect the whitening to give better resolution of the peaks
in the autocorrelation function.

Since whitening flattens the overall spectral envelope of a
signal, it may degrade the signal-to-noise ratio of a narrowband
signal since the noise outside the signal band is strengthened.
However, as the following example illustrates, the whitening
does not typically degrade the two-channel pitch estimator
performance. Fig. 7 demonstrates the effect of pre-whitening
with test signal of Fig. 5, i.e., two harmonic tones with fun-
damental frequencies separated by one semitone and additive
white Gaussian noise. The first two plots illustrate the SACF
without (top) and with (second) pre-whitening. The peaks of
the whitened SACF are better separated than those without
whitening. The spurious peaks that are caused by the noise
still appear at a relatively low level. This is confirmed by
investigation of the corresponding ESACFs in the third and the
fourth plot of Fig. 7.

D. Two-Channel Filterbank

The choice of the filterbank parameters affects the per-
formance of the periodicity detector quite significantly, as
demonstrated by the following example. The most important
parameters are the filter orders and cut-off frequencies. As
discussed in Section II, the two filters are bandpass filters with
passband from 70–1000 Hz for the lower channel and from
1000–10 000 Hz for the upper channel. The lowest cut-off fre-
quency at 70 Hz is chosen so that DC and very-low-frequency
disturbances are suppressed while the periodicity detection of
low-pitched tones is not degraded. The crossover frequency
at 1000 Hz is not a critical parameter; it may vary between
800–2000 Hz (see, e.g., [30], [33]). It is related to the upper
limit of fundamental frequencies that may be estimated prop-
erly using the method and naturally also affects the lag domain
temporal resolution of periodicity analysis. When a tone with
a fundamental frequency higher than the crossover frequency
is analyzed, the SACF is dominated by the contribution from
the high channel. The high-channel compressed autocorrela-
tion is computed after the low-pass filtering at the crossover
frequency, thus, the high-channel contribution for fundamental

Fig. 7. An example of the effect of pre-whitening. The test signal is the same as
in Fig. 5. The first two plots illustrate the SACF without (top) and with (second)
pre-whitening. The third and the fourth plot depict the ESACF corresponding
to the first and the second plot, respectively.

frequencies above the crossover frequency is weak. The method
is really a periodicity estimator: it is not capable of simulating
properly the spectral pitch, i.e., a pitch that is based on resolved
harmonics with fundamental frequency higher than 1000 Hz.
Note that the other aforementioned filterbank methods are also
periodicity detectors and have their fundamental frequency
detection upper limit related to the lowpass filter after the
half-wave rectification.

Both filters are of the Butterworth type for maximally flat
passbands. The filter order that is used for every transition band
is a parameter that has a significant effect on the temporal res-
olution of the periodicity detector. Fig. 8 shows an example of
the effect of channel-separation filtering. The test signal is the
same as that in the example of Fig. 6, i.e., a Finnish vowel /a/
with a falling pitch is added to itself after a delay of 91 ms.
The plots from top to bottom illustrate the ESACF’s when filter
orders 1, 2, and 4 (corresponding to a rolloff of 6, 12, and 24
dB/octave) are used for each transition band, respectively. It is
observed that the spurious peaks in the ESACF representations
are reduced as the filter order is increased. By examination of
Fig. 8 we conclude that filter order 2 for each transition band is
the best compromise between resolution of the ESACF and the
number of spurious peaks in the ESACF.

V. MODEL PERFORMANCE

The performance of the pitch analysis model is demonstrated
with three examples:

1) resolution of harmonic tones with different amplitudes;
2) musical chords that are played with real instruments;
3) ESACF representation of a mixture of two vowels with

varying pitches.
The test signals can be downloaded at http://www.acous-
tics.hut.fi/~ttolonen/pitchAnalysis/.
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Fig. 8. An example of the effect of channel-separation filtering. Test signal
is the same as in Fig. 6. The plots from top to bottom illustrate the ESACF’s
when the filter orders 1, 2, and 4 (corresponding to a roll-off of 6, 12, and 24
dB/octave) are used for each transition band, respectively.

Fig. 9 shows the first example where the test signal consists
of two synthetic harmonic tones with different amplitude ratios.
The fundamental frequencies of the tones are 140.0 and 148.3
Hz. The amplitude ratios in the plots of Fig. 9 are, from the top
to the bottom, 0.0, 3.0, 6.0, and 10.0 dB. The tones are clearly
separated in the top plot and the separation degrades with in-
creasing amplitude ratio, as expected. This is in agreement with
perception of the test signals; the test signal with 0.0 dB ampli-
tude ratio is clearly perceived as two tones while at 10.0 dB the
weaker signal is only barely audible.

Fig. 10 shows an ESACF representation of a mixture of two
vowels with varying pitches. The two Finnish /ae/ vowels have
been spoken by a male in an anechoic chamber and mixed. The
figure shows two distinct trajectories with few spurious peaks.

The example of Fig. 11 illustrates pitch analysis on musical
chords. The test signals consist of 2–4 clarinet tones that are
mixed to get typical musical chords. The tones that are used for
mixing are D (146.8 Hz), F (185.0 Hz), A (220.0 Hz), and
C (261.6 Hz). The plots from the top to the bottom show the
ESACF of one analysis frame. The test signals are, respectively,
tones D and A ; D and F ; D , F , and A ; and D F , A ,
and C .

This example allows us to investigate the performance of the
model when tones are added to the mixture. The little arrows
above the plots indicate the tone peaks in the ESACF represen-
tations. The first two plots show the performance with only two
tones present. In both cases, the two tones are shown with peaks
of equal height. The maximum value of the peak corresponding
to the tone D at lag of 7 ms is almost 30 in the top plot and
only a little more than 20 in the second plot. In the third plot,
three tones are present. The tones are the same that were used
for the first two plots, but now the Dpeak is more pronounced

Fig. 9. Example of the resolution of harmonic tones with varying amplitudes.
The amplitude ratios of the two tones are, from the top to the bottom, 0.0, 3.0,
6.0, and 10.0 dB.

Fig. 10. An example of the pitch analysis of two vowels with crossing pitch
trajectories. The test signal consists of two Finnish vowels /ae/, one with a
raising pitch and the other one with a falling pitch.

than the peaks corresponding to tones F, and A . Finally, inclu-
sion of tone C again alters the peak heights of the other peaks.
This dependence of the peak height is caused partly by the com-
putation of the ESACF representation from the SACF represen-
tation, and partly since the tones have harmonics with colliding
frequencies. In all the cases, however, the tones are clearly dis-
tinguishable from the ESACF representation.

VI. SUMMARY AND DISCUSSION

The multipitch analysis model described above has been de-
veloped as a compromise between computational efficiency and
auditory relevance. The first property is needed to facilitate ad-
vanced applications of audio and speech signal analysis. Com-
putational auditory scene analysis (CASA) [18]–[21], structured
and object-based coding of audio signals, audio content anal-
ysis, sound source separation, and separation of speech from
severe background noise are among such applications. Auditory
relevance is advantageous in order to enable comparison of the
system performance with human auditory processing.

Computational efficiency was shown by testing the algorithm
of Fig. 2 on a 300 MHz PowerPC processor (Apple Macin-
tosh G3). Computation of the SACF using WLP pre-whitening,
sample rate of 22 kHz, and frame size of 1024 samples (46 ms)
took less than 7.0 ms per frame. With a 10 ms hop size, only a
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Fig. 11. Example of pitch analysis of musical chords with clarinet tones. The
plots show ESACF’s of signals consisting of tones Dand A (top plot); D and
F (second plot); D, F , and A (third plot); and D F , A , and C (bottom
plot).

part of processor’s capacity is used in real-time pitch analysis.
A multichannel model with correlation in each channel could
not be implemented as real-time analysis using current general
purpose processors.

Although the auditory analogy of the model is not very strong,
it shows some features that make it easier to interpret analysis
results from the point of view of human pitch perception. The
pre-whitening of the input signal, often considered useful in
pitch analysis, may be seen to have minor resemblance to spec-
tral compression in the auditory nerve.

The division of the audio frequency range into two subranges,
below and above about 1 kHz, is a kind of minimum division to
realize direct time synchrony of neural firings at low frequen-
cies and envelope-based synchrony at high frequencies. Note
that the model is a periodicity analyzer that does not implement
spectral pitch analysis, which is needed especially if the funda-
mental frequency of the input signal exceeds the synchrony limit
frequency of about 1 kHz. In this study we focused on the pitch
analysis of low-to-mid fundamental frequencies and did not try
to include spectral pitch analysis.

The computation of time-lag correlation (generalized auto-
correlation) is difficult to interpret from an auditory point of
view since it is carried out in the frequency domain. The only in-
teresting auditory analogy is that the exponent for spectral com-
pression is close to the one used in computation of the loudness
density function [34]. It would be interesting to compare the re-
sult with neural interspike interval histograms which, however,
are less efficient to compute.

The enhanced summary autocorrelation (ESACF) is an
interesting and computationally simple means to prune the
periodicity of autocorrelation function. In a typical case this
representation helps in finding the fundamental periodicities
of harmonic complex tones in a mixture of such tones. It

removes the common periodicities such as the root tone of
musical chords. This is useful in sound source separation of
harmonic tones. In music signal analysis, the complement of
such pruning, i.e., detection of chord periodicities and rejection
of single tone pitches, might as well be a useful feature for
chord analysis.

An interesting question of pitch analysis is the temporal inte-
gration that the human auditory system shows. As with a large
set of other psychoacoustic features, the formation of pitch per-
cept takes 100–200 ms to reach its full accuracy. Using a single
frame length of 46 ms, corresponding to an effective Hamming
window length of about 25 ms, is a compromise of pitch tracking
and sensitivity to noise. Averaging of consecutive frames can be
used to improve the stability of SACF with steady-pitch signals.
Better temporal integration strategies may be needed when there
is faster pitch variation.

This paper has dealt with multipitch analysis of an audio
signal using the SACF and ESACF representations. The next
step in a typical application would be to detect and describe
pitch objects and their trajectories in time. Related to such pitch
object detection is the resolution of the analysis when harmonic
tones of different amplitudes are found in a mixture signal. As
shown in Fig. 9, separation of pitch objects is easy only when
the levels of tones are relatively similar. An effective and nat-
ural choice to improve the pitch analysis with varying ampli-
tudes is to use an iterative technique, whereby the most promi-
nent pitches are first detected and the corresponding harmonic
complexes are filtered out by FIR comb filtering tuned to reject
a given pitch. Tones with low amplitude level can then be ana-
lyzed from the residual signal.

The same approach is useful in more general sound (source)
separation of harmonic tones [35]. The pitch lags can be used
to generate sparse FIR’s for rejecting (or enhancing) specific
harmonic complexes in a given mixture signal. An example
of vowel separation and spectral estimation of the constituent
vowels is given in [35]. This can be considered as kind of mul-
tipitch prediction of harmonic complex mixtures.
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