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ABSTRACT

In this paper we describe a method to automatically determine the
relative three dimensional positions of multiple microphones using
at least five loudspeakers in unknown positions. The only assump-
tion we make is that there is a microphone which is very close to a
loudspeaker. In our experimental setup we attach one microphone
to each loudspeaker. We derive the Maximum Likelihood esti-
mator and the solution turns out to be a non-linear least squares
problem. A closed form solution which can be used as a initial
guess for the minimization routine is derived. We also derive an
approximate expression for covariance of the estimator using im-
plicit function theorem. Using this we analyze the performance of
the estimator with respect to the positions of the loudspeakers. The
algorithm is validated using both Monte-Carlo simulations and a
real-time experimental setup.

1. INTRODUCTION

Microphone arrays are widely used for applications like sound
source localization and tracking, hands free voice communication
and speech enhancement. Most multi-microphone array process-
ing algorithms need to know the positions of the microphones very
precisely. In the case of source localization, even relatively small
uncertainties in sensor location could make substantial, often dom-
inant, contributions to overall localization error [1]. Most of the
current system implementations place the microphones in known
positions. However in ad-hoc deployed arrays it is rather tedious
and very often not accurate to get the microphone positions man-
ually using a tape or laser devices. Also the geometry of the ar-
ray may change over time frequently either accidently or due to
redeployment. So automatic position calibration of multiple mi-
crophones is very essential. In this paper we propose a method to
automatically determine the three dimensional positions of multi-
ple microphones.

Following are the novel contributions of this paper: Our for-
mulation for position calibration of microphones assumes that the
positions of loudspeakers are unknown. As a result we do not need
a precisely arranged setup of loudspeakers as in [2]. Previous work
on position calibration with unknown source locations [1, 3] derive
the solution as a non-linear minimization problem. However the
numerical optimization methods do not converge unless we have
a very close initial guess. We propose a closed form solution for
the microphone and loudspeaker coordinates. We derive the ap-
proximate mean and covariance of the implicitly defined estimator
using the implicit function theorem and Taylor series expansion.
We analyze the calibration accuracy as a function of the position
of the loudspeakers. In particular we show that the loudspeakers
should be placed as far away from each other and all the micro-
phones should be in the convex hull formed by the loudspeakers as
opposed to the setup in [2] where all the loudspeakers are close to
each other.

2. MAXIMUM LIKELIHOOD ESTIMATOR

Given a set of M microphones and S loudspeakers in unknown lo-
cations, our goal is to estimate their three dimensional coordinates.
Each of the loudspeaker is excited using a known calibration signal
such as maximum length sequence or chirp signal and the signal is
captured by each of the microphones. The Time of Flight (TOF)
is estimated from the captured audio signal. The TOF for a given
pair of microphone and speaker is defined as the time taken by the
acoustic signal to travel from the speaker to the microphone. Let
mi = [mxi myi mzi]

T and sj = [sxi syj szj ]
T be the three di-

mensional vectors representing the x, y and z coordinates of the ith

microphone and jth loudspeaker respectively. Let TOF estimated
ij

and TOF actual
ij be the estimated and the actual TOF respectively

for the ith microphone and jth speaker. The actual TOF can be
written as

TOF actual
ij =

‖ mi − sj ‖
c

(1)

where ‖‖ is the Euclidean norm and c is the speed of the sound
in the acoustical medium 1. Assuming a Gaussian noise model for
our observations we can derive the Maximum Likelihood (ML) es-
timator as follows. Let Θ, be a vector of length P ×1, representing
all the unknown non-random parameters to be estimated (micro-
phone and speaker coordinates). Let Γ, be a vector of length N×1,
representing noisy estimated TOF measurements. Let T (Θ), be a
vector of length N×1, representing the actual value of the TOF ob-
servations. Then our model for the observations is Γ = T (Θ) + η
where η is the zero-mean additive white Gaussian noise vector of
length N × 1 where each element has the variance σ2

j . Also let us
define Σ to be the N ×N covariance matrix of the noise vector η.
The likelihood function of Γ in vector form can be written as

p(Γ/Θ) = (2π)−
N
2 | Σ |− 1

2 exp−1

2
(Γ−T )T Σ−1(Γ−T ) (2)

The ML estimate Θ̂ML is that Θ which maximizes the likelihood
ratio and can be shown to be

Θ̂ML(Γ) = arg{max
Θ

F (Θ, Γ)}

F (Θ, Γ) = −1

2
[Γ − T (Θ)]T Σ−1[Γ − T (Θ)] (3)

Assuming that each of the TOFs are independently corrupted
by zero-mean additive white Gaussian noise 2 of variance σ2

ij the

1The speed of the sound depends on the room temperature and is given
by c = (331 + 0.6T )m/s, where T is the temperature in degree Celsius.
In practice we assume that c is known and constant. However we can also
estimate the speed of the sound along with the positions of the microphones
as in [2].

2We estimate the TOF using Generalized Cross Correlation (GCC)[4].
The estimated TOF is corrupted due to ambient noise and room reverber-
ation. For high SNR the delays estimated by the GCC can be shown to be
normally distributed with zero mean [4].

IV - 690-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



ML estimate can also be formulated as a nonlinear least squares
problem (in this case Σ is a diagonal matrix), i.e.

Θ̂ML = argΘ min

M∑
i=1

S∑
j=1

(TOF estimated
ij − TOF actual

ij )2

σ2
ij

(4)

Since the solution depends only on pairwise TOFs, any trans-
lation, rotation and reflection of the global minimum found will
also be a global minimum. In order to make the solution invariant
to rotation and translation we select three arbitrary nodes to lie in a
plane such that the first is at (0, 0, 0), the second at (x1, 0, 0), and
the third at (x2, y2, 0). To eliminate the ambiguity due to reflec-
tion along Z-axis we specify one more node to lie in the positive
Z-axis. Also the reflections along X-axis and Y-axis can be elim-
inated by assuming the nodes which we fix to lie on the positive
side of the respective axes i.e x1 > 0 and y2 > 0. The ML esti-
mate for the node coordinates of the microphones and loudspeak-
ers is implicitly defined as the minimum of the non-linear function
given in Equation 4. The Levenberg-Marquardt method is a pop-
ular method for solving non-linear least squares problems. One
main problem is that the minimization routine will not converge
to the global minima unless we have a very good initial guess. In
section 3 we derive a closed form solution which can be used as
a initial guess for the minimization routine. Also for least squares
the total number of observations should be greater than or equal
to the total number of parameters to be estimated. In our case
MS ≥ 3(M + S) − 6. If M = S = K then K ≥ 5.

3. CLOSED FORM SOLUTION

Given the pairwise Euclidean distances between N nodes their rel-
ative positions can be determined by means of metric or classical
Multidimensional Scaling (MDS) [5]. Given a set of N points in
three dimensional space, let X be a N × 3 matrix where each row
represents the 3D coordinates of each point. Then the N ×N ma-
trix B = XXT is called the dot product matrix. Starting with a
matrix B (possibly corrupted by noise), it is possible to factor it to
get the matrix of coordinates X . One method to factor B is to use
singular value decomposition (SVD) , i.e., B = UΣUT where Σ
is a N × N diagonal matrix of singular values. The diagonal ele-
ments are arranged as s1 ≥ s2 ≥ sr > sr+1 = ..... = sN = 0,
where r is the rank of the matrix B. The columns of U are the cor-
responding singular vectors. We can write X

′
= UΣ1/2. From

X
′

we can take the first three columns to get X . If the elements
of B are exact (i.e., they are not corrupted by noise), then all the
other columns are zero.

In practice, we can estimate the distance matrix D, where
the ijth element is the Euclidean distance between the ith and
the jth point. This distance matrix D must be converted into a
dot product matrix B before MDS can be applied. We need to
choose some point as the origin of our coordinate system in or-
der to form the dot product matrix. Let us say we choose the kth

node as the origin of our coordinate system. Let dij and bij be
the distance and dotproduct respectively, between the ith and the
jth node. Referring to Figure 1, using the cosine law we have
d2

ij = d2
ki + d2

kj − 2dkidkjcos(α). The dot product is given by
bij = dkidkjcos(α). Combining the above two equations we get
bij = 1

2
(d2

ki +d2
kj −d2

ij). Any point can be selected as the origin,
but if the distances have random errors then choosing the centroid
as the origin will minimize the errors as they tend to cancel each

k

i

j

ijd

kjd

kid

α

Fig. 1. Law of cosines

other. It can be shown that with respect to the centroid

b∗ij = −1

2

[
d2

ij − 1

N

N∑
l=1

d2
il − 1

N

N∑
m=1

d2
mj +

1

N2

N∑
o=1

N∑
p=1

d2
op

]

In our case of M microphones and S speakers we cannot use
MDS directly because we cannot measure all the pairwise dis-
tances. We only can measure the distance between each speaker
and all the microphones. However we cannot measure the distance
between two microphones or two speakers. In our practical setup
for every loudspeaker we use we have a microphone attached to it.
So we cluster microphones and speakers, which are close together
as one entity i.e. we assume that the distance between them is zero.
Based on this approximation, the distance dij between the ith and
jth microphone-loudspeaker pair is given by

dij ≈ 0 if i = j dij ≈ c (TOF ij + TOF ji)

2
if i �= j (5)

where c is the speed of the sound. Once we have all the pairwise
distances we use classical MDS to get the approximate positions
of the microphone-loudspeaker pairs. The position estimate from
MDS is with respect to the centroid and the orientation arbitrary
and hence it is converted into the reference coordinate system.
The approximate locations of the microphone-loudspeaker pairs
are slightly perturbed to get the initial guess for the microphone
and speaker locations. We use this as an initial guess for the non-
linear minimization routine and get the exact locations of the mi-
crophones and loudspeakers in each microphone-loudspeaker pair.
As discussed before for the ML estimation procedure we need a
minimum of five microphone-loudspeaker pairs.

From the previous step we know the location of five loud-
speakers and the microphone close to them. If the location of
four speakers are known then by trilateration the microphones po-
sition can be determined analytically. If the distance to more than
four loudspeakers are known then we solve the problem in a least
square sense. As before let us say we have S loudspeakers. Let
sj = [sxj syj szj ]

T be the x, y and z coordinates of the jth

speaker. Let mi = [mxi myi mzi]
T be the unknown microphone

coordinates which we have to determine. For the ith microphone
we have S TOF measurements i.e. c2TOF 2

ij =‖ mi − sj ‖2 j =
1 . . . S. In order to write a closed form solution for mi we take the
difference of every pairwise equations i.e.

‖ mi − sj ‖2 − ‖ mi − sk ‖2= c2TOF 2
ij − c2TOF 2

ik (6)

This can be simplified to,

(sk − sj)
T mi = bi

jk (7)
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Fig. 2. Result of the proposed algorithm in two dimensions con-
sisting of 10 microphones and 3 microphone-loudspeaker pairs.

where bi
jk = [c2TOF 2

ij − c2TOF 2
ik− ‖ sj ‖2 + ‖ sk ‖2]/2.

Each pair of speakers gives rise to one equation in 3 unknowns. If
we have S speakers then we will have S(S − 1)/2 equations. So
we need 3 pairs i.e a minimum of 4 speakers to determine the po-
sition of one microphone. For S speakers we define the following
matrix A and the vector bi

A =

⎡
⎢⎣

(s1 − s2)
T

...
(sS−1 − sS)T

⎤
⎥⎦ b =

⎡
⎢⎣

bi
21

...
bi
S(S−1)

⎤
⎥⎦ Ami = bi (8)

The least square solution can be written as mi = (AT A)−1AT bi

The closed form solution for the microphone coordinates is further
refined by doing a final ML estimation of all the parameters i.e. the
microphones and the speaker positions.

Figure 2 shows an example in two dimensions with 10 micro-
phones and 3 microphone-loudspeaker pairs. First using MDS we
get the approximate locations of the three microphone-loudspeaker
pairs which is shown as filled square in the figure. This approx-
imate position is refined using ML estimation procedure to get
the actual location of the microphone and the loudspeaker in the
microphone-loudspeaker pair. Using the location of the loudspeak-
ers we get a closed form solution for the microphone locations
which are shown as squares. In the final ML estimation we refine
the closed form solution to get the exact location of the micro-
phones(shown as circles).

4. ESTIMATOR VARIANCE

The ML estimate for the microphone and speaker positions is de-
fined implicitly as the minimum of a certain error function (refer
Equation 4). Hence it is not possible to get exact analytical ex-
pressions for the mean and the variance of the estimator. However
by using the implicit function theorem and the Taylor’s series ex-
pansion it is possible to derive approximate expressions for the
mean vector and covariance matrix of implicitly defined estima-
tors [6, 7]. We give a brief outline of the derivation. The ML
estimate Θ̂ of Θ is the one which maximizes the likelihood ra-
tio. In our case the ML estimator is implicitly defined by Equa-
tion 3. The maximum can be found by setting the first deriva-
tive to zero i.e. ∇ΘF (Θ, Γ) |Θ=Θ̂= 0. The implicit function
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Fig. 3. 95% uncertainty ellipses for a regular 2 dimensional array
of 25 microphones and 4 loudspeakers. Noise variance for all cases
is σ2 = 10−9. The microphones are represented as dots (.) and the
loudspeakers as (×). The position of one loudspeaker and the x
coordinate of another is assumed to be known. In (a) loudspeakers
are close to each other and in (b) they are spread out one at each
corner of the grid.

theorem guarantees that this equation implicitly defines a vector
valued function Θ̂ = h(Γ) = [h1(Γ), h1(Γ), ..., hP (Γ)]T that
maps the observation vector Γ to the parameter vector Θ̂. Hence
∇ΘF (h(Γ), Γ) = 0. However it is not possible to find an analyt-
ical expression for h(Γ). But we can approximate the covariance
using the first-order Taylor series expansion for h(Γ). Let Γm be
the mean of Γ. Then expanding h(Γ) around Γm we get

h(Γ) ≈ h(Γm) + [∇Γh(Γ)T |Γ=Γm ]T (Γ − Γm) (9)

Using this expression we get

Cov[h(Γ)] = [∇Γh(Γ)T |Γ=Γm ]T Cov(Γ)[∇Γh(Γ)T |Γ=Γm ]
(10)

Note we do not know h(Γ). Differentiating ∇ΘF (h(Γ), Γ) = 0
with respect to Γ and evaluating it at Γm yields

∇Θ∇ΘF (h(Γm), Γm)[∇Γh(Γm)T ]T +∇Θ∇ΓF (h(Γm), Γm) = 0
(11)

Substituting for the derivatives we get Cov[Θ̂] ≈ [JT Σ−1J ]−1

where J is a N × P matrix of partial derivatives of T (Θ) called
the Jacobian of T (Θ) where each element is [J ]ij = ∂Ti(Θ)

∂Θj
. If

we assume that all the microphone and source locations are un-
known, F is rank deficient and hence not invertible. This is be-
cause the solution to the ML estimation problem as formulated is
not invariant to rotation and translation. In order to make F invert-
ible we remove the rows and columns corresponding to the known
parameters. In our formulation we assumed that we know the po-
sitions of a certain number of nodes, i.e we fix three of the nodes
to lie in the x-y plane. The covariance matrix depends on which of
the sensor nodes are assumed to have known positions. Figure 3
shows the 95% uncertainty ellipses for a regular two dimensional
array containing 25 microphones and 4 loudspeakers for different
positions of the loudspeakers.In Figure 3(a) all the four loudspeak-
ers are at one corner of the grid. The uncertainty in the direction
tangential to the line joining the microphone and the center of the
known nodes is much larger than along the line. It is beneficial if
the known nodes are on the edges of the network and as far away
from each other as possible. In Figure 3(b) the known loudspeak-
ers are on the edges of the network. As can be seen there is a
substantial reduction in the dimensions of the uncertainty ellipses.
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Fig. 4. (a) The total variance and (b) total bias of all the mi-
crophone coordinates for increasing noise standard deviation σ.
The network consisted of 20 microphones and 5 microphone-
loudspeaker speakers. The theoretical variance is also shown.
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Fig. 5. (a) The actual chirp signal used in our setup and (b) the
chirp signal received by a microphone.

In order to validate the experimental performance with the the-
oretical variance derived, we performed a series of Monte Carlo
simulations with 20 microphones which were randomly selected to
lie in a room of dimensions 4.0m×4.0m×4.0m. Five microphone-
loudspeaker pairs we placed such that all the 20 microphones were
within the convex hull formed by the five pairs. Figure 4(a) and
Figure 4(b) show the total variance (sum of all the estimated vari-
ances of each parameter) and the total bias (sum of all the estimate
biases for each parameter) of all the unknown microphone coordi-
nates plotted against the noise standard deviation σ. The theoret-
ical variance is also shown. From Figure 4(b) we can see that the
simulated results closely track the theoretical variance.

5. EXPERIMENTAL SETUP AND RESULTS

In order to measure the TOF we used a cosine chirp signal of 512
samples at 39.0625 kHz as our calibration signal. The instanta-
neous frequency varied linearly from 5 kHz to 10 kHz. Figure
5(a) shows the chirp signal as sent out by a speaker. Figure 5(b)
shows the chirp signal recorded by a microphone. The distortion
and the spreadout is due to the speaker, microphone and room
response. In order to measure the time delay we used the Gen-
eralized Cross Correlation (GCC) method [4] with Phase Trans-
form(PHAT) weighting. We have set up a 32 element microphone
array as shown in Figure 6(a). In order to calibrate this array we
placed the tiny speaker at five different positions on the array such
that the speaker was very close to a microphone. The first four
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Fig. 6. (a)The 32 element microphone array and (b) the results
obtained from our algorithm.
speakers define our coordinate system and all the positions are
with respect to this coordinate system. Figure 6(b) shows the re-
sults obtained by our algorithm for this microphone array. The ’*’
indicates the positions of the speakers and the circles indicate the
microphone positions.

6. CONCLUSIONS

An algorithm for automatic position calibration of multiple micro-
phones is presented. Our method does not require the position of
the loudspeakers to be known. The only constraint we impose is
that we attach a microphone to a loudspeaker. We derived a closed
form solution which was further refined by nonlinear minimiza-
tion. We also derived the variance of our estimator and extensively
validated the algorithms on simulated and real data.
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