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Abstract—This paper proposes a method for recovering the sec-
tional form of a musical piece from an acoustic signal. The descrip-
tion of form consists of a segmentation of the piece into musical
parts, grouping of the segments representing the same part, and as-
signing musically meaningful labels, such as “chorus” or “verse,”
to the groups. The method uses a fitness function for the descrip-
tions to select the one with the highest match with the acoustic
properties of the input piece. Different aspects of the input signal
are described with three acoustic features: mel-frequency cepstral
coefficients, chroma, and rhythmogram. The features are used to
estimate the probability that two segments in the description are
repeats of each other, and the probabilities are used to determine
the total fitness of the description. Creating the candidate descrip-
tions is a combinatorial problem and a novel greedy algorithm con-
structing descriptions gradually is proposed to solve it. The group
labeling utilizes a musicological model consisting of N-grams. The
proposed method is evaluated on three data sets of musical pieces
with manually annotated ground truth. The evaluations show that
the proposed method is able to recover the structural description
more accurately than the state-of-the-art reference method.

Index Terms—Acoustic signal analysis, algorithms, modeling,
music, search methods.

I. INTRODUCTION

H UMAN perception of music relies on the organization
of individual sounds into more complex entities. These

constructs occur at several time scales from individual notes
forming melodic phrases to relatively long sections, often re-
peated with slight variations to strengthen the perception of mu-
sical organization. This paper describes a method for the au-
tomatic analysis of the musical structure from audio input, re-
stricting the time scale to musical sections (or, parts), such as
intro, verse, and chorus.

Information of the structure of a musical piece enables sev-
eral novel applications, e.g., easier navigation within a piece in
music players [1], piece restructuring (or mash-up of several
pieces) [2], academic research of forms used in different mu-
sical styles, audio coding [3], searching for different versions of
the same song [4], [5], or selecting a representative clip of the
piece (i.e., music thumbnailing) [6]. A music structure analysis
system provides relatively high-level information about the an-
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alyzed signal, on a level that is easily understood by an average
music listener.

A. Background

Several systems have been proposed for music structure anal-
ysis, ranging from attempts to find some repeating part to be
used as a thumbnail, to systems producing a structural descrip-
tion covering the entire piece. The employed methods vary also.
In the following, a brief overview of some of the earlier methods
is provided.

To reduce the amount of data and to focus on the desired prop-
erties of the signal, features are extracted from it. The feature ex-
traction is done in fixed-length frames or in frames synchronized
to the musical beat. The main motivation for using beat-synchro-
nized frames is that they provide a tempo-invariant time base for
the rest of the analysis.

The employed features are often designed to mimic some as-
pects that have been found to be important for a human listener
analyzing the musical structure, including changes in timbre or
rhythm, indicating change of musical parts, and repetitions, es-
pecially melodic ones, as suggested in [7]. In the following, the
feature vector in frame , is denoted by , and

is the number of frames in the signal.
A useful mid-level representation employed in many struc-

ture analysis methods is a self-distance (or self-simi-
larity) matrix . The element of the matrix denotes the
distance (or similarity) of the frames and . The self-distance
matrix (SDM) is a generalization of the recurrence plot [8] in
which the element values are binary (similar or different). In
music structure analysis, the use of SDM was first proposed in
[9] where it was used for music visualization. The patterns in the
SDM are not only useful for visualization but also important in
many analysis methods.

In [10], structure analysis methods are categorized into state
and sequence-based systems. State-based methods consider the
piece as a succession of states, while sequence-based methods
assume that the piece contains repeated sequences of musical
events. Fig. 1 presents an idealized view of the patterns formed
in the SDM. The state representation methods basically aim to
locate blocks of low distance on the main diagonal, while the
sequence-based methods aim to locate off-diagonal stripes (a
stripe representing low distance of two sequences). The blocks
are formed when the used feature remains somewhat similar
during an occurrence of a musical part, and the stripes are
formed when there are sequences that are repeated later in the
piece.

The locations of the block borders on the main diagonal
can be searched from the SDM for segmentation [11]–[13], or
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Fig. 1. Example of the structures formed in the self-distance matrix. Darker
pixel value denotes lower distance. Time proceeds from left to right and from
top to bottom. The example piece consists of five sections, where two parts, A
and B, occur as indicated.

blocks themselves can be searched by dynamic programming
[14], [15] for segmentation and recurrence analysis.

Some methods utilize the block-like information less explic-
itly by directly handling the feature vectors with agglomera-
tive clustering [16], or by clustering them with hidden Markov
models [17], [18]. The temporal fragmentation resulting from
the use of the vector quantization models has been attempted to
be reduced by pre-training the model [19], or by imposing du-
ration modeling explicitly [20]–[22].

Because of the assumption of repetition, the sequence
methods are not able to describe the entire song, but the parts
that are not repeated remain undiscovered. This is not always
a weakness, as some methods aim to find the chorus or a rep-
resentative thumbnail of the piece utilizing the formed stripes.
The stripes can be located from the SDM after enhancing them
by filtering the matrix [23], [24], or by heuristic rules [25].

In addition to locating only one repeating part, some sequence
methods attempt to provide a description of all repeated parts of
the piece. By locating all of the repetitions, it is possible to pro-
vide a more extensive description of the structure of the piece
[1], [26]. Finding a description of the whole piece can be ob-
tained by combining shorter segments with agglomerative clus-
tering [27], refining the segment iteratively [28], selecting re-
peated segments in a greedy manner [29], or by transitive de-
duction of segments found utilizing iterative search [30].

The authors of [31] propose to combine vector quantization
of framewise features and string matching on the formed se-
quences to locate repeating parts. Aiming to find a path through
the SDM so that the main diagonal is used as little as possible,
thus utilizing the off-main diagonal stripes with ad hoc rules for
piece structures has been attempted in [32]. Heuristic rules to
force the piece structure to be one of the few stereotypical ones
were presented in [33]. Formulating the properties of a typical
or “good” musical piece structure mathematically, and utilizing
this formulation to locate a description of the repeated parts has
been attempted in [13], [34]. The method proposed in this paper
can be seen as an extension of this kind of approach to provide
a description of the structure of the whole piece.

B. Proposed Approach

The main novelty of the proposed method is that it relies on a
probabilistic fitness measure in analyzing the structure of music
pieces. A structure description consists of a segmentation of the
piece to occurrences of musical parts, and of grouping of seg-
ments that are repeats of each other. The acoustic information of

each pair of segments in the description is used to determine the
probability that the two segments are repeats of each other. The
probabilities are then used to calculate the total fitness of the
description. A greedy algorithm is proposed for solving the re-
sulting search problem of finding the structure that maximizes
the fitness measured. Furthermore, the resulting description is
labeled with musically meaningful part labels. To the authors’
knowledge, this is the first time that the labeling can be for ar-
bitrary music pieces.

The proposed method utilizes three acoustic features de-
scribing different aspects of the piece. Self-distance matrices
are calculated from all the three features, and using the infor-
mation embedded in the SDM, the system performs a search to
create a segmentation and a segment clustering that maximize
the fitness over the whole piece. The “blocks” and the “stripes”
in multiple SDMs are used.

The rest of the paper is organized as follows. Section II details
the proposed method. Then experimental results are described
in Section III. Finally, Section IV concludes the paper. Parts of
this work have been published earlier in [35]–[37].

II. PROPOSED METHOD

The proposed analysis method relies on a fitness function for
descriptions of musical structures. This function can be used
to compare different descriptions of the same piece and deter-
mine how plausible they are from the perspective of the acoustic
signal. In addition to the fitness function, a search method for
generating a maximally fit description is presented.

A. Fitness Measure

From the point of view of acoustic properties, a good descrip-
tion of musical structure has much in common with defining a
good clustering of data points: the intra-cluster similarity should
be maximized while minimizing the inter-cluster similarity. In
terms of musical structure: the segments assigned to a group
(forming the set of all occurrences of a musical part) should be
similar to each other while the segments from different groups
should be maximally dissimilar. Compared to basic clustering,
individual frames of the musical piece cannot be handled as in-
dividual data points in clustering, because it would fragment the
result temporally, as noted in [21]. Instead, the frames are forced
to form sequences.

All the possible segments of a piece are denoted by set . A
subset of this consisting of segments that
do not overlap and cover the whole piece defines one possible
segmentation of the piece. The group of segment is returned
by a group assignment function ; if , the seg-
ments belong to the same group and are occurrences of the same
musical part. A description of the structure of the piece is a
combination of a segmentation and grouping of the segments

.
When a segmentation and the acoustic data is given, it is

possible to compare all pairs of segments and , and to deter-
mine a probability that the segments belong
to the same group. Because the segments can be of different
lengths, a weighting factor is determined for each
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segment pair in addition to the probability. The overall fitness
of the description is defined as

(1)

where

if
if

(2)

Here, the value of the weighting factor is defined as

(3)

where denotes the length of segment in frames. This
causes the sum of all weighting factors to equal the number of
elements in the SDM.

Having defined the fitness measure, the structure analysis
problem now becomes a task of finding the description
that maximizes the fitness function given the acoustic data

(4)

Equation (1) defines the fitness of structural descriptions
using relatively abstract terms. To apply the fitness measure,
candidate descriptions should be constructed for evaluation and
the probabilities in (1) and (2) should be calculated from the
acoustic input. The rest of this paper describes how these tasks
can be accomplished using a system whose block diagram is
illustrated in Fig. 2. The system extracts acoustic features using
beat-synchronized frame blocking. Separate SDMs are calcu-
lated for each feature, to be used as a mid-level representation.
Using the information in the SDMs, a large amount of candidate
segments is created and all non-overlapping segment pairs are
compared. The comparison produces the pairwise probabilities

and the weights that are used to
evaluate the fitness measure (1). A greedy search algorithm
is employed to create description candidates gradually and to
evaluate their fitness. The resulting descriptions are labeled
using musically meaningful labels, such as verse and chorus.
The best description found is then returned. These steps are
described in the rest of this section.

B. Feature Extraction

The use of three features is proposed, all of them with two
different time scales to provide the necessary information for
further analysis. The use of multiple features is motivated by
the results of [7], which suggest that change in timbre and in
rhythm are important cues for detecting structural boundaries.
The use of multiple time scales has been proposed, e.g., in [4]
and [38].

The feature extraction starts by estimating the locations of
rhythmic beats in the audio using the method from [39]. It was
noted that the system may do -phase errors in the estimation.
The effect of these errors is alleviated by inserting extraneous

Fig. 2. Overview of the proposed method. See the text for description.

beats between each two beats, effectively halving the pulse pe-
riod.

Like in several earlier publications, mel-frequency cepstral
coefficients (MFCCs) are used to describe the timbral content
of the signal. The rhythmic content is described with rhythmo-
gram proposed in [14]. The third feature, chroma, describes
the tonal content. The MFCCs and chroma are calculated in
92.9-ms frames with 50% frame overlap, while rhythmogram
uses frames up to several seconds in length with the hop of
46.4 ms. After the calculation, each feature is averaged over the
beat frames to produce a set of beat-synchronized features.

The MFCCs are calculated using 42-band filter bank, omit-
ting the high-pass pre-emphasis filter sometimes used as a pre-
processing. The log-energies of the bands are discrete cosine
transformed (DCT) to reduce the correlation between bands and
to perform energy compaction. After the DCT step, the lowest
coefficient is discarded and 12 following coefficients are used
as the feature vector.

The chroma is calculated using the method proposed in [40].
First, the saliences for different fundamental frequencies in the
range 80–640 Hz are calculated. The linear frequency scale
is transformed into a musical one by selecting the maximum
salience value in each frequency range corresponding to a
semitone. The semitone number for frequency is given in
MIDI note numbers by

(5)

where is the MIDI note number for the reference
frequency , and denotes rounding to the nearest
integer. Finally, the octave equivalence classes are summed
over the whole pitch range to produce a 12-dimensional chroma
vector. This method is used instead of directly mapping fre-
quency bins after discrete Fourier transform (as done, e.g., in
[1], [23]), because in the experiments the salience estimation
front-end proved to focus more on the energy of tonal sounds
and reduce some of the undesired noise caused by atonal
sounds, such as drums.

For both MFCC and chroma, the feature sequences are tem-
porally filtered with a Hanning window weighted median filter.
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The purpose of the filtering is to focus the feature on the desired
time-scale. The shorter filter length is used to smooth short-time
deviations for enhancing the stripes on the SDM. The longer
window length is intended to focus on longer time-scale simi-
larities, enhancing the block formation on the SDMs.

The rhythmogram calculation utilizes the onset accentuation
signal produced in the beat detection phase. The original method
[14] used a perceptual spectral flux front-end to produce a signal
sensitive to sound onsets. In the proposed method, this is re-
placed by summing the four accentuation signals to produce one
onset accentuation signal. The rhythmogram is the autocorrela-
tion function values of the accentuation signal calculated in suc-
cessive windows after the global mean has been removed from
it. The window length is determined by the target time-scale,
and the autocorrelation values between the lags 0 and a max-
imum of 2 s are stored.

The time-scale focus parameters (the median filter window
lengths for MFCCs and chroma, and the autocorrelation window
length for rhythmogram) were selected with a method described
in Section II-E. After the temporal filtering the features are nor-
malized to zero mean and unity variance over the piece.

C. Self-Distance Matrix Calculation

From each feature and time-scale alternative, a self-distance
matrix is calculated. Each element of the matrix defines
the distance between the corresponding frames and calcu-
lated with cosine distance measure

(6)

where is the feature vector in frame , denotes vector dot
product, and is vector norm.

In many popular music pieces, musical modulation of the
key in the last chorus section is used as an effect. This causes
problems with the chroma feature as the energies shift to dif-
ferent pitch classes, effectively causing a circular rotation of the
chroma vector.1 To alleviate this problem, it has been proposed
to apply chroma vector rotations and calculate several SDMs
instead of only one testing all modulations and using the min-
imum distances [1], [41]. Modulation inversion both on frame
and segment pairs were tested, but they did not have a signifi-
cant effect on the overall performance and the presented results
are calculated without them.

D. Segment Border Candidate Generation

Having the SDMs, the system generates a set of segment
border candidates that are points in the piece on which a seg-
ment may start or end. If a segment is allowed to begin or end at
any location, the number of possible segmentations and struc-
tural descriptions increases exponentially as a function of the
border candidate locations. The combinatorial explosion is re-
duced by generating a smaller set of border candidates. Not all
of the candidates have to be used in the final segmentation, but
the points used in the segmentation have to be from this set.

1Naturally the modulation affects also MFCCs, but the effect is considerably
smaller.

Fig. 3. Example of a Gaussian weighted detection kernel with � � �� and
� � ���.

In the proposed method, the border candidates are generated
using the novelty calculation proposed in [11]. A detec-
tion kernel matrix is correlated along the main diagonal of the
SDM. The correlation values are collected to a novelty vector .
Peaks in this vector, corresponding to corners in the SDM, are
detected using median-based dynamic thresholding and used as
the border candidates. The novelty vector is calculated from all
six SDMs, three acoustic features and two time-scale parame-
ters, and then summed. For one SDM the novelty is calculated
as

(7)
The matrix is padded with zeros in non-positive indices and
indices larger than the size of the matrix.

The kernel matrix has a 2 2 checkerboard-like structure

where the following symmetries hold:

(8)

Matrix is an matrix with ones on the main anti-
diagonal and zeros elsewhere. It reverses the order of matrix
columns when applied from right and the order of matrix rows
when applied from left.

In the simplest approach, the values in are all , but as
suggested in [11], the kernel matrix values are weighted by ra-
dial Gaussian function giving less weight to the values far from
the center of the kernel

(9)

where the radius is defined by

(10)

and the width parameter value and kernel width
were noted to perform well in the evaluations. The

resulting kernel is illustrated in Fig. 3. In the experiments, the
30 largest peaks in the novelty vector and the signal end points
were used as the set of segment border candidates.
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Fig. 4. Illustration of generating the segments.

Fig. 5. Submatrix ��� of SDM ��� used in the calculation of the distances
between the segments � and � .

E. Segment Pair Distance Measures

After the set of border candidates has been generated, all seg-
ments between all pairs of border candidates are created. These
segments form the set , from which the segmentation in the
final description is a subset of. This is illustrated in Fig. 4, where
ten possible segments are generated from five border candidates.

For each segment pair and feature, two distances are calcu-
lated: a stripe distance and a block distance. The stripe distance
measures the dissimilarity of the feature sequences of the two
segments, whereas the block distance measures the average dis-
similarity of all frame pairs of the two segments. Two distance
measures are used because it is assumed that they provide com-
plementary information.

The main difference and motivation of using these two dis-
tance measures are illustrated in Fig. 1 which contains a stereo-
typical SDM of a simple piece with the structure “A, B, A, B, B.”
If only stripe distance was used, it would be difficult to locate
the border between “A” and “B” without any additional logic,
because “A” is always followed by “B.” Similarly, if only block
distance was used, the border between the second and third “B”
would be missed without any addition logic.

The compared segments and define a submatrix
of distance matrix . The contents of this submatrix are used
to determine the acoustic match of the segments. The submatrix
and the distance measures are illustrated in Fig. 5.

The block distance is calculated as the average of
the distances in the submatrix

(11)

Fig. 6. Effect of the time-scale parameter on segment pair distances calculated
over all pieces in the TUTstructure07 data set. For MFCC and chroma feature the
parameter � is the median filtering window length. For rhythmogram the varied
parameter � is the autocorrelation length. The lines denote the average distance
values for segments from the same group � � and from a different group ���.
The error bars around the marker denote the standard deviation of the distances.
The chosen parameter values are marked with underlining.

The stripe distance is calculated by finding the path
with the minimum cost through the submatrix and nor-
malizing the value by the minimum possible path length

(12)

where elements of the partial path cost matrix are defined
recursively by

(13)

with the initialization . Note that the path tran-
sitions do not have any associated cost.

The effect of the time-scale parameter on the resulting dis-
tance values was evaluated using a manually annotated data set
of popular music pieces that will be described in Section III-A.
The median filtering window length was varied with MFCC
and chroma features, and the autocorrelation window length

was varied for rhythmogram. The values of distances for
segments from the same groups and from different groups were
calculated with both of the proposed distance measures. The
effect of the time-scale parameter is illustrated in Fig. 6. The
final parameter values used in the evaluations were determined
from this data by assuming the distance values to be distributed
as Gaussians and selecting the parameter value minimizing
the overlapping mass of the distributions. The used parameter
values are indicated in the figure.

F. Probability Mapping

Once the distance of two segments has been calculated based
on the used features and distance measures, the obtained dis-
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tance values are transformed to probabilities to enable evalu-
ating the overall fitness measure (1). In the following, both block
and stripe distance of a segment pair are denoted with
to simplify the notation and because the processing is similar to
both. The probability that two segments and belong to the
same group is determined from the distance between
the segments using a sigmoidal mapping function from distance
to probability. The mapping function is given by

(14)

where is the distance measured from the acoustic data.
The sigmoid parameters and are determined using the Lev-
enberg–Marquardt algorithm for two-class logistic regression
[42]. The data for the fit is obtained from the manual ground
truth annotations.

The probabilities obtained for all of the six distance values
(three acoustic features and two distance measures) are com-
bined with weighted geometric mean

(15)

where is a variable distinguishing the six probability values,
and is the weight of the corresponding feature and distance
combination. In the experiments, binary weights were tested and
the presented results are obtained using all but rhythmogram
stripe probability with equal weights. For more details on the
feature combinations, see [36].

It is possible to impose heuristic restrictions on the segments
by adjusting the pairwise probabilities manually after the dif-
ferent information sources have been combined. Here, a length
restriction was applied prohibiting larger than 50% differences
in segment lengths within a group.

G. Solution for the Optimization Problem

The optimization problem (4) is a combinatorial problem. It
can be formulated as a path search in a directed acyclic graph
(DAG) where each node represents a possible segment in the
piece with a specific group assignment, and there is an arc be-
tween two nodes only if the segment of the target node is di-
rectly following the segment of the source node. This process is
illustrated by the graph in Fig. 7 which is constructed from the
segments in Fig. 4 after allowing the use of two groups.

The way the total fitness (1) is defined to evaluate all segment
pairs in the description causes the arc costs to depend on the
whole earlier path, i.e., the transition from a node to a following
one has as many different costs as there are possible routes from
the start to the source node. This prohibits the use of many ef-
ficient search algorithms as problem cannot be partitioned into
smaller subproblems.

Considering the applications of the structure analysis system,
it would be desirable that the search would be able to produce
some solution relatively quickly, to improve it when given more
time, and to return the globally optimal result at some point.
If the search for the global optimum takes too long, it should
be possible to stop the search and use the result found at that

Fig. 7. Example DAG generated by the segments in Fig. 4 after allowing only
two groups: A and B.

Fig. 8. Pseudo-code description of the proposed bubble token passing search
algorithm.

point. A novel algorithm named Bubble token passing (BTP)
is proposed to fulfil these requirements. BTP is inspired by the
token passing algorithm [43] often used in continuous speech
recognition. In the algorithm, the search state is stored using
tokens tracking the traveled path and recording the associated
fitness. In the following, the term node is changed to state to
better conform the token passing terminology.

A pseudocode description of the algorithm is given in Fig. 8.
The search is initiated by augmenting the formed DAG with start
and end states and inserting one token to the start state. After
this, the algorithm main loop is executed until the solution con-
verges, some maximum iteration limit is reached, or there are no
more tokens in the system. At each iteration, each state selects
the best tokens and propagates them to the following states
(loop on line 4 of Fig. 8). When a token is inserted to a state, the
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Fig. 9. Labeling process searches for an injective mapping � from a set of
segment groups � to musically meaningful labels �.

state is added to the traveled path and the fitness value is updated
with (16). After all states have finished the propagation, the ar-
rived tokens are merged to a list of tokens, the list is sorted, and
only fittest are retained, the rest are removed (loop starting on
line 16). After this the main iteration loop starts again.

The tokens arriving to the end state describe the found de-
scriptions. The first solutions will be found relatively quickly,
and as the iterations proceed, more tokens will “bubble” through
the system to the final state. Since the tokens are propagated in
best-first order and only some of the best tokens are stored to
following iterations, the search is greedy, but the parameters
and control the greediness and the scope of the search. The
number of stored tokens controls the overall greediness: the
smaller the value, the fewer of the less fit partial paths are con-
sidered for continuation and more probable it will be to miss the
global optimum. An exhaustive search can be accomplished by
storing all tokens. The number of propagated tokens controls
the computational complexity of each main loop iteration: the
more tokens are propagated from each state, the more rapidly the
total number of tokens in the system increases and the more fit-
ness updates have to be calculated at each iteration. The values
used in the experiments proved to be a
reasonable tradeoff between the exhaustivity and computational
cost of the search, and the search converged often after 30–40
iterations.

When a token is inserted to a state corresponding to segment
with the group set to , the associated path fitness is up-

dated with

(16)

where is a subset of after adding the th segment to it, and
starting from .

The fitness of the whole description can be obtained by
summing these terms over the whole piece

(17)

It is trivial to verify that this is equal to (1).

H. Musical Part Labelling

The description found by solving the optimization problem
(4) consists of a segmentation of the piece and a grouping of
the segments. Especially if the analysis result is presented for
a human, the knowledge of musically meaningful labels on
the segments would be appreciated, as suggested by a user
study [44]. To date, none of the structure analysis systems,
with the exception of the system proposed in [33], provides

musically meaningful labels to the groups in the analysis result.
The method in [33] utilized rigid forms where the analyzed
piece was fitted to, and the forms contained also the part label
information.

The method proposed here models sequences of musical parts
with N-grams utilizing the th order Markov assumption
stating that the probability of label given the preceding labels

depends only on the history of length

(18)

The N-gram probabilities are trained using a set of musical part
label sequences that are formed by inspecting the manually an-
notated structures of a large set of musical pieces. The parts are
ordered based on their starting time, and the part labels are set
in the corresponding order to produce a training sequence. The
N-gram models are then used to find an injective mapping
from the groups in the analysis result to the musical labels

(19)

This process is illustrated also in Fig. 9.
When labeling the analysis result, the label assignment max-

imizing the resulting cumulative N-gram probability over the
description

(20)

is searched. An algorithm for the post-process labeling a found
structural description was presented and evaluated in [35].

Another way to perform the labeling is to integrate the la-
beling model to the overall fitness function. In this case, the fit-
ness does not only assess the segmentation of the piece and the
grouping of the segments, but also the labeling of the groups.
The difference to (1) is that now the order in which the segments
are evaluated matters, and the segment set needs to be ordered
by the starting times of the segments . The
description can be transformed into a label sequence by ap-
plying the mapping function by

(21)

The N-gram probabilities have to be evaluated already during
the search which is accomplished by modifying the fitness mea-
sure (1) to

(22)

where is the relative weight given for the labeling model, and

(23)

The subscript in is added to denote the integrated “labeling
model.” In effect, the additional term is the average part label
transition log-likelihood multiplied by the weighting factors of
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the segment pairs. The labeling model likelihoods are normal-
ized with the number of transitions. This is done to ensure that
explanations with different number of parts would give an equal
weight for the labeling model.

Now the fitness function can be considered to be constructed
of two terms: the acoustic information term on the top row of
(22) and the musicological term on the bottom row. The op-
timization of this fitness function can be done using the same
bubble token passing algorithm after modifying the token fit-
ness update formula (16) to include the N-gram term. In fact,
the same search algorithm can be used to perform the postpro-
cess labeling, too. In that case, the acoustic matching terms have
to be modified to enforce the grouping sequence.

III. RESULTS

The proposed analysis system was evaluated with simula-
tions using three manually annotated data sets of popular music
pieces. Several different evaluation metrics were used to provide
different points of view for the system performance.

A. Data

Three data sets were used in the evaluations TUTstructure07,
UPF Beatles, and RWC Pop. The first consists of 557 pieces
aimed to provide a representative sample of radio-play pieces.
Approximately half of the pieces are from pop/rock genres and
the rest sample other popular genres, such as hip hop, country,
electronic, blues, jazz, and schlager.2 The data set was compiled
and annotated at Tampere University of Technology, and the an-
notation was done by two research assistants with some musical
background. A notable characteristics of the data set is that it
contains pieces from broad range of musical styles with differ-
ring timbral, melodic, and structural properties.

The second used data set consists of 174 songs by The Bea-
tles. The original piece forms were analyzed and annotated by
musicologist Alan W. Pollack [45], and the segmentation time
stamps were added at Universitat Pompeu Fabra (UPF).3 Some
minor corrections to the data were made at Tampere University
of Technology, and the corrected annotations along with a doc-
umentation of the modifications are available.4 Major character-
istic of this data set is that all the pieces are from the same band,
with less variation in musical style and timbral characteristics
than in the other data sets.

The audio data in the third data set consists of the 100 pieces
of the Real World Computing Popular Music Database [46],
[47]. All of the pieces were originally produced for the data-
base; a majority of the pieces (80%) represent 1990’s Japanese
chart music, while the rest resemble the typical 1980s American
chart hits.

All data sets contain the structure annotated for the whole
piece. Each structural segment is described by its start and end
times, and a label provided to it. Segments with the same label
are considered to belong to the same group.

2A full list of pieces is available at http://www.cs.tut.fi/sgn/arg/
paulus/TUT structure07_files.html

3http://www.iua.upf.edu/%7Eperfe/annotations/sections/license.html
4http://www.cs.tut.fi/sgn/arg/paulus/structure.html#beatles_data

B. Reference System

The performance of the proposed system is compared with a
reference system [22] aimed for the same task. As the low-level
feature it uses the MPEG-7 AudioSpectrumProjection [48] from
600 ms frames with 200-ms hop. The frames are clustered by
training a 40-state hidden Markov model on them and then de-
coding with the same data. The resulting state sequence is trans-
formed to another representation by calculating sliding state
histograms from seven consecutive frames. The histograms are
then clustered using temporal constraints. The used implemen-
tation was from the “QM Vamp Plugin” package version 1.5.5

The implementation allows the user to select the feature used,
the maximum number of different segment types, and minimum
length of the segment. A grid search over the parameter space
was done to optimize the parameters, and the presented results
were obtained using the “hybrid” features, maximum of six seg-
ment types, and minimum segment length of 8 s. These param-
eter values provided the best general performance, and when
tested with the same 30-song Beatles data set6 as in the original
publication they produced F-measure of 60.7% compared to the
60.4% reported in [22].

C. Experimental Setup

Because the proposed method needs training of some pa-
rameters, the evaluations were run using a tenfold cross-vali-
dation scheme with random fold assignment. At each cross-val-
idation fold, 90% of the pieces are used to calculate the N-gram
models for part label sequences and to train the distance-to-
probability mapping functions, while the remaining 10% are
used for testing. The presented results are averaged over all
folds. As the reference method [22] does not need training, the
evaluations were run for the whole data at once, and different
parameter values were tested in a grid search manner.

To allow determining the possible bottlenecks of the proposed
system, several evaluation schemes were employed:

• Full analysis. The system is given only the audio; it has
to generate the candidate border locations, determine seg-
mentation, grouping, and group labeling. Referred with full
in the result tables.

• Segmentation and labeling, extraneous borders. The
system generates border candidates by itself, but the
border locations from the annotations are included in the
candidate set by replacing the closest generated candidate
with the one taken from annotations. Referred with salted
in the results.

• Grouping and labeling. The system is given the correct seg-
mentation, but it has to determine the grouping of the seg-
ments and labeling of the groups. Referred with segs in the
tables.

• Labeling only. The correct segmentation and grouping is
given to the system. It only has to assign each group with
an appropriate musical label. This is referred with labeling
in the result tables.

5http://www.elec.qmul.ac.uk/digitalmusic/downloads/index.html#qm-
vamp-plugins

6http://www.elec.qmul.ac.uk/digitalmusic/downloads/#segment
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TABLE I
EVALUATION RESULTS ON TUTSTRUCTURE07 (%)

TABLE II
EVALUATION RESULTS ON UPF BEATLES (%)

TABLE III
EVALUATION RESULTS ON RWC POP (%)

Two different labeling schemes were tested. First, the labeling
was done as a postprocessing step. This is denoted by post-LM
in the result tables. As an alternative the labeling was integrated
in the fitness function using (22). The results obtained with this
are referred with w/LM in the result tables.

The label set used in all of the tasks is determined from the
whole data set prior the cross-validation folds. All part occur-
rences of all the pieces were inspected and the labels covering
90% of all occurrences were used as the label set. The remaining
labels were assigned an artificial “MISC” label.

The proposed system was implemented in Matlab with
routines for the feature extraction, the segment matching, and
the search algorithm. When run on a 1.86-GHz Intel Core2-
based PC, the average analysis time of a piece with the post-
processing labeling corresponds approximately to the duration
of the piece.

D. Evaluation Metrics

Three different metrics are used in the evaluations: frame
pairwise grouping F-measure (also precision and recall rates
from which the F-measure is calculated are reported), condi-
tional entropy based measure for over- and under-segmentation,
and total portion of frames labeled correctly.

The first measure is also used in [22]. It considers all frame
pairs both in the ground truth annotations and in the analysis
result. If both frames in a pair have the same group assignment,
the pair belongs to the set in the case on ground truth and to

in the case of analysis result. The pairwise precision rate is
defined as

(24)

the pairwise recall rate as

(25)

and the pairwise F-measure as their harmonic mean

(26)

In the equations above denotes the cardinality of the set. The
pairwise clustering measure is simple, yet effective and seems
to provide values that agree quite well with the subjective per-
formance.

The second evaluation measure considers the conditional en-
tropy of the frame sequences labeled with the group information
given the other sequence (ground truth versus result). The orig-
inal entropy-based evaluation measure was proposed in [49], but
it was further modified by adding normalization terms to allow
more intuitive interpretation of the obtained numerical values in
[50]. The resulting evaluation measures are over-segmentation
score and under-segmentation score . Due to their com-
plexity the formal definitions of and are omitted here,
see [50] instead.

The third evaluation metric is the strictest: it evaluates the
absolute analysis performance with musical labels. This is done
by comparing the label assigned to each frame in the result and
in the ground truth annotations. The evaluation measure is the
proportion of correctly recovered frame labels.

E. Annotation Reliability Check

It has been noted in earlier studies, e.g., in [7], that the percep-
tion of structure in music varies from person to person; there-
fore, a small experiment was conducted to obtain an estimate
of the theoretically achievable accuracy level. A subset of 30
pieces in the TUTstructure07 data set was analyzed by both an-
notators independently. Then one set of annotations was consid-
ered as the ground truth while the other was evaluated against it.
Despite the small size of the data set, this provides an approxi-
mation of the level of “human-like performance.”

F. Evaluation Results

Tables I–III show the main evaluation results on the different
data sets. When comparing the results of tasks with different
segmentation levels, the results suggest that the segment border
candidate generation is a crucial step for the overall perfor-
mance. If there are too many extraneous candidate locations,
as the case is in “salted” case, the performance drops. The dif-
ference between “salted” and “full” is surprisingly small, sug-
gesting that the border candidate generation is able to recover
the candidate locations relatively accurately.

The performance increase from the reference system is sta-
tistically significant in the data sets of TUTstruc-
ture07 and RWC Pop, but not in UPF Beatles. The performance
difference between postprocessing labeling and integrated la-
beling is not significant when evaluated with pairwise F-mea-
sure or with over- and under-segmentation measures. Based on
the labeling measure, the improvement with integrated labeling
in TUTstructure07 and UPF Beatles data sets is statistically sig-
nificant, whereas in RWC Pop it is not.
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TABLE IV
SEGMENT BOUNDARY RETRIEVAL PERFORMANCE (%)

TABLE V
SEGMENTATION STATISTICS ON THE USED DATA SETS

Table IV presents the segment boundary retrieval results for
both systems on all data sets. A boundary in the result is judged
as a hit if it is within 3 s from the annotated border as suggested
in [22] and [28].

More direct analysis of the annotated structures and the
obtained results is provided in Table V. The table provides
the average number of segments in the pieces in the data sets,
the average number of groups, and the average duration of a
segment. The reference system groups the generated segments
using fewer groups than was annotated, while the proposed
system uses extraneous groups. Similar under-grouping be-
havior of the proposed system can be seen in the statistics for
UPF Beatles. Both systems under-segment the result in RWC
Pop. This may be partly because the structures in the data have
more and shorter segments.

A detailed analysis on the labeling performance is given in
Tables VI–VIII. The values describe for each ground truth label
the average amount of its duration that was correctly recovered
in the result, e.g., value 50% denotes that, on the average, half
of the frames with that label were assigned the same label in the
result. The tables present the result on all data sets in percents
for the labeling only task and for the full analysis with integrated
labeling model. The labels are ordered in descending order by
their occurrences, the most frequently occurring on top.

G. Discussion

When comparing the results of different data sets, the differ-
ences in the material become visible. The performance of the
proposed method measured with the F-measure quite similar in
all data sets, but the recall and precision rates differ greatly: in
TUTstructure07 the two are close to each other, in UPF Bea-
tles the method over-segments the result, and in RWC Pop the
result is under-segmented. As the operational parameters were
selected based on the TUTstructure07 data, this suggests that
some parameter selection should be done for differing material.

Some of the earlier methods tend to over-segment the re-
sult and the segment duration had to be assigned in the method

TABLE VI
PER LABEL RECOVERY ON TUTSTRUCTURE07 (%)

TABLE VII
PER LABEL RECOVERY ON UPF BEATLES (%)

TABLE VIII
PER LABEL RECOVERY ON RWC POP (%)

“manually,” e.g., the reference method [22]. From this point of
view it is encouraging to note how the proposed method is able
to locate approximately correct length segments even though
there is no explicit information given of the appropriate seg-
ment length. However, the segment length accuracy differences
between the data sets suggest that some additional informa-
tion should be utilized to assist determining the correct segment
length.

It can be noted from Table I that the human baseline for the
performance given by the annotator cross-evaluation is surpris-
ingly low. Closer data analysis revealed that a majority of the
differences between the annotators was due to hierarchical level
differences. Some differences were also noted when a part oc-
currences contained variations: one annotator had used the same
label for all of the occurrences, while the other had created a
new group for the variations. It can be assumed that similar dif-
ferences would be encountered also with larger population ana-
lyzing same pieces.

IV. CONCLUSION

A system for automatic analysis of the sectional form of pop-
ular music pieces has been presented. The method creates sev-
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eral candidate descriptions of the structure and selects the best
by evaluating a fitness function on each of them. The resulting
optimization problem is solved with a novel controllably greedy
search algorithm. Finally, the segments are assigned with musi-
cally meaningful labels.

An important advantage of the proposed fitness measure
approach is that it distinguishes the definition of a good struc-
ture description from the actual search algorithm. In addition,
the fitness function can be defined on a high abstraction level,
without committing to specific acoustic features, for example.
The system was evaluated on three large data sets with manual
annotations and it outperformed a state-of-the-art reference
method. Furthermore, assigning musically meaningful labels
to the description is possible to some extent with a simple
sequence model.
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