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ABSTRACT

Despitethesuccessof hiddenMarkov models(HMMs) andother
techniquesfor speechrecognition,thereremainsawideperception
in the speechresearchcommunitythat new ideasareneededto
continueimprovementsin performance.This paperrepresentsa
contribution to thiseffort.

Wedescribepreliminaryexperimentsusinganalternativemod-
eling approachknown as factorial hiddenMarkov models(FH-
MMs). Wepresentthesemodelsasextensionsof HMMs anddetail
a modificationto the original formulationwhich seemsto allow
a morenaturalfit to speech.We presentexperimentalresultson
thephoneticallybalancedTIMIT databasecomparingtheperfor-
manceof FHMMs with HMMs. We alsostudyalternative feature
represetationsthatmight bemoresuitedto FHMMs.

1. INTR ODUCTION

OverthelastdecadehiddenMarkov modelshavebecomethedom-
inanttechnologyin speechrecognition.HMMs provideaveryuse-
ful paradigmto modelthedynamicsof speechsignals.They pro-
videasolid mathematicalformulationfor theproblemof learning
HMM parametersfrom speechobservations. Furthermore,effi-
cient andfast algorithmsexist for the problemof computingthe
mostlikely modelgivenasequenceof observations.

Dueto their success,therehasrecentlybeensomeinterestin
exploring possibleextensionsto HMMs. Theseincludefactorial
HMMs [5] andcoupledHMMs [2]. In this paperwe explore fac-
torial HMMs. Thesewere first introducedby Ghahramani[5].
They attempttoextendHMMs byallowing themodelingof several
stochasticrandomprocesseslooselycoupled.FactorialHMMs can
be seenas both an extensionto HMMs or as a modelingtech-
niquein the Bayesianbelief networks[10] domain. In our work
we chooseto approachthemasextensionsto HMMs. Furtherde-
tail canbefoundin [9].

Thepaperis organizedasfollows. We startby describingthe
basictheoryof HMMs andthenfollow by presentingFHMMs as
extensionsof these.A modificationto theoriginal formulationis
thenproposedwhich allows bettermodelingof speech.We de-
scribethenseveral experimentsdesignedto comparethe perfor-
manceof FHMMs with traditionalHMMs. Weendthispaperwith
ourconclusionsandsuggestionsfor futurework.�
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2. FACTORIAL HIDDEN MARK OV MODELS

FactorialhiddenMarkov modelswerefirst describedby Ghahra-
mani[5]. In his original work GhahramanipresentsFHMMs and
introducesseveral methodsto efficiently learn their parameters.
Our focus,however, is on studyingthe applicability of FHMMs
to speechmodeling.Our goal is to studyFHMMs asa viablere-
placementfor HMMs.

2.1. Model Description

HiddenMarkov modelsareprobabilisticmodelsdescribinga se-
quenceof observationacousticvectors
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They arecharacterizedby a hiddenstatesequenceandan output
probabilitywhichdependson thecurrentstate.

Theprobabilitydensityfunction(pdf) of
�

giventhemodel �
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Here ' is a sequenceof states
� ' � �6�����������������7� , 2 �(' � � ' �84 )  is

thetransitionprobabilityfrom state' �84 ) to state' � , % �(' )  is the
(prior) probabilityof beingin state'+) at time
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is thepdf of theobservationvector
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is typically modeledasa Gaussianmixture. We assumethat the
modelhas : states.

In thespeechcommunitya HMM is typically representedas
shown in Figure1. Hereeachstateis shown explicitly andthear-
rowsshow allowabletransitionsbetweenstates.HoweveraHMM
canalsoberepresentedasadynamicbeliefnetwork[10] asshown
in Figure2. Thisalternative representationshowstheevolutionof
thestatesequencein time. Eachnoderepresentsthestateat each
timeslice. Thiscontext switchto dynamicbelief networksallows
many new modelingposibilitiessuchasFHMMs.

The factorial HMM arisesby forming a dynamicbelief net-
work composedof several ‘layers’. This is shown in Figure 3.
Weseeherethateachlayerhasindependentdynamicsbut thatthe
observationvectordependsuponthe currentstatein eachof the
layers.This is achievedby allowing thestatevariablein Equation
1 to becomposedof a collectionof states.Thatis, wenow havea
‘meta-state’variable' � which is composedof ; statesasfollows' � � '�< )5=� ��������� '�<?> =� �

(2)
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Figure1: Topologicalrepresentationof aHiddenMarkov Model
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Figure 2: Dynamic Belief Network representationof a Hidden
Markov Model

Herethesuperscriptis thelayerindex with ; beingthenumberof
layers.Thelayernatureof themodelarisesby only allowing tran-
sitionsbetweenstatesin the samelayer. Werewe to allow unre-
strictedtransitionsbetweenstateswe wouldhave a regularHMM
with a : >A@ : > transitionmatrix. Intermediatearchitecturesin
which somelimited transitionsbetweenstatesin different layers
areallowedhavealsobeenpresentedin [2].

By dividing thestatesinto layersweformasystemthatmodels
severalprocesseswith looselycoupleddynamics.Eachlayerhas
similar dynamicsto a basichiddenMarkov modelbut theproba-
bility of anobservationateachtimedependsuponthecurrentstate
in all of thelayers.For simplicity thenumberof possiblestatesin
eachlayer is : . Thuswe have a systemthat requires;B: @ :
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Figure3: DynamicBelief Network representationof a Factorial
HiddenMarkov Model

transitionmatrices.

2.1.1. Topological Equivalence to a Basic HMM

Notice thata factorialHMM systemcould still be representedas
a traditionalHMM with a : > @ : > transitionmatrix. For exam-
ple,consideratwo-layersystemwith threestatesperlayer. Let the
transitionmatricesfor layer 1 andlayer 2 be C ) and C 1 respec-
tively. C ) �EDGF )IHJ)LK�)MON )QPR)M M �TS C 1 �UDGF 1 H 1 K 1MVN 1 P 1M M �WS
Thetransitionmatrixfor theequivalentbasicHMM systemis built
bycreatingaCartesianproductof thetwooriginalmatricesC ) andC 1XYYYYYYYYYZ
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resultingin a transitionmatrix with : > �&`

states.As we can
seeanexplosionin thenumberof statesoccurs.For thisreason,as
notedin [5], it is preferableto usethe ;a: @ : transitionmatrices
over theequivalent : > @ : > representationsimply on computa-
tionalgrounds.

2.1.2. Posterior Probability Formulation

Wenow considertheprobabilityof theobservationgiventhemeta-
state.As mentioned,this probabilitydependson thecurrentstate
in all the layers. In Ghahramani’s original work, this probability
wasmodeledby a Gaussianpdf with a commoncovarianceand
themeanbeinga linearcombinationof thestatemeans.This pdf
isgivenby Equation3. Wereferto thismodelasa‘linear’ factorial
HMM.�+� �	�6� ' �  �b (3)c @�dfeAg �h D�� � g >!i / )j < ilk #Jm = S �Rn 4 ) Do� � g >!i / )Rj < ipk #Jm = Srq
Here j < ilk #sm = is themeanof layer t giventhemeta-state' � and
n

is thecovariance.Othersymbolsareaspreviouslydefined.
A problemwith this combinationtechniqueis that is it not

extendibleto the multiple Gaussianmixture. Neitheris it a very
naturalfit to speech.

Weproposeacombinationmethodthatassumesthat�+� �9��� ' �  
is the productof the (Gaussian)distributions of eachlayer. We
refer to this techniqueasthe ‘streamed’methodwith eachlayer
of theFHMM modelinga ‘stream’of theobservationvector. This
methodis extendibleto multiple Gaussianmixtures. This pdf is
definedby Equation4 below.�+� �	�6� ' �  �b (4)g �h >.i / ) c @�dvuxw ; i �	� g j < ilk #sm =zy � n 4 ) w ; i �9� g j < ilk #sm =(y	{ �



Herethematrix ; i partitionstheobservationvectorinto streams.
For examplein a two-layersystemwehave;}| � wp~�� �	� y (5); ) � w � � ~ � y � (6)

Here ~ � is the : @ : identitymatrix.
This formulationof the FHMM seemsa more naturalfit to

speechfeaturevectorssincetheseareoften composedof several
streamsof sub-vectors.For example,a typical featurevectormay
consistof the cepstrum,delta cepstrum,seconddelta cepstrum,
andsometimeseven energy andits derivatives. If thesedifferent
streamshavesomewhatdecoupleddynamicsthenafactorialHMM
couldbea logical alternative to HMMs. Eachdistinctsub-vector
streamcouldbemodeledby eachof thelayersin theFHMM.

The ideaof streamshasalreadybeenproposedin the speech
researchcommunity. Recognitionengineslike SPHINX [8] and
HTK [11] allow similar formulationsin theirHMM systems.The
differencebetweenour formulationandtheirsis thatthestreamed
FHMM allowsmoredecouplingof thestreams’dynamics.

Notice that in Equation4 we show a single covarianceal-
thoughextendingthis formulationto useadifferentcovariancefor
eachstreamor eachstatein eachstreamis straightforward.

3. ESTIMATION OF PARAMETERS

Theparametersof theFHMM areestimatedusingtheEstimation-
Maximizationalgorithm[3]. For further detailsrefer to [5] and
[9].

4. EXPERIMENT AL RESULTS

Our experimentstesteda factorial HMM systemon a phoneme
classificationtask.WeusedthephoneticallybalancedTIMIT database
[4]. Trainingwasperformedonthe‘sx’ and‘si’ trainingsentences.
Thesecreateatrainingsetwith 3696utterancesfrom 168different
speakers.250 sentencesfrom the test setwereusedfor testing.
ThefactorialHMM hadtwo layersandthreestatesin eachlayer.
ThestandardLeephoneticclustering[7] wasusedresultingin 48
phonememodelswith thesebeingfurtherclusteredduringscoring
to 39 models.

A baselinesystemwasalso implemented.This wasa three-
stateleft-to-rightHMM system.Mixturesof Gaussianswereused
to model the posteriorprobabilitiesof the observation given the
state.8 mixturecomponentswereusedperstate.

Weusedcepstralanddelta-cepstralfeaturesderivedfrom25.6ms
long window frames.Thedimensionof thefeaturevectorwas24
(12cepstraland12 deltacepstralfeatures).

4.1. Linear Factorial HMMs

Thefirst experimentinvestigatedtheperformanceof a linearfacto-
rial HMM. Theresultsareshown in Table1. For this experiment,
themeansandcovariancewereinitializedusingthemeanandco-
varianceof thepooledtrainingdata.

TheseresultsdemonstratethatthelinearfactorialHMM mod-
els speechpoorly. A major problemhere is that thereare not
enoughsystemparametersto form a goodmodel. Adding more
layersor stateswould increasethecomputationalcomplexity ex-
ponentiallywhile only providing smallmodelingadvantages.We
thereforeturn ourattentionto thestreamedFHMM.

Model % Error
BaselineHMM 42.9
LinearFHMM 71.3

Table1: ClassificationResults- LinearFHMM vs HMM

Model FeatureVector % Error
BaselineHMM Cepstrum+ DeltaCepstrum 42.9
BaselineHMM Cepstrum 51.6
BaselineHMM DeltaCepstrum 62.3
StreamedFHMM Cepstrum+ DeltaCepstrum 46.3

Table2: ClassificationResults- StreamedFHMM vs HMM

4.2. StreamedFactorial HMMs

Theparametersfor eachstreamareinitializedusingregularHMMs
trainedonthefeaturesof thecorrespondingstream.Table2 shows
theresultswhenonelayermodelsthecepstrumandtheothermod-
els the deltacepstrum. For completeness,the error ratesof the
HMMs trainedon the cepstrumanddeltacepstrumonly arealso
shown. 8 mixturecomponentsperstatewereusedin all themod-
els.

We canseethatwhile thestreamedFHMM producesreason-
ableresultsit is notableto improveuponthebasicHMM model.

A reasonfor this may be that thereis only an advantagein
usingtheFHMM if the layersmodelprocesseswith differentdy-
namics. The cepstrumand deltacepstrumarehighly correlated
henceit is to beexpectedthatthey wouldhavesimilardynamics.

Wethereforetriedfeaturevectorsthatweexpectedtobesome-
whatmoredecorrelated.It washopedthat perhapsthe modeling
assumptionsof FHMMs might be moreadequateandprovide an
edgeover traditionalHMMs.

4.3. Subband-basedSpeechClassification

Recently, researchershave consideredmodelingpartial frequency
bandsby separateHMMs and combiningthe probabilitiesfrom
theseat asuitablelevel (e.g. thephonemelevel) [1], [6]. Theidea
hasits roots in modelsof humanauditoryperception. Figure4
showsthesub-bandmodel.
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Figure4: FeatureSub-bandClassificationModel



Model FeatureVector % Error
BaselineHMM Upper+ Lowerband 46.9
BaselineHMM Upperband 66.7
BaselineHMM Lowerband 59.5
ParallelHMM Upper+ Lowerband 45.6
StreamedFHMM Upper+ Lowerband 48.3

Table3: ClassificationResults- StreamedFHMM

Examiningthisfigurewecanseethereisclearlyagreatdealof
scopefor researchwhenchosingthenumberof featuresub-groups
and the merging technique. We do not considertheseissuesin
ourwork. Wehave implementedasimpletwo-bandversionof the
sub-bandmodel using additionof the acousticlog likelihood at
thephonemelevel asthemerging technique.Wecall thissystema
‘parallel’ HMM.

The featurevectorsfor this systemwerederived as follows.
A traditionalmel-basedlog spectrumvectorwith 40 components
wasgenerated.The log spectrumwasdivided in two streams,the
first onecontainingthe lower 20 componentsandthesecondone
containingthe theupper20 vectorcomponents.Eachof thesub-
vectorswasrotatedby a DCT matrix of dimension

h�M @ � h gener-
ating two cepstralvectorseachof dimension12. Eachof these
streamsof vectorswasthenmeannormalized.Delta featuresfor
theresultingtwo streamswereproducedandappendedto them.

Table 3 shows the resultsfor experimentsusing the banded
featurevectors. We presentresultsfor testsusing the baseline
HMMs, FHMMs, parallelHMMs andalsofor HMMs trainedon
only theloweror upperbandandtheirdeltacoefficients.

The factorial HMM was initialized as follows. Eachof the
layerswastrainedfirst usingtraditionalHMM techniques.These
HMMs weretheinitial modelsusedby theFHMM trainingalgo-
rithm.

Againwecanseethatthereisnoadvantagein usingtheFHMM
model.

5. DISCUSSION

Furtherwork is neededto concludeif factorialHMMs area good
alternative to HMMs. Sincethemajoradvantageofferedby these
modelsappearsto betheirability to modelaprocesswhichiscom-
posedof independentlyevolving sub-processes, thechoiceof fea-
turesis critical. If the featuresareindeedhighly correlatedfac-
torial HMMs do not seemto offer compellingadvantages.This
fact is notedby Brand [2] who statesthat ‘conventionalHMMs
excel for processesthatevolve in lockstep;FHMMs aremeantfor
processesthatevolve independently’.

Wepostulatehoweveralongsimilarlinesas[6] thattherecould
besomeadvantagein usingtheFHMM framework tomodelspeech
andnoiseif thesewereuncorrelated.Alternatively if sub-bandfea-
tureswereusedtheFHMM couldprovidemorerobustrecognition
in thecaseof corruptionin onesub-band.Furtherwork is needed
in this area.

The most interestingresearchdirectionhowever would be to
investigatethecombinationof traditionalspeechfeatureswith other
informationsuchasarticulatorpositionsor languagemodelsor lip
trackinginformation. The FHMM framework providesan inter-
estingalternative to combiningseveral featureswithout the need

to collapsetheminto asingleaugmentedfeaturevector.
It is importantto noticethatalternative formulationscombin-

ing the informationfrom eachof the statesin the meta-stateare
possible.In thispaperwehavedescribedthelinearFHMM andthe
streamedFHMM. Perhapsotheralternativescouldbeexplored.

Ourconclusion,therefore,is thatfurtherresearchis neededto
decideif algorithmicextensionstoHMMs suchasfactorialHMMs
or coupledHMMs offer a good alternative to traditional HMM
techniques.The work in this paperonly representsa very first
effort in this direction.

6. CONCLUSIONS

We havepresentedfactorialHMMs aspossibleextensionsof hid-
denMarkov models.Thesemodelswereinvestigatedin thecon-
text of phonemeclassificationasapossiblereplacementfor tradi-
tional HMMs. We have alsointroducedandexploredtheconcept
of streamedfactorialHMMs. Our experimentalresultsprovedin-
conclusive. In the experimentspresentedin this paper, factorial
HMMs did not appearto offer any advantageover regularHMMs
whentraditionalfeaturevectorswereused.We postulatethatthis
is becauseany modelingadvantageoffered by factorial HMMs
will only becomeevident if lesscorrelatedfeaturesareused.We
concludethepaperwith suggestionsfor futurework.
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