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ABSTRACT
Results from a prosody-based automatic language
discrimination (LID) system suggest that the difficulties
reported by other sites in incorporating prosodic information
into LID systems may have been caused by their not using
appropriate task-specific features.  Running averages and
correlations of prosodic features capturing syllable pitch and
amplitude contours, duration and phrase location were
evaluated by deriving a LLR function for each feature and
language pair, then evaluating the effectiveness of that function
as a discriminator.  Data consists of speech in 11 languages
(OGI database) representing a cross-section of traditional
typological categories and relationships.  Results show that
prosody is highly useful in LID if complex perceptual events
are broken down into simpler physical events and features are
chosen based on task.  Prosodic features can distinguish
between language pairs as predicted by language typologies,
suggesting that new languages can be classified using existing
models of similar languages.

1.  INTRODUCTION
1.1. Other LID studies
Past approaches to automatically identifying the language
spoken in a conversational context have used broad phonetic
features, detailed acoustic features, raw waveforms, pitch
contours, vocabulary, etc. [4, 8].  The utility of prosodic cues
like stress and rhythm realized as a function of three acoustic
parameters (pitch, amplitude, duration) was unclear and
therefore was typically not pursued in most studies.  A few
earlier attempts to use prosodic features found them only
marginally successful:  speech rate and syllable timing offered
small improvements [5];  some differences were found between
tone and non-tone languages in pitch change over the duration
of the sentence and the word [6].

We would argue that prosodic features can be useful only
if the appropriate features are used and that the lack of
successful uses of such features in the earlier studies can be
traced to not relying on task-appropriate features.  It is not
enough to derive a large set of general prosodic features
because much more than language identity is encoded in the
prosodic information.  Suprasegmental features also encode
discourse structure, emotion, native language and dialect,
stylistics (e.g. read, spontaneous, lecture), utterance purpose
(e.g. threaten, inform, persuade, flatter), speaker identity, etc.
Since each aspect is encoded by a complex set of overlapping
features, it is better to derive a smaller set that is maximally
reliable for the task.

A recent pairwise language discrimination study using
only two prosodic features – F0 and amplitude envelope
modulation – to discriminate between five languages with a
recurrent neural network has produced some of the most
encouraging results for prosodic LID to date [1].  The network
was able to find generalizations in the temporal patterns of the

data; error distributions reflected traditional rhythm-related
language classes.  Our earlier work on pairwise discrimination
between English, Spanish, Japanese and Mandarin used a much
larger set of prosodic features than [1] and showed that those
features can be very successful in LID [7].  We showed that the
strengths of particular prosodic features and classes of
features—primarily pitch, secondarily duration and
location—reflect differences between the languages as
predictable from prosodic classifications.

1.2.  Prosodic language categories
The results from [1] and [7] suggest that a familiarity with the
variation found in prosody and an understanding of the
relationships between physical measurements and perceived
events help in effectively identifying appropriate features,
particularly if training data is limited, and predicting the
discrimination success of specific language pairs.  Most in-
depth cross-linguistic prosodic studies have focused on a small
set of languages, on controlled speech, on particular theoretical
claims, or are purely descriptive and the standard prosodic
classification recognizes categories of pitch use (pitch-accent,
tonal, non-tonal languages) and rhythm (syllable-timing, stress-
timing, mora-timing).

Pitch-related language categories differ with respect to
amount of overall pitch variation, location of pitch change
within a phrase, presence/absence of specific pitch contour
types, pitch contours at different locations within a phrase,
correlations between pitch and amplitude or duration features,
and so on.

Rhythm is crucial in parsing and intelligibility; however,
there seems to be no simple measure of rhythm.  Isochronous
stresses or syllables are perceived and may be measurable in
read speech or poetry reciting but are apparently not usually
physically present in unplanned speech other than as
tendencies.  A solution is to break complex perceptual
phenomena into simpler easy-to-measure interacting properties.
A study comparing five languages differing in timing and tone
concluded: “The difference between stress-timed and syllable-
timed languages has to do with differences in syllable structure,
vowel reduction, and the phonetic realization of stress and its
influence on the linguistic system.” [2]  The suggested
existence of preferred tempos in the 1.4-2.0 Hz range [3] may
also interact with syllable structure, vowel reduction and pitch
use to explain a language's choice between salience of distance
between syllables or stressed syllables.  This suggests that by
measuring simpler features such as distance between syllable
onsets, between syllable nuclei, and between prominent
stresses we should be able to identify differences between
rhythmically different languages.

In general, we expect languages that are more similar in
pitch use and/or timing-related structure to be more difficult to
differentiate automatically.
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2. METHODS
2.1. Data
We used data from the Oregon Graduate Institute Multi-
Language Telephone Speech Corpus [5], a set of responses to
prompts by native speakers of one of eleven languages:
English, Farsi, French, German, Hindi, Japanese, Korean,
Mandarin, Spanish, Tamil, and Vietnamese.  These languages
provide a good cross-section of language types, representing
stress-timed, syllable-timed, mora-timed and phrase-timed
languages, tone languages and pitch-contour languages,
differing amounts of diachronic relationship, and variation in
syllable structure, with stress-timed languages having more
complex syllable structure than syllable-stressed languages,
which in turn tend to have more complex syllable structure than
tone languages.  In this study, we used only the 50-second
unrestricted open-topic monologue segments typically
involving descriptions of vacations, place of residence, or
occupation.  We divided that data into two batches: TR (the
original OGI training data; 50 files/language) and DF (the OGI
devtest and final data; 40 files/language).  An additional 20
files of the same type were available for testing in nine of the
languages.

2.2. Model Architecture
Our prosody-based LID system differs from most other LID
systems in that no manual tagging of training data is necessary.
The system consists of an acoustic front end which extracts
pitch and amplitude information as a function of time, a
prosodic analysis unit which performs syllable segmentation
(where a syllable is simply a segment with smooth pitch, low
frication, and rising+falling amplitude) and extracts pitch and
amplitude contour information on a syllable-by-syllable basis, a
statistical module which computes inter-syllable timing-related
relationships in the pitch and amplitude information, a training
module which collects histograms of features, and a
discrimination module which computes log likelihood ratio
(LLR) functions from the histograms and uses the LLR
functions to evaluate unknown input in pairwise discrimination.
In calculating the LLR of a feature or feature pair on a pair of
data sets, we use the LLR to identify regions in which the two
data sets (Language A and Language B) have differing
distributions.  If the distribution (or joint distribution) for a
feature (feature pair) is given by p(x) then the LLR(x) is given
by equation (1):

(1) log( p(x | Language A) / p(x| Language B) )

The distributions (p(x)) are approximated by gathering
histograms on the training data. The histograms are subjected
to smoothing and backfill before being normalized for the LLR
calculation.  If the feature is a single feature, x enumerates the
bins in its histogram.  If the feature involves a joint distribution
of two features, x enumerates the bins in the joint (two
dimensional) histogram.

Based on our own research and research reported in the
linguistic and phonetic literature, we implemented a large set of
possible prosodic feature measurements designed to capture
pitch and amplitude contours on a syllable-by-syllable basis
that would be potentially useful for LID but could also be used
for other tasks including emotion and stylistics detection.  The
statistical module measures 224 individual features that can be
used individually or in pairwise combination with any other

feature.  Originally only a small subset of features or feature
pairs appropriate for the task was used in the training and
discrimination modules—our modified system automatically
derives large sets of features.  Features can be divided into
eight descriptive classes: Pitch Contour (slope and shape of
pitch contour on a syllable); Differential Pitch (inter-syllabic
pitch differences); Size (syllable duration, distance between
syllable onsets); Differential Size (differenced log syllable
distance and log syllable duration); Amplitude (slope and shape
of amplitude contour on a syllable); Differential Amplitude
(inter-syllabic amplitude differences); Rhythm (low frequency
FFT of amplitude envelope; syllables per second in a breath
group); Phrase Location (estimated location in breath group
based on syllable distance ratios and silence).  Within each
class are running averages, deltas (difference of current value
and running average), and standard deviations.

In evaluating features for a language pair, we looked at the
minimum and average over four cross-validation runs of the
percent-correct and a figure of merit (FOM) derived on a
speaker-by-speaker basis.  Given the TR and DF data for two
languages, A and B, the cross-runs involve the four possible
assignments of train and run sets to the two languages in which
the run data does not equal the train data.  The FOM of a
feature x for a pairwise discrimination of a set of speakers
drawn from two languages A and B is the difference in the
means of the LLR for x given each language divided by the
sum of the standard deviations of the LLR for x given each
language, as shown in equation (2):

(2) (E(LLR(x | A)) - E(LLR(x | B)) )  /
(StD(LLR(x | A)) + StD(LLR(x | B)) )

Evaluating features according to the minimum in cross-
validation runs allows us to eliminate features that are
unreliable for LID due to influence by stylistics or emotion.

3. RESULTS
3.1. Experiment 1: Best single feature
Using cross-runs, we isolated the single best feature or feature-
pair for each pair of languages, "best" being defined as the
feature with the highest minimum percent correct (min%)
across the 4 runs.  This is a simple way to avoid unstable
features.  It also gives a baseline that should be close to a
lowest expected result on similar test data.  Results are shown
in Table 1.

en ge fr sp fa hi ta ja ko m vi
en 62 70 71 80 74 72 73 77 83 73
ge 70 72 82 75 79 79 81 89 72
fr 62 79 74 65 81 73 87 79
sp 69 66 69 77 68 86 75
fa 63 73 84 72 89 80
hi 61 76 72 84 80
ta 75 69 88 79
ja 73 78 85
ko 81 78
m 78
vi
Table 1. Percent correct pairwise LID best single feature
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The results reflect prosodic similarities between languages
through lower percent correct for more similar languages and
higher percent correct for less similar languages.  Plotting
percent correct against FOM, Figure 1 illustrates how language
pairs tend to separate into groups corresponding to traditional
linguistic rhythm-related categories based on degree of
prosodic similarity.  The best feature is also representative of
the area of greatest dissimilarity between the languages, e.g.
English vs. Spanish differ in timing and syllable structure: the
best feature pair is the delta log distance between syllables at
decay 8 + average pitch slope; English vs. Mandarin differ in
tone, timing and syllable structure: the best feature pair is the
delta log distance between syllables + pitch change over the
first half of the syllable; Japanese vs. Spanish differ in pitch use
more than in timing: best feature pair is the pitch change over
the last half of the syllable + the difference between start and
end pitch for the syllable.
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Figure 1. Percent-correct and FOM for pairwise LID by type

3.2. Experiment 2: Generic vs. task-specific feature sets
The purpose of the second experiment was two-fold: to verify
expectations that (1) a single set of features manually chosen
from the best performers among a representative subset of
languages does not yield results as good as task-specific
features, and (2) a set of features is stronger and more robust
than a single feature since sufficient difference between data
sets means we cannot predict which feature will perform best
on a new data set.  The "generic" set consisted of 15 features
found to be among the best for the pairs
English/Spanish/Japanese/Mandarin.  The task-specific set was
chosen by cross-runs on the 90 original files and pared down to
a set of 5-15 features through a heuristic involving minimum
FOM and range of FOM as well as the min% from cross-runs.
Discrimination was performed with a set of 20 reserved similar
files from a representative subset of languages.  Results are
shown in Table 2.

The results show that for almost all language pairs the
results are better with task-specific features.  In some cases the
improvement is large, e.g. English vs. French (+22%).  Only
for one pair, English vs. German, does the generic set clearly
outperform the task-specific set (-16%).  Since English and
German are prosodically  similar in both syllable structure and
timing, it is not surprising that the percent correct is low and
the higher score for the generic set may be a fluke for this
particular dataset.  Again, the features that perform best reflect
the prosodic differences between the languages: detection of
tone languages involves pitch contour and pitch slope features
and syllable distance features against stress-timed languages;
detection of stress-timed languages involves rhythm features,
pitch, syllable distance and syllable size to varying degrees
depending of the type of the other language in the pair;
detection of syllable-timed languages involves pitch and
rhythm depending on the other language.

A comparison of cross-runs of feature sets vs. a single
feature in 8 pairs of English vs. other languages showed a good
alignment, suggesting that the min% of the single best feature
is a lower bound to feature set performance. Only English vs.
Hindi disappoints by being 5% lower as a set than the single
best.  A comparison of the min% from cross-runs of the single
best feature to the final percent correct in the test data in the
same 8 pairs of English vs. Other_language showed that 4 of
the 8 final pairs scores are close to the min% and 4 final scores
give higher results, suggesting that the best min% is a fair
lower bound to performance.

language  generic  task-spec.   change
pair  %corr  %corr    in %
EN/GE 73 61     –12
EN/FR 53 75     +22
EN/SP 77 85     +  8
EN/TA 68 85     +17
EN/JA 93 90     –  3
EN/MA 77 85     +  8
EN/VI 55 70     +15
JA/MA 72 75     +  3
JA/SP 93 95     +  2
MA/SP 89 95     +  6

Table 2. Percent-correct for generic and task-specific features

4. DISCUSSION
Results from both experiments suggest that the prosodic
similarity between languages is reflected both in the percent
correct with similar (by family relationship or synchronic
category) languages scoring lower and in what features
contribute most to the score.  Complex timing structures can be
broken down into combinations of simpler features involving
segment duration and pitch.  Tone languages have strong pitch
contour features, stress- and syllable-timed languages are
differentiated through features involving rhythm and
segment/gap duration reflecting differences in syllable
structure, etc.  The fact that the strongest features match
linguistic expectations suggests that our prosodic system
captures the appropriate relationships between languages of all
types, allowing a categorization by type.  New languages on
which no training has been performed are expected to behave
in discrimination similarly to the prosodically most similar
trained language.  The results further showed that to use
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prosodic features successfully it is crucial to identify which
features are encoding what aspect of speech so that only task-
appropriate features are used—cross-validation runs and a
figure of merit were found to be simple but useful tools in
identifying those features.  We are currently working with an
automatic feature selection process that lets us select useful
features from a much larger set than we had been using for the
manual and semi-automatic evaluations discussed in this paper.
Through this selection process, we are modifying the heuristic
feature ordering process to favor a greater variety of feature
classes by preferring feature pairs that introduce new features
and feature classes.  Previous analyses indicated that a variety
of features and feature classes led to better overall results and
early results show a slight (< 5%) increase in performance over
representative language pairs.  We suspect that the reason that
many earlier systems did not find prosodic features useful is
that they did not attempt to differentiate between the large
number of different possible features to use only those that are
appropriate for LID.  Since prosodic variation within a
language can be larger than across languages due to emotional
or stylistic variation, some technique for choosing features is
crucial to the success of the system.

In general, then, computationally efficient prosodic
measures can provide a semi-independent noise resistant source
of information for LID without any need for costly hand-
tagging of training data.  Our system could provide a very
quick categorization of unknown language data.  For best LID
results, prosodic measures should be combined with other
information, such as segmental distribution or word
recognition.  For discrimination in a multi-language context
where the number and identity of the present languages are
unknown, a good use of our fast prosody-based LID system can
be to do an initial decision and a paring down of possible
languages.  Based on the prosodic categorization, an
appropriately limited set of segment-based language models
can be applied for the final LID decision.
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