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M
usic structure information is
important for music semantic
understanding. It consists of
time information (beats, meter),

the melody/harmony line (chords), music regions
(instrumental, vocal), song structure, and music
similarities. The components of song structure—
such as the introduction (intro), verse, chorus,
bridge, instrumental, and ending (outro)—can be
identified by determining the melody- and con-
tent-based similarity regions in a song. (For a
detailed discussion of some of the basics of music
and how it pertains to this article, see the sidebar
“Music Knowledge” on the next page) We define
melody-based similarity regions as the regions
that have similar pitch contours constructed
from the chord patterns and content-based sim-
ilarity regions as the regions which have both
similar vocal content and similar melody. For
example, the verse sections in a song are melody-
based similarity regions while chorus sections are
content-based similarity regions. 

This article presents information based on ear-
lier work with more explanations.1 Our proposed
framework for music structure detection com-
bines both high-level music structure knowledge
and low-level audio signal processing techniques.
The content-based similarity regions in the music
are important for many applications, such as
music summarization, music transcription, auto-
matic lyrics recognition, music information
retrieval, and music streaming. We describe our

proposed approach for music structure detection
step by step.

1. Our system first analyzes’ the music’s rhythm
and structure by detecting note onsets and the
beats. The music is segmented into frames with
the size proportional to the interbeat time
interval of the song. We refer to this segmen-
tation method as beat space segmentation.

2. A statistical learning method then identifies
the melody transition via detection of chord
patterns in the music and of singing voice
boundaries.

3. With the help of repeated chord pattern
analysis and vocal content analysis, the sys-
tem detects the song structure.

4. The information (timing, melody/harmony,
vocal instrumental regions, music similari-
ties) extracted in our system, including song
structure, describes the music structure.

Of course, other research exists on music struc-
ture analysis, which we list in the “Related Work”
sidebar (see p. 68). The limitation of other meth-
ods is that most of the methods have not exploit-
ed music knowledge and have not addressed the
following issues of the music structure analysis:

❚ The estimation of the boundaries of repeating
sections is difficult if the time information
(time signature and meter), and melody of the
song are unknown. Note that the time signa-
ture (TS) is the number of beats per bar; a TS
of 4/4 implies there are four crotchet beats in
the bar. If the TS is 4/4 (the most common TS
in popular music) then the tempo indicates
how many crotchet beats there are per
minute. The key is the set of chords by which
the piece is built.

❚ In some song structures, the chorus and verses
either have the same melody (pitch contour)
or a tone/semitone-shifted melody (different
music scale). In such cases, we can’t guarantee
that we can correctly identify the verse and
chorus without analyzing the music’s vocal
content.

Rhythm extraction and BSS
As we explain in the “Music Knowledge” side-

bar, the melody transition, music phases, seman-
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tic events (verse, chorus, and so on) occur in
interbeat time proportional intervals. Here we
narrow down our scope to English-language
songs with a 4/4 time signature, which is the
commonly used TS. In music composition, small-
er notes such as eighth, sixteenth, or thirty-sec-
ond notes are played along with music phrases to
align instrumental melody with vocal pitch con-
tours. Therefore, in our proposed music segmen-
tation approach, we segment the music into the
smallest note length frames. This is called beat
space segmentation (BSS).

To calculate the duration of the smallest note,
we first detect the note onsets and beats of the
song according to the steps described in Figure 1.
Because the harmonics structure of music signals

are in octaves, we decompose the music signal
into eight subbands whose frequency ranges we
show in Figure 2 (on p. 69). 

The subband signals are segmented into 60-
ms frames with 50 percent overlap. Both the fre-
quency and energy transients are analyzed using
a method similar to Duxburg et al.’s.2 The funda-
mentals and harmonics of the music notes in
popular music are strong in subbands 01 to 04.
Thus, we measure the frequency transients in
terms of progressive distances between the spec-
trums in these subbands. To reduce the effect of
strong frequencies generated from percussion
instruments and bass-clef music notes (usually
generated by bass guitar and piano), the spec-
trums computed from subbands 03 and 04 are
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Popular song structure

From a music composition point of view, all the measures of
music event changes are based on the discrete step size of
music notes. In the following sections, we introduce time align-
ments between music notes and phrases. This information is
directly embedded with music segmentation. Music chords,
keys, and scales reveal how such information can be used to
correctly measure melody fluctuations in a song. We use gen-
eral composition knowledge for song writing and incorporate
it for high-level music structure formulation.

Music notes
For readers who may not have a background in music, we

provide a brief overview. A music note’s duration is character-
ized by a note’s onset and offset times. Figure A shows the cor-
relation of the music notes’ length, symbols, identities, and their
relationships with the silences (rests). The song’s duration is
measured as a number of bars.1 While listening to music, the
steady throb to which a person could clap is called the pulse or
beat and the accents are the beats that are stronger than the
others. The numbers of beats from one accent to adjacent

accents are equal and it divides the music into equal measures.
Thus, the equal measure of the number of beats from one
accent to another is called the bar. 

In a song, the words or syllables in the sentence fall on beats
to construct a music phrase. Figure B illustrates how the words
“Baa, baa, black sheep, have you any wool?” form themselves
into a rhythm and its music notation. The first and second bars
are formed with two quarter notes each. Four eighth notes and
a half note are placed in the third and fourth bars, respective-
ly, to represent the words rhythmically. 

A music phrase is commonly two or four bars in length. The
incomplete bars are filled with notes, rests, or humming (the
duration of humming is equal to the length of a music note).

Music scale, chords, and key of a piece  
The eight basic notes (C, D, E, F, G, A, B, C), which are the

white notes on a piano keyboard, can be arranged in an alpha-
betical succession of sounds ascending or descending from the
starting note. This note arrangement is known as a music scale.
Figure C1 shows the note progression in the G scale. In a music
scale, the pitch progression of one note to the other is either a

half step (a semitone S) or
whole step (a tone T).
Thus, it expands the eight
basic notes into 12 pitch
classes. The first note in
the scale is known as the
tonic and it is the key note
(tone note) from which
the scale takes the name.
Depending on the pitch
progression pattern, a
music scale is divided into

Music Knowledge
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one major scale and three minor scales
(natural, harmonic, and melodic). The
major and natural minor scales follow the
patterns of “T-T-S-T-T-T-S” and “T-S-T-T-S-
T-T,” respectively. Figure C2 lists the notes
that are present in major and minor scales
for the C pitch class.

Music chords are constructed by select-
ing notes from the corresponding scales.
Types of chords are major, minor, dimin-
ished, and augmented. The first note of
the chord is the key note in the scale.

The set of notes on which the piece is
built is known as the key. A major key (the
chords that can be derived from the major
scale) and minor key (the chords that can
be derived from three minor scales) are
two possible kinds of keys in a scale. 

Popular song structure  
Popular music’s structure2 often con-

tains the intro, verse, chorus, bridge, middle eight, and outro.
The intro may be 2, 4, 8, or 16 bars long; occasionally, there’s
no intro in a song. The intro is usually instrumental music. Both
the verse and chorus are 8 or 16 bars long. Typically the verse is
not melodically as strong as the chorus, but in some songs the
verse is equally strong and most people can easily hum or sing it. 

The gap between the verse and chorus is linked by a bridge.
Silence may act as a bridge between the verse and chorus of a
song, but such cases are rare. The middle eight—which is 4 or
16 bars long—is an alternative version of the verse with a new
chord progression possibly modulated with different keys. 

The instrumental sections in the song can be instrumental

versions of the chorus or verse or entirely different tunes with a
set of chords together. The outro is the fade-out of the last
phrases of the chorus. These parts of the song are commonly
arranged simply—verse, chorus, and so on in a repeated pat-
tern. Three variations of this theme are discussed in the “Music
structure detection” section in the main text. 
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Baa baa, black sheep,  have you any wool
2/4

Figure B. Rhythmic groups of words.
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Figure C. Succession of (1) musical notes and (2) a music scale.
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locally normalized before measuring the dis-
tances between the spectrums. The energy tran-
sients are computed for subbands 05 to 08. 

Final onsets are computed by taking the
weighted sum of onsets detected in each sub-
band. We took weighted summations over sub-
bands’ onsets to find the final series of onsets.
Music theories describe metrical structure as
alternating strong and weak beats over time.
Both strong and weak beats indicate the bar and
note level time information. We estimated the
initial interbeat length by taking the autocorre-
lation over the detected onsets. We employed a
dynamic programming approach to check for
patterns of equally spaced strong and weak beats
among the computed onsets. Because our main
purpose of onset detection was to calculate the
interbeat timing and note level timing, we didn’t
need to detect all of the song’s onsets. Figures 3a,
3b, and 3c show detected onsets, autocorrelation
over detected onsets, and both sixteenth-note
–level sementation and a bar measure of a clip. 

After BSS, we detect the silence frames and
remove them. Silence is defined as a segment of
imperceptible music, including unnoticeable
noise and short clicks. Short-time energy analy-
sis over frames is employed for detecting silence
frames. We further analyze the nonsilent beat-
space-segmented frames in the following sections
for chord and singing-voice boundary detection. 

Chord detection
As we previously discussed, a chord is con-

structed by playing more than two music notes
simultaneously. Thus, detecting the fundamen-
tal frequencies (F0s) of notes that comprise a
chord is the key idea to identify the chord. 

Chord detection is essential to identify
melody-based similarity regions that have similar
chord patterns. The vocal content in these regions
may be different. Therefore, in some songs, both
the verse and chorus have a similar melody. 

The pitch class profile (PCP) features3—which
are highly sensitive to the F0s of notes—are
extracted from training samples to model the
chord with a hidden Markov model (HMM). The
polyphonic music contains signals of different
music notes played at lower and higher octaves.
Some music instruments (such as string instru-
ments) have a strong third harmonic compo-
nent4 that nearly overlaps with the eighth
semitone of the next high octave. This will lead
to the wrong chord detection. For example, the
third harmonic of note C in (C3 ~ B3) and F0 of
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Many researchers have attempted music structure analysis, with vary-
ing degrees of success. Cooper1 analyzed how rhythm is perceived and
established in the mind. Dennenberg2 proposed chroma- and autocorre-
lation-based techniques to detect the melody line in the music. Repeated
segments in the music are identified using Euclidean-distance similarity
matching and clustering the music segments. 

Goto3 and Bartsch4 constructed vectors from extracted pitch-sensitive,
chroma-based features and measured the similarities between these vectors
to find the repeating sections (the chorus) of the music. Foote and Cooper5

extracted mel-frequency cepstral coefficients (MFCCs) and constructed a
similarity matrix to compute the most salient sections in the music. Cooper6

extracted MFCCs from the music content and reduced the vector dimen-
sions using singular value decomposition techniques. Then he defined a
global similarity function to find the most salient music section. 

Logan7 used clustering and hidden Markov models (HMMs) to detect
the key phrases that were the most repetitive sections in the song. For auto-
matic music summarization, Lu8 extracted octave-based spectral contrast
and MFCCs to characterize the music signals; the music’s most salient seg-
ment was detected based on its occurrence frequency. Then the music sig-
nal was filtered using the band-pass filter in the frequency range of 125 ~
1,000 Hz to find the music phrase boundary. He used these boundaries to
ensure that an extracted summary didn’t break the music phrase. 

Xu9 analyzed the signal in both time and frequency domains using linear
prediction coefficients and MFCCs. An adaptive clustering method was intro-
duced to find the salient sections in the music. Chai10 generated music thumb-
nails by representing music signals with pitch-, spectral-, and chroma-based
features and then matching their similarities using dynamic programming. 
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note G in (C4 ~ B4) nearly overlap (see Figure 2). 
To overcome this, in our implementation BSS

frames are represented in the frequency domain
with a 2-Hz frequency resolution. Then the lin-
ear frequency is mapped into the octave scale,
where the pitch of each semitone is represented
with as high a resolution as 100 cents. 

We consider the 128 ~ 8,192 Hz frequency
range (subband 02 ~ 07 in Figure 2) to construct
the PCP feature vectors to avoid percussion

noise. We use 48 HMMs to model 12 major, 12
minor, 12 diminished, and 12 augmented
chords. Each model has five states, including
entry, exit, and three Gaussian mixtures (GM)
for each hidden state. 

We can see from Table 1 (next page) that the
pitch difference between the notes of chord pairs
is small. In our experiments, sometimes we find
that the observed final-state probabilities of
HMMs corresponding to these chord pairs are
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high and close to each other. This may lead to an
incorrect chord detection. Thus we apply the rule-
based method (key determination) to correct the
detected chords and apply heuristic rules based
on popular music composition to further correct
the time alignment (transition) of the chords.

Songwriters use relative major and minor key
combinations in different sections—perhaps a
minor key for the middle eight and major key for
the rest—which would break up the monotony
of the song. Therefore, a 16-bar length with a 14-
bar overlap window is run over the detected
chords to determine the key of that section. The
majority of chords that belong to a key are
assigned as the key of that section. The 16-bar
length window is sufficient to identify the key.5

If the middle eight is present, we can estimate the
region where it appears in the song by detecting
the key change. Once the key is determined, the
error chord is corrected as follows:

❚ Normalize the observations of the 48 HMMs
that represent 48 chords according to the high-
est probability observed from the error chord.

❚ If the observation is above a certain threshold
and it’s the highest observation among all the
chords in a key, the error chord is replaced by
the next highest observed chord that belongs
to the same key.

❚ If there are no observations belonging to the key
above the threshold, assign the previous chord. 

The information carried by the music signal
can be considered quasistationary between the
interbeat intervals, because the melody transition
occurs on the beat time. Thus, we apply the fol-
lowing chord knowledge6 to correct the chord
transition within the window: 

❚ Chords are more likely to change on beat
times than on other positions.

❚ Chords are more likely to change on half-note
times than on other positions of beat times.

❚ Chords are more likely to change at the begin-
ning of the measures (bars) than at other posi-
tions of half-note times.

Singing-voice boundary detection
For the similar melodies in the choruses, they

may have different instrumentals set up to break
the monotony in the song. For example, the first
chorus may contain snare drums with piano
music and the second chorus may progress with a
bass, snare drums, and rhythm guitar. After detect-
ing melody-based similarity regions, it’s important
to decide which regions have similar vocal con-
tents. Therefore, singing-voice boundary detection
is the first step to analyze the vocal content.

In previous works7,8,15 related to singing-voice
detection, researchers used fixed-length signal
sementation and characterized the signal frame
with speech-related features such as mel fre-
quency Cepstral coefficients (MFCCs), energies,
zero crossing, spectral flux, and modeled the fea-
tures with statistical learning techniques (such
as HMM, K-nearest neighbors, and threshold-
ing).  However, none of these methods used
music knowledge.

In our method, we further analyze the BSS
frames to detect the vocal and instrumental
frames. The analysis of harmonic structures of
music signals indicates that the frequency com-
ponents are enveloped in octaves. However, the
similar spectral envelopes can’t be seen in the
speech signal’s spectrum.

Thus, we use a frequency-scaling called the
octave scale instead of the mel scale to calculate
Cepstral coefficients to represent the music con-
tent. Sung vocal lines always follow the instru-
mental line so that both pitch and harmonic
structure variations are also in the octave scale. 

In our approach, we divide the whole fre-
quency band into eight subbands (the first row in
Figure 2) corresponding to the octaves in the
music. We considered the entire audible spectrum
to accommodate the harmonics (overtones) of
the high tones. The range demanded of a voice’s
fundamental frequency in classical opera is from
~80 to 1,200 Hz, corresponding to the low end of
the bass voice and the high end of the soprano
voice. We empirically found that the number of
octal-spaced triangular filters in each subband are
{6, 8, 12, 12, 8, 8, 6, 4} respectively. As we can see,
the number of filters are maximum in the bands
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Table 1.  Correct classification in percentage for vocal and instrumental

classes. 

Feature Filters Coefficients Pure Instrumental Instrumental 
Vocals Mixed and 

Pure Vocals  
OSCC 64 12 82.94 79.93  

MFCC 36 24 75.56 74.81  



where the majority of the singing voice is present
for better signal resolution in that range.

Cepstral coefficients are then extracted from
the octave scale to characterize music content.
These Cepstral coefficients are called octave scale
Cepstral coefficients (OSCCs). Singular values
indicate the variance of the corresponding struc-
ture. Comparatively high singular values describe
the number of dimensions in which the structure
can be represented orthogonally, while smaller
singular values indicate the correlated informa-
tion in the structure. 

When the structure changes, these singular
values also vary accordingly. However, we found
that singular value variation is smaller in OSCCs
than in MFCCs for both pure vocal music and
vocal-mixed instrumental music. This implies
that OSCCs are more sensitive to vocals than
vocal-mixed instrumental music.

We applied singular value decomposition to
find the uncorrelated Cepstral coefficients for the
octave scale. We used the order range of 10 to 16
coefficients. Then we trained the support vector
machine to identify the pure instrumental (PI)
and instrumental mixed vocal (IMV) frames. Our
earlier experimental results show that the radial-
based kernel function in Equation 1 with c =
0.65, performs better in vocal/instrumental
boundary detection:

K(x, y) = exp(−|x − y|2/c) (1)

Song structure detection
We extract the high-level song structure based

on melody-based similarity regions detected
according to chord transition patterns and con-

tent-based similarity regions detected according to
singing voice boundaries. Later, we explain how
to detect melody- and content-based similarity
regions in the music. Then we apply the song com-
position knowledge to detect the song structure.

Melody-based similarity region detection
The repeating chord patterns form the

melody-based similarity regions. We employ a
chord pattern-matching technique using dynam-
ic programming to find the melody-based simi-
larity regions. In Figure 4, regions R2, …, R3, have
the same chord pattern (similar melody) as R1.
Since it’s difficult to detect all the chords cor-
rectly, the matching cost is not zero. Thus, we
normalized the costs and set a threshold (THcost)
to find the local matching points closer to zero
(see Figure 4). THcost = 0.3825 gives good results
in our experiments. By counting the same num-
ber of frames as in the subpattern backward from
the matching point, we detect the melody-based
similarity regions. 

Figure 4 illustrates the matching of both 8- and
16-bar length chord patterns extracted from the
beginning of verse 1 in MLTR’s song, “Twenty-
Five Minutes.” The Y-axis is the normalized cost
of matching the pattern and the X-axis is the
frame number. We set the threshold THcost and
analyzed the matching cost below the threshold
to find the pattern-matching points in the song.
The 8-bar-length regions (R2 ~ R3) have the same
chord pattern as the first 8-bar chord pattern (R1)
in verse 1. When the matching pattern was
extended to 16 bars (that is, the R1 region), we
weren’t able to find a 16-bar-length region with
the same chord pattern as the R1 region.
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Content-based similarity region detection
For the melody-based similarity regions Ri and

Rj, we used the following steps to further analyze
them for content-based similarity region detection.

Step 1. The BSS vocal frames of two regions are
first subsegmented into 30-ms subframes with 50
percent overlap. Although two choruses have
similar vocal content, they may have the same
melody with a different instrumental setup.
Therefore, we extracted 20 coefficients of the
OSCC feature per subframe, since OSCCs are
highly sensitive to vocal content and not to the
instrumental melody changes. Figure 5 illustrates
singular values derived from analyzing the
OSCCs and MFCCs extracted from both the solo
male track and guitar mixed male vocals of a Sri
Lankan song “Ma Bala Kale ( ).” 

The quarter-note length is 662 ms and the
subframe size is 30 ms with a 50-percent overlap.
Figures 5a, 5b, 5d, and 5e show the singular value
variation of 20 OSCCs and 20 MFCCs for both
pure vocals and the vocals mixed with guitar.
Figures 5c and 5f show the percentage variation
of the singular values of each OSCC and MFCC
when guitar music is mixed with respect to their
values for solo vocals. 

When all 20 coefficients are considered, the
average singular value variation for OSCC and
MFCC are 17.18 and 34.35 percent, respectively.
When the first 10 coefficients are considered,
they are 18.16 percent and 34.25 percent. We can

see that even when the guitar music is mixed
with vocals, the variation of OSCCs is much
lower than the variation of MFCCs. Thus, com-
pared with MFCCs, OSCCs are more sensitive to
the vocal line than to the instrumental music.

Step 2. The distance and dissimilarity between
feature vectors of Ri and Rj are calculated using
Equations 2 and 3. The dissimilarity (Ri Rj) gives
low value for the content-based similarity region
pairs.

(2)

(3)

Step 3. To overcome the pattern-matching
errors due to detected error chords, we shift the
regions back and forth by four bars with two bars
overlapping and repeat steps 1 and 2 to find the
positions of the regions that give the minimum
value for dissimilarity (Ri Rj).

Step 4. Calculate dissimilarity (Ri Rj) in all
region pairs and normalize them. By setting a
threshold (THsmlr), the region pairs below the
THsmlr are detected as content-based similarity
regions. This indicates that they belong to cho-
rus regions. Based on our experiments, a value of
THsmlr = 0.389 works well. Figure 6 illustrates the
content-based similarity region detection based
on melody-based similarity region pairs.

Structure detection
We apply the following heuristics, which

agree with most of the English-language songs
we used to detect music structure.

1. A typical song structure more or less uses one
of the following verse–chorus patterns:10

a. Intro, verse 1, chorus, verse 2, chorus, cho-
rus, outro.

b. Intro, verse 1, verse 2, chorus, verse 3, cho-
rus, middle eight, chorus, chorus,  outro.

c. Intro, verse 1, verse 2, chorus, verse 3, mid-
dle eight, chorus, chorus, outro.

2. The minimum number of verses and chorus-
es is two and three, respectively.
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3. The verse and chorus are 8 or 16 bars long.

4. The middle eight is 8 or 16 bars long. 

The set of notes on which the piece is built is
defined as the key. For example, the C major key
is derived from the chords in the C major scale.
Based on our data set—which only includes
songs in English—the statement of “songs with
multiple keys are rare” is true. But if this is
extended to other language songs (such as
Japanese songs), this statement may not be true.
Therefore, we now avoid giving a false impres-
sion of generality by explicitly stating that the
techniques and results presented here apply only
to English-language pop songs.

Intro detection. According to the song struc-
ture, the intro section is located before verse 1.
Thus we extract the instrumental section until
the first vocal frame and detect this section as the
intro. If silent frames are detected at the begin-
ning, they aren’t considered as part of the intro
because they don’t carry a melody.

Verses and chorus detection. Because the
end of the intro is the beginning of verse 1, we
assume the length of verse 1 is 8 or 16 bars and
use this length-chord sequence to find the
melody-based similarity regions in a song.

If only two or three melody-based similarity
regions exist, they are the verses. Then we can
conclude that the chorus doesn’t have the same
chord pattern as the verses. Cases 1 and 2 explain
the detection of choruses and verses.

Case 1. The system finds two melody-based
similarity regions. In this case, the song has the
structure described in item 1a. If the gap between

verses 1 and 2 is equal and more than 24 bars,
both the verse and chorus are 16 bars long each.
If the gap is less than 16 bars, both the verse and
chorus are 8 bars long. Using the chord pattern
of the first chorus between verses 1 and 2, we can
detect other chorus regions. Because a bridge
may appear between a verse and chorus or vice
versa, we align the chorus by comparing the
vocal similarities of the detected chorus regions.

Case 2. The system finds three melody simi-
larity regions. In this case, the song follows the
pattern either in item 1b or 1c. Thus, the first
chorus appears between verses 2 and 3 and we
can find other chorus sections using a procedure
similar to that described in case 1.

If there are more than three melody-based
similarity regions (j > 3 in Figure 4), it implies
that the chorus chord pattern is partially or fully
similar to the verse chord pattern. Thus we detect
the 8-bar length chorus sections (which may not
be the full length of the chorus) by analyzing the
vocal similarities in the melody-based similarity
regions. Cases 3 and 4 illustrate the detection of
verse and chorus.

Case 3. If R2 (Figure 4) is found to be a part of
the chorus, the song follows the 1a pattern. If the
gaps between R1 and R2 and R2 and R3 are more
than 8 bars, the verse and chorus are 16 bars
long. Thus we increase the subchord pattern
length to 16 bars and detect the verse sections.
After the verse sections are found, we can detect
the chorus sections using a way similar to that in
case 1. 

Case 4. If R2 is found to be a verse, the song
follows the 1b or 1c pattern. The chorus appears
after R2 regions. By checking the gaps between R1

and R2 and R2 and R3, the length of the verse and
chorus is similar to case 3. We can find the verse
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and chorus regions by applying procedures simi-
lar to those described in cases 3 and 1.

Instrumental sections (INSTs) detection.
The Instrumental section may have a similar
melody to the chorus or verse. Therefore, the
melody-based similarity regions that have only
instrumental music are detected as INSTs.
However some INSTs have a different melody. In
this case, we use a window of four bars to find
regions that have INSTs. 

Middle-eight and bridge detection. The
middle eighth is 8 or 16 bars long and it has a dif-
ferent key from the main key. If a different key
from the main key of the song is detected at any
point, we further check whether the key changed
area has a 16- or 8-bar length.

Once the boundaries of verses, choruses,
INSTs and middle eight are defined, the appear-
ance of the bridge can be found by checking the
gaps between these regions.

Outro detection. From the song patterns in
items 1a, 1b, and 1c we can see that before the
outro there’s a chorus. Thus, we detect the outro
based on the length between the end of the last
chorus and the song.

Experimental results
We used 50 popular English-language songs

(by the following artists: MLTR, Bryan Adams,
Westlife, the Backstreet Boys, the Beatles, and
Shania Twain) for the experiments in chord
detection, singing-voice boundary detection, and
song-structure detection. We first sampled the
songs at 44.1 kHz with 16 bits per sample and
stereo format from commercial music CDs. We
manually annotated the songs by conducting lis-
tening tests with the aid of commercially avail-

able music sheets to identify the timing of
vocal/instrumental boundaries, chord transi-
tions, the key, and song structure in terms of BSS
units (the number of frames).

Figure 7 shows one example of a manually
annotated song section, explaining how the
music phrases and the chords change with inter-
beat length. This annotation describes the time
information of the intro, verse, chorus, instru-
mental, and outro in terms of 272.977-ms frames. 

The frame length is equal to an eighth-note’s
length and it’s the smallest note length found in
the song. The beat-space measures of vocal and
instrumental parts in the respective phrases (in
the Lyrics column) are described in the Vocal and
Instrumental columns. Then the system detect-
ed the silence frames (rest notes)—which may
contain unnoticeable noise—by the frames’ char-
acteristic lower short-time energies. 

Chord detection 
We model 48 chords with HMMs. We use the

first 35 songs (1 to 35) for training and the last 15
songs (36 to 50) for testing. Then we repeat the
training and testing with different circular com-
binations, such as songs 16 to 50 for training and
songs 1 to 15 for testing.

Because we don’t have enough training chord
samples in the songs for training the chord mod-
els we use the additional training data from the
chord database. Thus, we have more than 10
minutes for each chord sample data for training
each HMM. Our chord database consists of dif-
ferent sets of chords generated from original
instruments (the piano, bass guitar, rhythm gui-
tar, and so on), synthetic instruments (Roland
RS-70 synthesizer or Cakewalk’s software), and
the system synthetically mixes instrumental
notes by changing the time delay of the corre-
sponding notes. It also synthetically mixes male

74

IE
EE

 M
ul

ti
M

ed
ia

Figure 7. Manual

annotation of the intro

and verse 1 of Bryan

Adams’ song, “Cloud

No. 9.”



and female vocal notes. The recorded instru-
mental chords span from C3 to B6, comprising
four octaves. 

The average frame-based accuracy of chord
detection is 80.87 percent. We can also deter-
mine the correct key of all the songs. After error
correction with key information, we can achieve
85.49 percent frame-based accuracy.

Singing voice boundary detection
We use the Support Vector Machine (SVM) to

classify frames into a vocal or instrumental class.
The support vectors are trained with 12 OSCCs
extracted from each nonoverlapping BSS. 

The system uses the radial-based function in
the SVM kernel. The parameters used to tune
OSCCs are the number of filters and their distri-
bution in the octave frequency scale. The 30
songs for SVM training and 20 songs for testing
are employed with four different song combina-
tions to evaluate the accuracy. Table 1 illustrates
the comparison of the average frame-based clas-
sification accuracy of OSCCs and MFCCs. We
empirically found that both the number of filters
and coefficients of the feature give the best per-
formance in classifying instrumental frames.
OSCCs achieve better accuracy in this task.

We further applied music knowledge and
heuristic rules10 to correct the errors of misclas-
sified vocal/instrument frames. With rules, the
classification accuracy is significantly improved
by 2.5 ~ 5.0 percent for both vocal and instru-
mental frames after applying rule-based error
corrections.

Intro/verse/chorus/bridge/outro detection
We used two criteria to evaluate the results of

the detected music structures:

❚ First, we used the accuracy of all the parts in
the music identified. For example, if two-

thirds of the choruses are identified in a song,
the accuracy of identifying the choruses is
66.66 percent.

❚ Second, we used the accuracy of the sections
detected. We illustrate the detection accuracy
of a section in Equation 4. For example, if the
detection accuracies of three chorus sections are
80.0 percent, 89.0, percent, and  0.0 percent,
the average detection accuracy of the chorus
section is (80 + 89 + 0)/3 = 56.33 percent.  

(4)

Figure 8 illustrates our experimental results for
the average accuracy detection of different sec-
tions. We can see that the the system detects the
intro (I) and outro (O) with high accuracy. But
detection accuracy for the bridge (B) sections is
the lowest. 

We compared our chorus-detection method
with an earlier method11 using our testing data
set. Using the previous method, we reported
identification and detection accuracies of 67.83
and 70.18 percent, respectively.

Applications 
People can use music structure analysis for

many applications, whether it involves music
handling (such as music transcription), summa-
rization, information retrieval, or streaming. 

Music transcription and lyrics identification
Both rhythm extraction and vocal-/instru-

mental boundary detection are the preliminary
steps toward lyric identification and music tran-
scription applications. Because music phrases are
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constructed with rhythmically spoken lyrics,12 we
could use rhythm analysis and BSS to identify the
word boundary in the polyphonic music signal.
Along with signal separation techniques, this can
reduce the complexity of identifying the
voiced/unvoiced regions within the signal and
make the lyric-identification process simpler. In
addition, the chord detection extracts the
pitch/melody contour in the music. Further
analysis of BSS music signals will help to estimate
the signal source mixture, which is the breaking
point of music transcription.

Music summarization
The creation of a concise and informative

extraction that accurately summarizes original
digital content is extremely important in large-
scale information organization and processing.
Today, most music summaries used commercial-
ly are manually produced. 

Music summaries are created based on the
most repeated section, which is the most memo-
rable or distinguishable part in a song. Based on
successful music structure analysis, we can gener-
ate music summaries efficiently. For example,
when we consider what we know about music, the
chorus sections are usually the most repeated sec-
tions in popular music. Therefore, if we can accu-
rately detect the chorus in each song, it is likely
that we’ve also identified a good music summary. 

Music information retrieval
Ever-increasing music collections require effi-

cient and intuitive methods of searching and
browsing. Music information retrieval (MIR)
explores how a music database might best be
searched by providing input queries in some
music form. For people who aren’t trained or edu-
cated with music theory, humming is the most
natural way to formulate music queries. In most
MIR systems, a fundamental frequency tracking
algorithm parses a sung query for melody con-
tent.13 The resulting melodic information search-
es a music database using either string-matching
techniques or other models such as HMMs.

However, a problem for query by humming is
that the hummed melody can correspond to any
part of the target melody (not just at the begin-
ning), which makes it difficult to find the
matched starting point in the target melody. If
we can detect the chorus accurately in a song, the
location problem can be simpler. Because the
choruses of popular songs are typically promi-
nent and are generally sections that are readily

recognized or remembered, the users are most
likely to hum a fragment of the chorus.
Furthermore, since the chord sequences are a
description that captures much of the character
of a song, and the chord pattern changes period-
ically for a certain song, we can match the chords
with our input humming, which will facilitate
the retrieval process.

Music streaming
Continuous media streaming over unreliable

networks like the Internet and wireless networks
may encounter packet losses because of mis-
matches between the source coding and channel
characteristics. The objective of packet-loss recov-
ery in music streaming is to reconstruct a lost
packet so that it’s perceptually indistinguishable
or sufficiently similar to the original one. 

Existing error-concealment schemes14 mainly
employ either packet-repetition or signal-restora-
tion techniques. The most recently proposed
content-based unequal error-protection tech-
nique14 effectively repairs the lost packets that
have percussion signals. However, this method is
inefficient in repairing lost packets that contain
signals other than percussion sounds (such as
vocal signals and string, bowing, and blowing
types of instrumental signals). Therefore, we
need to be able to identify the music structure to
construct an efficient packet-loss recovery
scheme. The instrumental- and vocal-boundary
detection simplifies the signal content analysis at
the sender’s end.

Such analysis along with pitch information
(the melody contour) is helpful for better signal
restoration at the receiver’s side. We can construe
a content-based similarity region identification
to be a type of a music signal compression
scheme. Because structure analysis helps identi-
fy content-based similarity regions such as the
chorus and instrumental music sections, we can
avoid retransmitting packets from similar regions
and reduce the bandwidth consumption.
Compared to conventional audio compression
techniques such as MP3s (which can attain a 5:1
compression ratio), using music structure analy-
sis we can potentially increase the compression
ratio to 10:1.

Concluding remarks
By combining high-level music knowledge

with existing audio-processing techniques, our
system provides an efficient structural analysis
approach for popular music. Our approach aims
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to extract the basic ingredients of music struc-
tures that can immensely simplify the develop-
ment of many applications. In fact, a colleague
at our lab is looking at polyphonic content-based
audio retrieval based on our structural analysis.
The initial results are promising.

Based on our current work, we plan to extend
structure analysis to other music genres (such as
classical or jazz) to come up with a broader music
structure analysis approach. We also plan to
explore more applications using music structure
information, such as music genre classification
and digital music watermarking. MM
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