
IEEE  TRANSACTIONS ON ACOUSTICS,  SPEECH, AND SIGNAL  PROCESSING, VOL. ASSP-24, NO. 3, JUNE 1916 243 

signals with  low  frequencies. The characteristics will  be modi- 
fied due to  the changing  performance  of  delta  modulation. 
However, for this application,  the  performance  of delta modu- [ I ]  
lation is relatively insensitive as long as the  quantized  noise is 
approximately  independent on a measured signal.  Especially 
for signals with  very  low-frequency  components,  the  method [21 

of  omitting  the integrator will  be  available. [31 
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Implementation of the Digital Phase  Vocoder Using 
the Fast Fourier Transform 

Abstract-This  paper discusses a digital  formulation  of the phase  vo- 
coder,  an analysis-synthesis system providing a parametric  representa- 
tion  of a speech waveform by  its  short-time  Fourier  transform. Such a 
system is  of  interest both  for data-rate  reduction  and for manipulating 
basic speech  parameters. The system is designed to be an identity sys- 
tem in the absence  of  any  parameter  modifications.  Computational 
efficiency  is achieved by  employing the fast  Fourier  transform (FFT) 
algorithm to perform the bulk of the  computation in both  the analysis 
and  synthesis  procedures,  thereby making the formulation  attractive for 
implementation on a minicomputer. 

T 
I. INTRODUCTION 

HE REPRESENTATION of  a  speech signal by its short- 
time  Fourier  transform is of  interest  both as a  means  for 
data-rate  reduction in communications and  as a  tech- 

nique for manipulating  the basic speech  parameters.  Systems 
based on  this  representation are often referred to as phase 
vocoders since the  parameters  obtained have traditionally been 
the  magnitude  and phase (or phase-derivative) of the  short- 
time  Fourier  transform [ 11 . 

One difficulty in implementing  such  systems in digital form 
has  been  the  rapid increase in the  amount  of  computation 
required as the  number  of  frequency  bands is made large. 
Schafer  and  Rabiner [2 ]  have shown  how to greatly reduce 
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the  amount  of  computation  required  for  the analysis proce- 
dure  by formulating the system  such that  most  of  the com- 
putation is performed by the fast Fourier  transform (FFT) 
algorithm. However, the  computation  required  for  the direct 
implementation  of  the synthesis procedure is at least as great 
as that required for the direct analysis, and it has, therefore, 
remained  a  problem. 
‘In this paper, we present an analysis-synthesis system based 

on  the discrete short-time  Fourier  transform.  This  system will 
be shown to be,  mathematically, an identity  system if no 
parameter  modifications are introduced.  The analysis proce- 
dure is a  refinement  of that proposed  by  Schafer  and  Rabiner 
in which  the  complex  multiplies used to demodulate  the 
channel signals  are now  eliminated.  The  synthesis  procedure is 
new and is significantly more efficient than  the direct proce- 
dure [ 2 ]  . The  computational savings  is effected  by  reducing 
the  number  of  interpolations  required  for  each output value 
from N (where N is the  number  of  frequency  bands in the 
representation) to 1 and  by  performing  the  remaining  compu- 
tations using the FFT algorithm (a  savings of  approximately 
log, N versus N operations  per  output value). 

11. FORMULATION 
Let x(n)  represent samples of  a  speech  waveform.  The dis- 

crete short-time  Fourier  transform  of x(n)  is defined  by 
00 

X&) = x(r)h(n - r )  w;;yk (1) 
y =  -03 

Institute of Technology, Cambridge, MA 02139. for k = 0, 1, . . * , N  - 1, where W, = exp [ j ( 2 a / N ) ]  and h(n) 
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is  an appropriately  chosen  window. x&) may  be  interpreted 
as N samples of  a  time-varying  spectrum  with k the  index 
associated  with  frequency  and n the  index  associated  with 
time. According to (I), x&) is obtained  at  each  time  sample 
n by weighting the  sequence x(r) by the window h(n - v )  and 
Fourier  transforming  the resulting sequence.  In  the  next sec- 
tion  it will  be shown  how to obtain x&) at  a particular n by 
computing  a single discrete Fourier  transform  (DFT)  of  a 
finite-duration  sequence  of  length N .  

By properly  choosing k(n), it can be  guaranteed that  the 
original sequence x(n) is exactly recoverable from  its  short- 
time  transform  defined by (1). Furthermore,  x(n) is  given in 
this case by 

Fig. 1. Digital fiiter-bank analog for discrete  short-time Fourier analysis. 

Fig. 2. Representation of the  kth fiiter-bank channel in terms of the 
prototype low-pass fiiter k ( n ) .  

Although  the necessary and sufficient conditions  for  x(n) to 
be given by (2)~ can be derived directly from ( l ) ,  it is informa- invariant and  thus  completely  characterized  by  its  unit-sample 
tive to interpret ( 1 )  and (2) in terms  of  a  bank of digital band-  response.  Let &(n) represent  the overall unit-sample response 
pass  filters with  contiguous  passbands. Consider a set of N relating the  output y(n) of  the filter bank to the  input x(n). 
complex  bandpass filters {hk(n)} with passbands equally  Then 
spaced about  the  unit circle and  with  unit-sample responses 

1 &(n) = 2 hk(n) 
hk(n)=fh(n)WGk, k = 0 , 1 ; * * , N - 1 ,  (3) k=O 

where h(n) is a  prototype low-pass filter with real unit-sample 
response. If these filters are combined to form the  structure k=O 

shown in Fig. 1, then  the  output of  the kth filter,  denoted  by 
yk(n), is  given by  the  convolution = h(n) - WEk 

N-1 1 
= j p ( n )  WGk 

1 N-1 [. k=O 1 
yk(n) = x(r)kk(n - Y) 

01 

y =  -m  = h(n) [; SN] 
= 5 x(v) [; h(n - r )  Wit: -M I = N n )  w n ) ) N 2  

y=  -m 

where 6 ( ( n ) ) ~  = 1 for all n 0 mod N and is zero  otherwise. 

totype low-pass filter sampled every N samples, specifically 
1 m Thus, &) is simply  the  unit-sample  response h(n) of  the  pro- 

= - wgk x(r)h(n - r )  w j p  
N y = - m  

where  Xk(n) is just  the discrete short-time  Fourier  transform Now if Y(n) is to be to x(n), then '(') must 
of x(n) given by (l). F~~~ and (4) a single channel ofthe itself be aunit sample.  Therefore,  necessary  and sufficient con- 
filter bank is  seen to be  equivalent to the  structure  shown in ditions fory(n) =x(n) for ' as 

Fig. 2. 1 )  h(0) = 1 .  

N channelsyk(n), i.e., 'This result also follows directly from (1) by multiplying (1) by 
The output of the filter bank y(n)  is given by  the  sum  of  the 

(1/N) WGk and summing  over k for 0 < k < N - 1 to obtain 
N-1 

k=O - x k ( n )  wGk =j'f X(r)h(n -I) WN wN 
-dn)  = yk(n) 1 N-1 1 N-1 - -rk nk 

k=o k=O y =  -to 

It is, therefore, clear that if x(n) is to be  recovered from xk(n) 
by  means  of (2), then h(n) must be chosen in such  a  manner 
that  the  output y(n) is identical to the  input x@). 

The filter-bank system  depicted in Fig. 1 is linear and shift 

= x(n +qN)h(-qN) 
m 

*=-w 

= x ( n )  iff (5). 
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2 )  h(n) = 0 for IZ = + N ,  * 2 N ,  + 3 N ,  * * * . (5) for every Rth value of n ,  where  R dN. The  sequences Xk(n)  

These conditions are equivalent to the  statement in the fre- 
quency  domain that although  each hk(n) is not necessarily  an 
ideal bandpass  filter,  the sum  of their N frequency  responses is 
unity  for all frequencies. Observe that  the  conditions (5) are 
precisely those  constraints on the  unit-sample response  of a 
digital interpolating filter [ 3 ]  . Moreover,  if these conditions 
are not satisfied, then &) will no  longer be a  unit  sample,  but 
a  weighted  sequence  of  unit samples with spacing N ;  hence 
y(n)  will not be identical to x(n) and  the resulting distortion 
will be perceived as reverberation in the  output signal. 

The  most  straightforward  approach to designing the  proto- 
type low-pass filter h(n) is by  windowing [4] . Specifically, 
the  unit-sample response 

sin (nn/N) 
hideadn) = nn/N 

of an ideal low-pass filter with  cutoff  frequencies fiC = k(n/N) 
is multiplied  by a smooth,  finite-duration  window (e.g., Ham- 
ming [5] , Kaiser [6] , Dolph-Chebyshev [7] ) to obtain h(n). 
The precise specifications of h(n) are determined  by the length 
and  shape of the  window;  any h(n) designed  in this manner 
will satisfy conditions (5). 

Alternatively, one  might  employ  one  of  the  recently  pro- 
posed techniques for designing optimum  (minimax)  equiripple 
finite impulse  response (FIR)  interpolating filters [ 3 ] ,  [8]. 
However, for a large number  of  frequency  samples,  the  long 
length  required  for h(n) tends to make  these filters prohibi- 
.tively  expensive to design. Furthermore,  the  additional  amount 
of  computation  incurred  by using a  suboptimum h(n) designed 
by windowing  is probably small compared  with  the  total 
amount  of  computation in the overall system. 

The  short-time  Fourier  transform provides a parametric 
representation  of the sequence x(n) in terms  of  the  parameters 
X,&). If X&) is computed for k = 0, 1, . . - , N - 1 and for 
all n ,  then N complex  parameters are required  for  each sample 
of x(n) .  If x(n)  is real, then this represents an  increase in com- 
plexity by a factor of 2N. There  are,  however,  properties  of 
the discrete short-time  Fourier  transform  that can  be exploited 
to reduce  the  number  of  parameters  required to represent x(n) 
to an  average of  approximately  one  per  sample ofx (n) .  First, 
if Xk(n )  is  viewed for  a particular value of n as N equally 
spaced samples of  a  Fourier  transform, then, since x(n) is  as- 
sumed to b.e real, X&) is conjugate  symmetric in k ;  that is, 

= X&V-k))&G 

where ( ( n ) ) ~  denotes  the least residue of n modulo N .  Thus, 
if N is even, X&) is completely specified by  the values of 
Xk(n) for k = 0 ,  1, * . ,N/2,  and  only N real parameters are 
required (n.b., X&) is  real for k = O  and k = N / 2 ) .  The 
second  property of X,&) that allows a  further  reduction in 
the number  of  parameters  required to represent x(n)  is ap- 
parent when X,&) is  viewed for  a particular value of k as a 
sequence in n.  From Fig. 2 it can  be  seen that because it is the 
output of  a low-pass filter with  unit-sample response h(n), 
each  such  sequence is approximately  band-limited to the fre- 
quency range -n/N < i2 <n/N. Thus,  it follows  from  the 
sampling  theorem that  it is only necessary to compute X&) 

can then be reconstructed  by  interpolation as part  of  the  syn- 
thesis procedure. 

If the  sampling  period  R is chosen  equal to N ,  which  corre- 
sponds to  the lowest  sampling rate allowed by  the  sampling 
theorem,  then  the  total  number  of real parameters in the  short- 
time  Fourier  representation  of x(n) is exactly  equal to  the 
duration  (total  number  of samples) of Although it is 
theoretically possible to reconstruct  the  sequences X&) if 
they are sampled every R = N  samples, in practice it is  neces- 
sary to sample at  a somewhat higher rate, because neither  the 
low-pass filter nor  the  interpolator can be  implemented ideally. 

A  procedure that is particularly well suited to designing 
interpolating filters for reconstructing the channel  sequences is 
the algorithm  proposed  by  Oetken et al. [ 9 ]  for designing 
optimal  FIR digital interpolating filters. This procedure is 
attractive because it is a simple and efficient procedure  for 
designing filters of very  high order. Furthermore,  the design 
algorithm  exploits  the  fact that  the  data  to be interpolated  can 
be  oversampled to improve  the  performance  of the  fdter. 

111. IMPLEMENTATION OF THE ANALYSIS SYSTEM 
USING THE FFT  ALGORITHM 

If the  number  of  frequency  bands N is chosen to be  a  highly 
composite  number (usually  an integral power of 2) then  the 
FFT algorithm can  be employed to compute efficiently the 
short-time  Fourier  transform X&) defined  by (1). Observe 
that (1) does not have the form  of  a  DFT  and,  therefore,  can- 
not  be  computed directly with  the  FFT  algorithm.  The 
limits on  the  summation are  given  as infinite,  but in practice 
are finite ind determined  by  the  length  of h(n). By recogniz- 
ing X&) as samples,  equally  spaced in frequency,  of  the 
(continuous-valued)  Fourier  transform  of x(r)h(r - n) ,  X&) 
can be  expressed as the  DFT  of anN-point sequence  obtained 
by  time-domain aliasing of x(r)h(n - r ) .  

Substituting s = r - n into (1) gives 

X,(n) = x(n s )h( -s )  w,-(n+s)k 
m 

-m 

or 

2When this representation is used as a  vocoder, data-rate reduction is 
achieved by quantizing the parameters x k ( n )  [2] .  
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X,(n) = W j p  Zm(n) W j i F ,  
N-1 

(6) 
m = o  

where 

m 

Z,(n)= x (n++N+m)h( - IN-m) .  (7) 
I= - E4 

The expression 

N-1 
Zk(n> = Zm(n)WGmk 

m= o 

is recognized as the  DFT  of  the  N-point (in m)  sequence ?m (n) 
for fixed n and  can,  therefore, be computed  directly with  the 
FFT algorithm once Zm (n)  has been  formed. 

In  addition to  the computational savings  gained by  comput- 
ing the short-time  Fourier  transform using the  FFT,  further 
savings may be gained by avoiding the complex  multiplications 
by WGnk in (6).  Observing that x&) is  given by 

x k ( n )  = WN 
-nk - 

where T k ( n )  is the  DFT of x“,(n), we can exploit the  property 
of the DFT that a circular shift in one  domain  corresponds to 
multiplication  by a complex  exponential  in the  other  domain. 
Thus,  by circularly shifting?,(n) prior to computing its  DFT, 
the multiplications  by W i n k  are avoided. Specifically, (6) can 
be rewritten as 

N-1 - 
x,t(n> = c x((m -n))NGz> wsmk 

m=o 

or 

N-1 
xk(n)  = xm(n) Wim” (8) 

m=o 

where 

x m  (n) = ?((m -n))N(n).  

Based on  the preceding analysis, the procedure  for  comput- 
ing the discrete short-time  Fourier  transform  coefficients 
x&) at a particular value of n is the following. Referring to 
Fig. 3 ,  the  input  data sequence considered as a function  of  the 
dummy  index r is multiplied  by the window h(n - r )  (in prac- 
tice h(n) is often zero  phase,  in  which case h(n - r )  = h(r - n)). 
It is  assumed that h(n) is of  finite  duration and,  in  fact, chosen 
to have length  equal to an even multiple  of N ,  plus one.  The 
resulting weighted sequence is partitioned into sections  each  of 
length N such that ~ ( r ) l , = ~  is the  zeroth sample of  one  of  the 
sections.  The resulting N-point subsequences denoted  by 
x$@) for 0 < m < N  - 1 are then  added  together to form 

x“,(n) = c x g ( n ) ,  m = 0 ,1 , .  . . , N -  1. 
1 

;i,(n) is circularly shifted (in m) by n samples to obtain 

xm(n? =Z((m-n))N(nj ,  

and  its DFT is computed  by means of the  FFT algorithm to 
give the desired X,&), i.e., 

>--n 
I nf’ 

r 

(b) 

Fig. 3. (a)  Typical unit-sample response for prototype low-pass filter 
h(n).  (b) h(n) shifted and  superimposed on input sequence x(Y). 

N-1 
X&) = xm(n)  W i m k  k = 0 , 1 ,  . . * , N  - 1. 

m = o  

IV. IMPLEMENTATION OF THE SYNTHESIS SYSTEM 
USING THE FFT ALGORITHM 

It has been shown that  for  any h(n) satisfying conditions (5) 
the sequence x(n) can be recovered from its discrete short- 
time  Faurier  transform by the  relation 

k=O 

According to Fig. 2,. this operation  may be interpreted as 
modulating  each  of  the N signals X&) to the center fre- 
quencies ak = 21rk/N and summing the resulting signals. It 
was  argued in Section I1 that  it is only necessary to compute 
X&) for every Rth value  of n where R < N .  Hence, the 
parameters to the synthesizer will be assumed to be  the samples 
X&?) and  not X,&). 

Clearly, each of the N signals Xk(rR) could be  interpolated 
to get xk(n) ,  which could then be used in (2) to compute x(n)  
directly [2]. Unfortunately, since x&) depends on n,  (2) 
does not have the form  of  an (inverse) DFT and is computa- 
tionally  intractable  for large  values of N .  

A synthesis  procedure will now be  formulated  which,  for a 
highly composite  number N ,  permits x(n) to be computed 
from  the samples xk(rk?) using the  FFT algorithm. In  addi- 
tion to the  computational savings afforded  by employing the 
FFT,  the number  of  computations required to perform the 
1 : R interpolation is reduced by  the  factor N .  

Let  the  input  parameters to the synthesizer be denoted  by 
Sk(r),  where 

Sk(r)=Xk(rR)  f o r a l l r a n d k = O , l ; . - , N - l .  

b t  f ( n )  represent the unit-sample response of a 1: R FIR 
interpolating filter with  length 2QR + 1. The  interpolated 
signals x&) are,  therefore, given by 
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where the limits on the sum,  determined  by  the  length of f (n) ,  
are 

L+(n) = + Q 

and  where [A41 means  “the largest integer contained in M.” 
Substituting x&) given by (9) into  the synthesis  equation ( 2 )  
gives 

Since the limits on  both sums are finite,  the  order  ofsumma- 
tion can be interchanged to give 

01 

where 

Thus,  for  fixed values of Y, s&) is the inverse DFT  of sk(r) 
and  can,  therefore, be computed  by  the  FFT  algorithm.  It is 
important  to observe that s,(Y) is periodic in n with  period N .  
Since  the FFT only  computes values of sn(r) for one  period 
(n = 0, 1, * . . , N - l), it is necessary to  interpret  the  sub- 
script h in (1 1) as reduced  modulo N .  

The synthesis  procedure  implied  by (I  0) and (1 1) can be  in- 
terpreted as follows. Consider  the  two-dimensional “net” 
shown in Fig. 4. The points  on  the  net  represent  the discrete 
set of  points  on  which x&) is defined. Thk horizontal direc- 
tion  represents  time  and  the vertical frequency.  The  points 
corresponding to  the values of X&) available to  the  synthe- 
sizer, i.e., every Rth column, are indicated  by  shading. Invert- 
ing (8) gives x,@)  as the inverse DFT  of x&) for  each n ,  i.e., 

Furthermore, x ,  (pi) is defined on  the  net shown in Fig. 5. Be- 
cause Sk(r)=Xk(rR) ,  it follows that s,(Y) =x,(rR) and, 
therefore, s,(Y) is defined on  the  shaded  points in Fig. 5.  By 
comparing (12) with (2), it can  be  seen that  the values of x(n) 
are  given by  the values of x,(n)l, E n  modN, which  correspond 
to  the points in, Fig. 5 on  the “helical” path rn n mod N .  
The  operation  defined  by (IO) is, therefore,  interpreted as 
interpolating s,(r) to obtain  the  unknown values of x,(n), 
but  only  those values of x ,  (n) on the  path m E n  mod N that 
are the values of x(n) .  

The  implementation  of  the  synthesis  procedure is, therefore, 

. 0 0 0 0 0 . 0 0 0 0 0 . 0 0  

. 0 0 0 0 0 . 0 0 0 0 0 . 0 0  

. 0 0 0 0 0 . 0 0 0 0 0 . 0 0  

3 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0  

2 C o o o o o ~ o o o o o ~ o o  

0 n 
0 I (b-I)R ‘0 R (r,+l)R 

Fig. 4. Net on which x&) is defined.  Shaded  points represent  values 
associated  with Sk(r) = xk(rR).  

I 

0 n 

0 I ( ro- l lR ‘OR (rO+l lR 

Fig. 5 .  Net on which  x,(n) is defined. Shaded points represent values 
associated  with s,(r) = x,(rR).  Values along  path m = n mod N are 
x(n) =x&). 

. . . . . . . .  . . . . . . .  . . . . . . . . . . . . . .  : I  ,’ I 

’* I !  .*o , I  *, I ,  
I .  

4. . .: . . . .  p . .  .t .... p . .  .: . . . . .  ; I  ; . . . . .  
‘ t : ’  

, . O f  (c) 
. . . . . . . . . . .  .. .. 3 .I. d . .  . J .  .6. I . .  ..’ 

. .  
. . .  

0 

( r o - l ) R  roR (r ,+l )R  ( ro+2)R 

Fig. 6 .  (a)  Typical  unit-sample  response  for 1:R FIR digital  interpolat- 
ing filter. (b) Mask to extract values  required for  interpolation using 
f (n ) .  (c)  Net  associated  with  x,(n). 0 indicates  points representing 
s,(r) =x,(rR). 0 indicates  points  representingx(n) =x&). 

as follows. First,  the values of s,(Y) are obtained  by inverse 
transforming Sk(r) using the  FFT (1 1). The values of x(n)  are 
then  obtained  by  interpolating s,(r) according to (10). Notice 
that  for each value of x(n),  2Q values of s,(Y) are required. 
In  fact,  for R consecutive values of x ( n ) , ~  these values  are ob- 
tained  from  the same 2Q columns.  Thus, it is natural to com- 
pute x(n) in records  of  length R. For  each output value, 
imagine a mask that  extracts 2Q values of s,(Y), as shown in 
Fig. 6. These  values are then  processed  according to (10) to 
compute x(n).  Successive output values  are obtained  by  shift- 
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ing the mask one sample at  a time along the path p11 n mod N 
and repeating the process. 

V. CONCLUSIONS 
We have  discussed a new implementation of the digital phase 

vocoder,  a system that provides a parametric  representation of 
a sequence in terms of its discrete short-time  Fourier  trans- 
form. If no parameter modifications are introduced,  the sys- 
tem has been shown to  be, mathematically, an identity  system. 
The bulk of the  computation in both  the analysis a d  synthesis 
procedures is performed by the  FFT, thereby making the 
system attractive  for  implementation on a  minicomputer (espe- 
cially if a high-speed FFT processor is  available). 

The system described has been implemented on a PDP-9 
computer using block floating-point  arithmetic. The system is 
being used to modify certain paramefers of speech signals and 
currently allows as many as 512 frequency channels. When 
operated as an identity system, the synthesized output differs 
in no perceptual or measurable way from the  input speech. 
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Limit Cycles in the  Combinatorial  1mplem.entation of 
Digital  Filters 

TRAN-THONG, MEMBER, IEEE, AND BEDE LIU, FELLOW, IEEE 

Abstmct-The existence of limit cycles in  combinatorial filters using 
two’s complement  truncation  arithmetic is investigated in  this paper. 
Exact results for limit cycles of period one  and  two  are presented. 
Some  results  for longer period limit cycles are  obtained using an effec- 
tive value  linear  model. Bounds on these limit cycles are also derived. 
The accessability of the limit cycles  is briefly discussed. 

C 
I. INTRODUCTION 

OMBINATORIAL FILTERS  appeared recently in the 
literature [ l ] ,  [2] as an alternative method for  imple- 
menting digital filters. These filters do  not employ 

hardware multipliers. Instead, the  computation is carried out 
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with read only  memory (ROM) and an accumulator. Conse- 
quently,  they offer considerable saving in hardware and power 
consumption with the potential for increased operating speed. 

This paper is concerned with the stability of combinatorial 
filters under zero input condition. The problem is different 
from most of the past work on limit cycles [ 3 ] - [ 5 ]  in that  the 
combinatorial filter can be modeled as a digital filter with only 
one quantizer in each section instead of the usual one quan- 
tizer with each multiplier. The stability of an idealized filter 
structure with one quantizer using either sign-magnitude 
truncation or rounding  arithmetic  has been reported  recently 
[ 6 ] ,  [ 7 ] ,  and the results are applicable to combinatorial filters 
using these two  types of arithmetic. However, as a result of 
the elimination of multipliers in these filters, an implementa- 
tion  with two’s complement is easier [l ] , [2]. In two’s com- 
plement arithmetic the variance of the roundoff noise in 
rounding and in truncation are the same. However,  in the 
latter case, there is a dc offset which is  easily computed and 
can be removed in the final conversion to an analog signal. 


