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1 INTRODUCTION

In this chapter I briefly review the history and the future of computational
auditory scene analysis (CASA). Auditory scene analysis describes the pro-
cess we use to understand the world around us. Our two ears hear a cacophony
of sounds and understand that the periodic tic-toc comes from a clock, the
singing voice comes from a radio and the steady hum is coming from the
refrigerator. 

The field of computational auditory scene analysis crystallized with the
publication of Al Bregman’s book “Auditory Scene Analysis” (Bregman
1990). The commonly understood goal is to listen to a cacophony of sounds
and separate the sounds from the mixture, just as humans do. I would like to
argue that this is not what people do. In this review, I will describe some
progress to date towards modeling human sound separation, and review why
this is the wrong direction for those of us interested in modeling human per-
ception. Instead, we should be thinking about sound understanding. This is
clearly a much harder problem, but should provide a better model of human
sound separation abilities.

In particular, this paper makes two related points. 1) We need to consider a
richer model of sound processing in the brain, and 2) human sound separation
work should not strive to generate acoustic waveforms of the separated sig-
nals. Towards this goal, this paper reviews the use of a correlogram for
modeling perception and understanding sounds, the success at inverting the
correlogram representation and turning it back into sound, and then summa-
rizes recent work that questions the ability of humans to isolate separate
representations of each sound object.
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2 AUDITORY MODELING

This section reviews three aspects of auditory modeling: the cochleagram,
the correlogram, and their inversion to recover the original sound. This inver-
sion process is interesting, not only because it demonstrates the fidelity of the
representation, but also because many sound-separation systems perform their
separation in one of these two domains and then want to demonstrate their
performance by resynthesizing the cleaned-up sound.

2.1 The Cochleagram
The cochlea transcribes the sounds into a stream of neural firings carried

by the auditory nerve. These neural firings are often arranged in order of each
nerve’s best frequency to form a cochleagram. The richness of the cochlear
data is shown in Figure 16.1. All sound that is perceived travels along the
auditory nerve, so it is a complete representation of the perceived sound.

Figure 16.1 shows the output of a cochlear model for the sound “Re.” Hor-
izontal bands are at positions along the basilar membrane where there is
significant spectral energy and correspond to the formants that are used to
describe speech signals. More interestingly, there is a volley of firings at a
regular interval represented by the (slanted) vertical lines. These periodic fir-
ings correspond to the energy imparted into the signal by the glottis and their
interval directly corresponds to the glottal pitch.

 

Figure 16.1.Simulated auditory nerve firings for the sound "Re". The vertical axis is arranged 
tonotopically, while time flows horizontally from left to right.
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2.2 The Correlogram
The richness and redundancy of the cochleagram suggests the need for an

intermediate representation known as the correlogram. The correlogram was
first proposed as a model of auditory perception by James Licklider (1951).
His goal was to provide a unified model of pitch perception, but the correlo-
gram was also been widely used as a model for the extraction and
representation of temporal structure in sound.

The correlogram summarizes the information in the auditory firings using
the auto-correlation of each cochlear channel (a channel, in this work, is
defined as the firing probabilities of auditory nerves that innervate any one
portion of the basilar membrane.) Its goal is collapse and summarize the
repetitive temporal patterns shown in Figure 16.1.

The correlogram has met with great success in a number of areas. Meddis
and his colleagues (Meddis 1991, Slaney 1990) have demonstrated the ability
of a correlogram to model human pitch perception. Assman (1990) and others
have shown that the correlogram is a useful representation when modeling the
ability of humans to perceive two simultaneous spoken vowels. If anything,
models using an ideal correlogram as their internal representations perform
even better than humans perform. 

The correlogram has served as a compelling visualization tool. In one
auditory example created by Steve McAdams and Roger Reynolds, an oboe is
split into even and odd harmonics. When the even and odd harmonics are
played together at their original frequencies it sounds like the original oboe.
But then independent frequency modulation (vibrato) is added to the even and
the odd harmonics. The oboe separates into two sounds. The odd harmonics
sound like a clarinet because a clarinet has mostly odd harmonic content,
while the even harmonics go up an octave in pitch and sound like a soprano.
The visual percept is quite striking: two sets of gray dots seem to float inde-
pendently on the screen. Our task is simply a matter of identifying the dots
with the common motion—using whatever tools make sense from a percep-
tual point of view—synthesizing two partial correlograms, and then
resynthesizing the original sound.

2.3 Auditory Inversion
Given the grouping of the sound energy, the final stage is commonly

resynthesis, to allow human ears (and funding agencies) hear the separated
sounds. Towards this goal, a number of us spent years developing the algo-
rithms that allow us to turn a correlogram movie back into sound (Slaney
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1996). The process requires two steps, as shown in Figure 16.2: 1) cochlea-
gram inversion and 2) correlogram inversion. 

From the cochlear representation (the information available on the audi-
tory nerve, or a cochleagram) we invert the loudness compression (undo the
automatic gain control in Lyon’s model) run the auditory nerve probabilities
backwards through the auditory filters, sum the backwards outputs into a sin-
gle time-domain signal, and then repeat. This procedure, using an idealized
cochlear model such as the one produced by Lyon can be done without per-
ceptual differences between the original sound and the sound inversion from
the cochleagram.

This procedure was used by Weintraub (1986) in the first real CASA sys-
tem. He used the correlogram to track the pitch of two different sounds. Each
channel was assigned to one sound object or the other, depending on which
speaker’s pitch was dominant. Then those cochleagram channels from each
speaker were grouped, turned back into sound and applied to a speech recog-
nizer. He realized a small improvement in speech recognition performance in
a digit identification task.

The second, and more difficult problem, is inverting the correlogram to
produce the original cochleagram. The important insight is to realize that each
row of the correlogram is a time-varying autocorrelation. An autocorrelation
contains the same information as the power spectrum (via an FFT) so each
row of the correlogram can be converted into a spectrogram. Spectrogram
inversion can be accomplished with an iterative procedure—find the time-
domain waveform that has the same spectrogram as the original spectrogram.
There is a bit more involved in getting the phase from each cochlear channel
to line up, but the result is a sound that sounds pretty close to the original. The
inversion problem was solved. This also demonstrates that the correlogram

Spectrogram
Cochleagram

Correlogram

Figure 16.2.The correlogram inversion process. From waveform to correlogram and back.
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representation is a complete model—little information is lost since the sound
from the correlogram is so similar to the original.

3 GROUPING CUES

How does the perceptual system understand an auditory scene? Research-
ers often think about a number of cues that allow the brain to group pieces of
sound that are related (Bregman 1990). But this outlook is inherently a bot-
tom-up approach—only cues in the signal are used to perform grouping.
There are other cues that come from a person’s experiences, expectations, and
general knowledge about sound. This chapter argues that both sets of cues are
important for scene analysis. First it is useful to review a range of low-level
and high-level grouping cues.

3.1 Low-Level Grouping Cues
Many cues are used by the auditory system to understand an auditory

scene. The most important grouping principle is common fate. Portions of the
sound landscape that share a common fate—whether they start in synchrony
or move in a parallel fashion—probably originate from the same (physical)
object. Thus the auditory system is well served by grouping sounds that have
a common fate.

There are many cues that suggest a common fate. The most important ones
are common onsets and common harmonicity. Common onsets are important
because many sounds start from a common event and all the spectral compo-
nents are stimulated at the same time. Common harmonicity is important
because periodic sounds—sounds that repeat at a rate between 60 and
5000Hz—have many spectral harmonics that vary in frequency and amplitude
in a synchronous fashion. These and other similar cues are well described in
Bregman’s book.

A different style of low-level cues have been exploited for sound separa-
tion by the machine-learning community (Lee 1997). Known as blind-source
separation (BSS), these systems generally assume there are N distinct sources
that are linearly mixed and received by N microphones. Portions of a signal
from the same source are highly correlated and thus should be grouped. BSS
relies on the statistical independence of different sources. It forces signals
apart that do not share a common fate.

A further refinement is possible in the case of one-microphone source sep-
aration (Roweis 2003). The original BSS problem remains—find statistically
independent sources that sum to the received signals. One-microphone source
separation assumes that for any one position in the spectral-temporal plane,
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only one speaker at a time is present. The problems becomes a matter of allo-
cating the portions of the received signal so that each source is not only
independent, but fits a model of speech. One-microphone source separation
uses a model of the speaker, encoded as a vector-quantization model in
Roweis’ work, to guide the separation.

3.2 High-Level Grouping Cues
Many types of auditory scene analysis can not be done using simple low-

level perceptual cues. Listeners bring a large body of experiences, expecta-
tions, and auditory biases to their auditory scene analysis. If somebody says
“firetr...” then the only real question is whether I’m hearing the singular or the
plural of firetruck, and even that information can be inferred from the verb
that follows. Yet, we perceive we’ve heard the entire word if there is suffi-
cient evidence (more about this in Section 4.3).

Consider an auditory example I presented at a workshop in Montreal. A
long sentence was played to the audience. During the middle of the word “leg-
islature,” a section of the speech was removed and replaced by a cough. Most
people could not recall when the cough occurred. The cough and the entire
speech signal were perceived by listeners that understood the English lan-
guage as independent auditory objects. But one non-native speaker of English
did not know the word “legislature” and thus heard the word “legi-cough-
ture.” His limited ability to understand English gave his auditory system little
reason to predict the word “legislature” was going to come next. This is an
example of phonetic restoration (Warren 1970).

A paper titled “A critique of pure audition” (Slaney, 1990) talks about a
number of other examples where high-level cues can drive auditory scene
analysis. These clues include:

Grouping—Think about a collection of whistles. Would these isolated
tones ever be heard as speech? In sine-wave speech three time-varying tone
are heard as speech (Remez 1984)

Grouping—A click in an African click language is heard as speech during
a spoken utterance, but listeners unfamiliar with that language hear the clicks
as instrumental percussion during a song.

Vision affects Audition—In the McGurk effect, a subject’s visual percep-
tion of the speaker’s lips affects their auditory perception. (See Figure 16.3.)

Audition affects Vision—In a simple apparent-motion demonstration,
audio clues can cause motion perception in a simple visual display.

Categorical perception—A particular speech waveform is heard as two
different vowels depending on the acoustic environment of the preceding sen-
tence (Lagefoged 1989)



Chapter 16: Chapter Title 227

In each of these cases, a listener’s experience or a completely different
input modality affect the sounds we hear. This high-level knowledge is clearly
guiding the scene analysis decisions.

3.3 Which is it? Top-down versus bottom-up
Other evidence was described in a paper titled “A Critique of Pure Audi-

tion” (Slaney 1996). This paper suggests a number of other effects which call
into question a purely bottom-up approach. In the most common cases, com-
mon harmonicity causes grouping and we understand the speech. Yet in other
cases, speech experience rules the day (i.e. phonetic restoration).

These convoluted connections call into question the hypothesis that sound
analysis proceeds in a purely bottom up fashion. More importantly, how is
each sound object represented? With high-level expectations and cross-
modality input, it seems difficult to believe that each sound object is repre-
sented by a neural spike train corresponding to a real (or hallucinated)
auditory waveform.

Figure 16.3.The McGurk effect. The same auditory stimulus is heard differently when accom-
panied by video.
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4 SOUND SEPARATION MODELS

Researchers use models to concisely describe the behavior of a system. In
this section I would like to summarize models that have taken a bottom-up
and a top-down view of the world.

Most of the sound separation models to date have evaluated their results
based on either the quality of the reconstructions, or the performance of a
speech-recognition system on the separate stream outputs. Both approaches
largely answer an engineering question: Can we produce a useful auditory
scene analysis and improve speech recognition.

The double-vowel perception experiments (e.g. Assman 1990) are a good
example of models that attempt to match the human performance data.

4.1 Bottom-Up Models
Much of the original work on scene analysis used a bottom-up approach

that was well articulated by David Marr (1982). In Marr’s approach simple
elements of a scene (either auditory or visual) are group first into simple (2D)
cartoons then more sophisticated processing is applied in steps to create a
complete understanding of the object (See Figure 16.4). In this model, the
brain performs sound separation and object formation, based on all available
clues, before performing sound identification.

The first of the bottom-up models for auditory scene analysis was created
by Mitch Weintraub, then a Ph.D. student at Stanford University. In Wein-
traub’s work, a correlogram is used to analyze the pitches of two speakers

Cochlear Model

Correlogram

AM/Onset FM ??

Grouping Process

Figure 16.4. The auditory bottom-up grouping process.
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(one male and the other female). The pitches were tracked, thus finding the
dominant periodicity for each speaker. Then those (spectral) channels from
the original cochleagram with the correct periodicity were inverted to recover
an estimate of the original speech signal. His goal was to improve speech digit
recognition.

In the 1990’s a number of researchers built more sophisticated system to
look for more cues and decipher more complicated auditory streams. Cooke
and Ellis (2001) wrote an excellent summary of the progress to date using cor-
relograms and related approaches to separate sounds. The essential goal is to
identify energy in the signal which shares a common fate, group this energy
together, and then resynthesize. Common fate identifies sounds which proba-
bly came from the same source, often because the energy in different portions
of the signal shares a common pitch, or a common onset. 

4.2 Top-Down Models
The bottom-up models use information from the sound to group compo-

nents and understand an auditory scene. Except for information such as the
importance of pitch or onsets, there is little high-level knowledge to guide the
scene-analysis process. On the other hand, there is much that language and
our expectations tell us about a sound. 

Perhaps the best example of a top-down auditory-understanding system is
a hidden-Markov model (HMM) based speech-recognition system. In an
HMM speech-recognition system, a probabilistic framework is built that cal-
culates the likelihood of any given sequence of words given the acoustic
observations. This likelihood calculation is based on low-level acoustic fea-
tures, often based on an acoustic model known as MFCC (Quatieri 2002), but
most of the power in the approach is provided by the language constraints. 

The complexity of the language model directly affects the performance of
a speech-recognition system. In the simplest example, once the sounds for
“firetr” are confidently heard, then the speech recognition system is likely to
recognize the utterance as “firetruck” regardless of what sounds are heard
next. 

The complexity of a speech-recognition system’s language model is often
described by its perplexity, or the average number of words that can follow
any other word. Smaller perplexity means that fewer words can follow, the
language is more constrained, and the recognizer’s job is easier. In a radiolog-
ical task, the words are specialized and the perplexity is 20, while in general
english the perplexity is 247 (Cole 1996). One of the first commercially suc-
cessful applications of automatic-speech recognition was for medical
transcription, where a relatively small amount of high-level knowledge could
be encoded as a low-perplexity grammar.



Book Title (Abbreviated)230

An even more constrained example is provided by the score-following or
music-recognition systems (Pardo 2002). In this case, the system knows what
notes are coming and only needs to figure out when they are played. The com-
plexity of a musical signals means that this task can only be accomplished
with a very narrow, high-level constraint. 

4.3 Mixtures
In practice neither model, top-down or bottom-up, can explain the ability

of human listeners to analyze an auditory scene. Clearly low-level cues prime
the sound-analysis process—we generally do not hallucinate our entire world.
These low-level cues are important, but do not explain simple auditory effects
such as phonetic restoration.

Our brains have an amazing ability to hear what might or might not be
present in the sound. Consider a slowly rising tone that is interrupted by a
short burst of loud noise. As long as the noise burst is loud enough, we per-
ceive a continuous tone that extends through the noise burst, whether the tone
is actually present or not. Our brains hear a continuous tone as long as there is
evidence (i.e. enough auditory nerve spikes at the correct cochlear channels)
that is consistent with the original hypothesis (the tone is present). 

This simple demonstration calls into question the location of the halluci-
nated tone percept. A purely low-level bottom-up model suggests that some
portion of the brain has separated out a set of neural spikes that correspond to
the phantom tone. The auditory system sees the same set of spikes, with or
without the noise burst, and perceives a continuous tone. Instead it seems
more likely that somewhere a set of neurons is saying “I hear a tone” and
these neurons continue to fire, even when the evidence is weak or non-exis-
tent. In other words, object formation is guiding the object segmentation
process.

At this point it should be clear that a wealth of information that flows up
into the brain from the periphery, and a large body of the listener’s experience
and expectations affect how we understand sound. In the middle information
and expectations collide in a system that few have tackled. Grossberg’s work
(2003) is a notable exception.

The more interesting question, at least for somebody that spent a lot of
time developing auditory-inversion ideas, is whether the brain ever assembles
a high-fidelity neural coding that represents the pure auditory object. The pho-
netic restoration illusion only works when the noise signal is loud enough so
that the missing speech sound could be masked by noise. In other words, the
brain is willing to believe the entire word is present as long as it does not vio-
late the perceptual evidence. This is clearly expectation driven, top-down
processing. But does the brain represent this missing information as a com-
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plete representation of the auditory signal, or use a high-level token to
represent the final conclusion (I heard the word “legislature”)?

5 CONCLUSIONS

The purely bottom-up approach to auditory perception is clearly inconsis-
tent with the wealth of evidence suggesting that the neural topology involved
in sound understanding is more convoluted. One can build a system that sepa-
rates sounds based on their cochleagram or correlogram representations, but
this appears inconsistent with the functional connections. Instead, our brains
seem to abstract sounds, and solve the auditory scene analysis problem using
high-level representations of each sound object.

There has been work that addresses some of these problems, but it is solv-
ing an engineering problem (how do we separate sounds) instead of building a
model of human perception. One such solution is proposed by Barker and his
colleagues (2001) and combines a low-level perceptual model with a top-
down statistical language model. This is a promising direction for solving the
engineering problem (how do we improve speech recognition in the face of
noise) but nobody has evaluated the suitability of modeling of human-lan-
guage perception with a hidden-Markov model.

A bigger problem is understanding at which stage acoustic restoration is
performed. It seems unlikely that the brain reconstructs the full acoustic
waveform before performing sound recognition. Instead it seems more likely
that the sound understanding and sound separation occur in concert and the
brain only understands the concepts. Later, upon introspection the full word
can be imagined.

Much remains to be done to understand how humans perform sound sepa-
ration, and to understand where CASA researchers should go. But clearly
systems that combine low-level and high-level cues are important.
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